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Abstract

Motivation: In the genome-wide association analysis of population-based biobanks, most diseases have low preva-
lence, which results in low detection power. One approach to tackle the problem is using family disease history, yet
existing methods are unable to address type I error inflation induced by increased correlation of phenotypes among
closely related samples, as well as unbalanced phenotypic distribution.

Results: We propose a new method for genetic association test with family disease history, mixed-model-based
Test with Adjusted Phenotype and Empirical saddlepoint approximation, which controls for increased phenotype
correlation by adopting a two-variance-component mixed model, accounts for case–control imbalance by using em-
pirical saddlepoint approximation, and is flexible to incorporate any existing adjusted phenotypes, such as pheno-
types from the LT-FH method. We show through simulation studies and analysis of UK Biobank data of white British
samples and the Korean Genome and Epidemiology Study of Korean samples that the proposed method is robust
and yields better calibration compared to existing methods while gaining power for detection of variant–phenotype
associations.

Availability and implementation: The summary statistics and code generated in this study are available at https://
github.com/styvon/TAPE.

Contact: lee7801@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Genome-wide and phenome-wide studies are facilitated by the
recent development of large-scale biobanks, such as the UK Biobank
(UKB) (Bycroft et al., 2018), BioBank Japan (Nagai et al., 2017) and
the Korean Genome and Epidemiology Study (KoGES) (Kim et al.,
2017). Individuals in the biobanks are samples from a target popula-
tion and large numbers of phenotypes are collected for each individ-
ual, which allows phenome-wide scans. However, challenges remain

to gain enough power to identify associated variants, especially for
binary traits with a low prevalence.

One promising approach to improve detection power is using
family disease history to infer risk of diseases of unaffected individu-
als. For family-based cohorts with partially-missing genotypes, asso-
ciation test power can be improved by using pedigree information
(Gudbjartsson et al., 2008; Kong et al., 2009; Thornton and
McPeek, 2007; Zhong et al., 2016). The GWAX method first dem-
onstrated that with completely missing family genotypes, unaffected
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individuals with family disease history can be used as proxy cases to
find genetic associations (Liu et al., 2017). The LT-FH method
(Hujoel et al., 2020) further increases association power by estimat-
ing a liability of disease conditional on the observed phenotypes and
family disease history, which differentiate the disease risks among
the proxy cases.

Despite the progress, several important limitations remain. First,
when samples are related, the increased correlation among the
inferred risks (Supplementary Fig. S1) can lead to type I error infla-
tion. Hujoel et al. (2020) showed that since samples with close re-
latedness, such as sibling pairs, tend to have highly correlated
GWAX or LT-FH phenotypes due to nearly identical family disease
history, GWAX and LT-FH suffered poor calibration compared to
GWAS. Thus, the usage of the existing methods should be restricted
to testing unrelated individuals only, which can reduce power.
Second, with unbalanced case–control ratios, the distributions of
inferred risks are still unbalanced, hence testing for association using
linear mixed model (LMM) can yield inflated type I error rates. For
example, diseases, such as Parkinson’s disease, have low prevalence
in UKB, which leads to a small number of cases and proxy cases (i.e.
controls with non-zero inferred disease risk) in GWAX and a
relatively low posterior liability conditioning on family history in
LT-FH (Supplementary Figs S2 and S3). Since the Gaussian approxi-
mation does not perform well in this setting, LMMs can yield
inflated type I error rates. Currently no method exists to handle
situations of this kind.

We propose a new method for genetic association test with fam-
ily disease history, mixed-model-based Test with Adjusted
Phenotype and Empirical saddlepoint approximation (TAPE), which
controls for increased phenotype correlation and case–control im-
balance. In standard mixed-model methods, only a dense genetic re-
latedness matrix (GRM) is used as the variance component. TAPE
uses a sparse kinship matrix as an additional variance component to
further account for the increased correlation among phenotypes in
closely related individuals. In addition, to adjust for case–control
imbalance, TAPE uses empirical saddlepoint approximation under a
LMM (Bi et al., 2020; Davison and Hinkley, 1988; Feuerverger,
1989). We show through simulation studies and analysis of UKB
that the proposed method is robust and yields better calibration
compared to existing methods while gaining power for detection of
variant–phenotype associations.

2 Materials and methods

2.1 Overview of methods
The TAPE method takes a three-step framework (Fig. 1): (i) infer
the disease risk for all individuals in the analysis based on the origin-
al case–control status and family disease history to be used as pheno-
type; (ii) fit a two-variance-components null LMM to obtain
parameter estimates; and (iii) test for genetic association using score
test with empirical saddlepoint approximation.

In Step 1, the phenotypes are adjusted using inferred risk of indi-
viduals. TAPE-WP uses a weighted proportion of the affected close
relatives to the control, which can be viewed as an extension of the
GWAX method8 to further differentiate disease risk of controls
based on family disease history configurations. TAPE-LTFH uses
the liability of diseases generated from the existing LT-FH method
as the adjusted phenotypes.

In Step 2, we fit the null LMM with two random effects, the first
uses the sparse kinship matrix (Jiang et al., 2019), and the second
uses the dense GRM. These two-variance-components can capture
both increased correlation in phenotypes due to phenotype adjust-
ment procedure and distance genetic relatedness. To make the
method scalable, average information restricted maximum likeli-
hood (AI-REML) (Gilmour et al., 1995), with preconditioned conju-
gate gradient (PCG) method (Hestenes and Stiefel, 1952) similar to
that used in BOLT-LMM (Loh et al., 2015) and SAIGE, is used.

In Step 3, a score test statistic is calculated for each genetic vari-
ant against the adjusted phenotype. Since the Gaussian approxima-
tion does not perform well at the tails of the test statistic

distribution, we approximate the distribution by empirical saddle-
point approximation (Feuerverger, 1989), which uses an empirically
estimated cumulant-generating function (CGF) to calculate P-value.
The empirical saddlepoint approximation is utilized when the test
statistic exceeds 2 SD of the mean. Time complexity for this step is
OðMNÞ.

2.2 Phenotype adjustment
We first introduce the proposed phenotype adjustment procedure
(Step 1) in TAPE. For TAPE-WP, we assume a sample of N individu-
als where each individual has NRi

relatives with phenotypic informa-
tion (i 2 f1; . . . ;NgÞ, Fij denotes the kinship coefficient between
individual i and relative j (i 2 f1; . . . ;Ng; j 2 f1; . . . ; NRi

gÞ, Dij

denotes the phenotype of relative j of individual i, Y is an N-vector
of observed binary phenotypes. The adjusted quantitative phenotype
for individual i, Zi, is expressed as:

Zi ¼ I Yi ¼ 1ð Þ þ I Yi ¼ 0ð Þq � ri;

where Ið�Þ denotes indicator function, q is a pre-specified constant

indicating the increase in latent disease risk and ri ¼
PNRi

j¼1
FijIðDij¼1ÞPNRi
j¼1

Fij

. If

Yi ¼ 0 and all NRi
relatives of the ith individual are cases, the latent

disease risk is Zi ¼ q. For the analysis in this article, we assume that
latent risk of such individual is 0.5 (i.e. q ¼ 0:5). In addition, the
phenotype adjustment procedure can be adapted to include informa-
tion other than family disease status that is potentially indicative of
latent disease risk. See Supplementary Notes S1 and S2 for details.

2.3 LMM for adjusted phenotype
We denote Xi as a (pþ1)-vector of covariates with the intercept,
and Gi as the allele counts for the variant to be tested. We consider
the following linear model:

EðZiÞ ¼ XiaþGibþ bi;

where a is a ðpþ 1Þ-vector of fixed effect coefficients, b is a gen-
etic effect coefficient and bi the random effect term for the ith indi-
vidual with b ¼ ðb1; . . . ; bNÞT : We assume the random effect to
follow a multivariate Gaussian distribution b � Nð0; s0IþPK

k¼1 skVkÞ, where s0 is the variance component parameter for a
noise term. Parameters for other variance components are denoted
as sk, and Vk are pre-specified N �N correlation matrices.

To better capture phenotype correlation, we use a variance com-
ponent of sparse kinship in addition to GRM, i.e. K ¼ 2 and

Fig. 1. Analytical framework of TAPE. In Step 1, latent disease risk of individuals is

estimated from observed phenotypes and family disease history using a weighted

proportion of the affected close relatives to the individual. In Step 2, a null LMM is

fit with covariates and two random effects with the sparse kinship matrix and the

dense GRM as covariance structures. In Step 3, P-values score test is performed for

each genetic variant using empirical saddlepoint approximation
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R ¼ s0I þ s1V1 þ s2V2, where V1 is a sparse matrix of the estimated
kinship coefficients after thresholding, and V2 is the GRM. The in-
clusion of the sparse kinship matrix as an additional variance com-
ponent can be justified by the observation that the phenotype
adjustment using family disease information increases the concord-
ance among related individuals. For example, the adjusted pheno-
type for a control sibling pair would be identical as they share the
same parental disease status (Supplementary Fig. S1). Such pheno-
typic concordance is not sufficiently captured by GRM alone and
can lead to mis-calibration as pointed out by Hujoel et al. (2020). It
is also shown that incorporating pedigree structure as a variance
component in LMMs improves association outcomes (Tucker et al.,
2015; Zaitlen et al., 2013).

2.4 Parameter estimation for the null model
In Step 2, we fit a LMM under the following null hypothesis

EðZiÞ ¼ Xiaþ bi:

Treating Z as a quantitative trait, the marginal log likelihood of
ða; sÞ in REML is

‘ a;b ¼ 0; sð Þ ¼ c� 1

2
log Rj j þ log XTR�1Xj j þ ZTPZ
� �

;

where c is a constant, R ¼ s0I þ
P2

k¼1 skVk,P ¼ R�1

�R�1XðXTR�1XÞ�1. Parameters ða; b; sÞ are estimated iteratively

with a working model Z
�
¼ Xa^ðlÞ þ b^ðlÞ for iteration l. Let R^¼

s^0I þ
P2

k¼1 s^kVk be the working variance matrix. The score function

with respect to s are:

@‘ða; b ¼ 0; sÞ
@sk

¼ 1

2
Z
�T

PVkPZ
�
� tr PVkð Þ

h i
:

For each iteration, variance components s^ are updated using AI-
REML algorithm (Gilmour et al., 1995), in which the Hessian is
approximated by an average information matrix, AI, with its entries
expressed as:

AIsksl
¼ 1

2
Z
�T

P̂VkP̂VlP̂Z
�
;

where P̂ ¼ R^�1� R^�1XðXTR^�1XÞ�1. Then the variance compo-
nent parameters are updated by snew

k ¼ sold
k þ fAIg�1 @‘ða;b¼0;soldÞ

@sk
.

Both the score and AI matrix involve R^�1, which is computa-
tionally heavy when N is large. To reduce the computational bur-
den, the PCG method (Hestenes and Stiefel, 1952) with Jacobi
preconditioner is adopted, which avoids directly calculating matrix
inverse by finding solutions of linear systems and involves only ma-
trix multiplication. Since R^ is a linear combination of V1 and V2,
matrix multiplication with regard to each part can be calculated sep-
arately. For V1, the computation cost is further lowered by using the
sparsity. For V2, we reduce the memory usage by calculating its ele-
ments in runtime instead of using a pre-computed N �N GRM ma-
trix. The overall time complexity for null model estimation is
OðBðMGRM þ CsparseÞN1:5Þ, where B is the number of iterations until
the algorithm reaches convergence, Csparse is the number of non-zero
elements of sparse kinship matrix, MGRM is the number of variants
included in the GRM construction. Here, we assume that PCG
algorithm has complexity OðN0:5Þ (Loh et al., 2015). To avoid
double-fitting the candidate variant in the model and GRM,
leave-one-chromosome-out scheme was implemented.

2.5 Single variant association test with empirical SPA
In Step 3, we use the score test to calculate the P-value for associ-
ation of each genetic variant. The score statistic for testing H0 : bj ¼

0 for variant j is T ¼ G
� T

j ðZ� l^Þ, where G
�

j is an N-vector of

covariate-adjusted genotypes. Under the null hypothesis, the vari-

ance of the statistic is VarðTÞ ¼ GT
j P̂Gj. For computational

efficiency, VarðTÞ can be approximated using VarðTÞ� ¼ G
� T

j G
�

j

combined with a calibration factor r ¼ VarðTÞ
VarðTÞ� estimated using a sub-

set of single-nucleotide polymorphism (SNP) data (Loh et al., 2015;
Svishcheva et al., 2012; Zhou et al., 2018). The variance-adjusted

statistic after calibration is T 0 ¼ G
� T

j ðZ�l̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ G
� T

j G
�

j

r . For the proposed method,

30 independent SNPs were randomly chosen to obtain the estimated

calibration factor r^. The number of SNPs were chosen such that the
estimated value is stable within a given variation threshold. The
TAPE program is capable of adaptively increase the number of SNPs
to reach a stable estimate.

When Z is unbalanced and a variant has low minor allele count,
using a Gaussian distribution to calculate a P-value of T 0 can result
in type I error inflation. Saddlepoint approximation is shown to im-
prove over Gaussian approximation in such conditions by utilizing
the entire CGF (Daniels, 1954; Jensen, 1995). Fixing G

�
j, T 0 can be

viewed as a weighted sum of residuals Z� l^, yet the adjusted
phenotype Z has an intractable distribution, which makes it impos-
sible to derive the CGF.

Alternatively, we use the empirical version of saddlepoint ap-
proximation (Davison and Hinkley, 1988; Feuerverger, 1989) as a
non-parametric estimator for the distribution of the test statistic (Bi

et al., 2020). The empirical estimator for CGF of T 0 is K^ nð Þ ¼
logð1

N

PN
i¼1 enti Þ; where ti is the residual of the ith individual from

Step 2. The empirical approximation of the first and second deriva-

tive is K^0 nð Þ ¼
PN

i¼1
enti tiPN

i¼1
enti

and K^00 nð Þ ¼
PN

i¼1
enti t2

iPN

i¼1
enti
� K^0 nð ÞK^2 nð Þ; re-

spectively. Suppose n^ is a value satisfying the equation K^0ðn^Þ ¼ q,
the P-value can be calculated by the following formula (Kuonen,
1999)

pr T
0
> q

� �
� 1� U wþ 1

w
log

v

w

� �
;

where w ¼ signðn^Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½n^q�K^ðn^Þ�

q
; v ¼ n^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K^00ðn^Þ

q
, U is the standard

normal cumulative distribution function.

2.6 Simulation studies of type I error control and power
We considered two types of relatedness structures. The first one con-
sists of 5000 independent individuals and 2500 sibling pairs
(pr ¼ 50%). The second one is a mixture of independent individuals
and families with eight members in each family. The pedigree for the
eight-member family was shown in Supplementary Figure S5. Binary
phenotypes for sample individuals and parents were simulated from
BernoulliðliÞ with li from a logistic mixed model

logit lið Þ ¼ a0 þXi þGibþ bi;

where for individual i ði ¼ 1; . . . ; 3NÞ, Xi is a covariate randomly
sampled from Normalð0; 1Þ, Gi is the genotypes of the M variants,
a0 is the intercept determined by prevalence k, b is a vector of log
odds ratio of genetic effects and bi is a random effect with underly-
ing distribution Normalð0; sKÞ depending on the true underlying
kinship coefficient matrix K. Given the kinship coefficient
uij between individual i and individual j, the value for an element in
K is Kij ¼ 2uij.

Simulation results for TAPE-WP and TAPE-LTFH were com-
pared with two other methods: (i) GWAS with original binary phe-
notypes by SAIGE (Zhou et al., 2018); and (ii) original LT-FH
method that uses BOLT-LMM with LT-FH phenotypes (Hujoel
et al., 2020) for all individuals (hereafter denoted as LT-FH), which
is shown to increase association power over GWAX (Liu et al.,
2017).

Type I error rates were evaluated with 109 independent null
SNPs, and sample size 10 000 at case–control ratio of 1:99, 5:95 and
10:90. Phenotypes were generated given s ¼ 1, corresponding to
liability-scale heritability 0.23 (Zhou et al., 2018). To investigate
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type I error rates by minor allele frequency (MAF), SNPs were gen-
erated with MAF 0.001, 0.01 and 0.1, respectively, for each simu-
lated dataset.

Power of the tests was assessed using simulated datasets with
10 000 individuals and 100 000 variants with MAF 0.1 for each set-
ting with 1% variants selected as causal variants. We calculated
both the average v2 statistics for causal SNPs and the empirical
power at empirical a level from SAIGE, LT-FH, TAPE-LTFH and
TAPE-WP. Genetic effect sizes ranged from 0.4 to 2.3 and three
case–control ratio settings were considered, i.e. 1:99, 5:95 and
10:90. We generated 100 replications for each simulation scenario.

2.7 Computation time evaluation
Computation time was evaluated with M ¼ 100000 variants and
sample size N ranging from 10 000 to 408 898 sampled from white
British individuals in UKB data for type II diabetes (case:-
control¼1:20). Projected time for the analysis of 21 million variants
with MAF 	 0:01% was calculated based on the evaluation results.
All evaluations were computed on an Intel(R) Xeon(R) Gold 6152
CPU.

2.8 UK biobank data
Over 21 million genetic variants imputed from the Haplotype
Reference Consortium (McCarthy et al., 2016) and with
MAF 	 0:01% were used for the association analysis among a sam-
ple population of 408 898 white British individuals. NCBI Build 37/
UCSC hg19 was adopted for genomic coordinates. A total of 10 bin-
ary traits with available parental disease status were analyzed,
where the binary traits for genotyped individuals were defined by
the PheWAS codes (Zhou et al., 2018). Parental phenotypes were
extracted from data fields for self-reported paternal and maternal ill-
ness. We included sex, age and first 10 principal components as
covariates to adjust for. GRM was constructed using 93 511 geno-
typed variants suggested by UKB (Bycroft et al., 2017; Zhou et al.,
2018). Kinship coefficients were estimated using the KING software
(Manichaikul et al., 2010), and the sparse kinship matrix was con-
structed using those with estimated kinship no larger than third-
degree relatedness. Calibration of the testing method was evaluated
by the attenuation ratio obtained from stratified LD score regression
(LDSC). The attenuation ratio is defined as (LDSC intercept�1)/
(average v2�1), with smaller values indicating better control of false
positives.

2.9 KoGES data
For the association analysis among a sample population of 72 298
Korean individuals, over 8 million genetic variants were imputed
from 1000 Genome project phase 3þKorean reference genome
(397 samples) and with MAF>1% (Kim et al., 2017). Two binary
traits (diabetes and gastric cancer) with different case–control ratios
were analyzed. Phenotypes for both genotyped individuals and their
relatives are self-reported survey data. We adjusted for sex, age, first
10 principal components and 34 indicator variables of batch infor-
mation (cohort � collection year). GRM was constructed using
327 540 genotyped variants. The sparse GRM was constructed using
SAIGE with pairwise relatedness coefficients larger than 0.1.

3 Results

3.1 Simulation study results
Type I error rates were evaluated at genome-wide a ¼ 5� 10�8 with
sample size of 10 000 and case–control ratio ranging from 1:99 to
10:90. For each case–control ratio setting, two sets of genotype data
with 109 independent variants were generated with MAF of 0.1,
0.01 and 0.001, respectively. We first simulated a population con-
sisting of 2500 pairs of siblings and 5000 independent individuals
(Table 1). The empirical type I error rates of LT-FH were signifi-
cantly inflated under more unbalanced case–control ratio and lower
MAF, while results from TAPE-WP and SAIGE were well cali-
brated. TAPE-LTFH also yielded better controlled type I error rates

than that of LT-FH, especially when the case–control ratio is more
unbalanced (1:99). Further, we evaluated type I error rates with a
more complex relatedness structure, i.e. a population consisting of
625 eight-member families and 5000 independent individuals
(Table 1). Inflated type I error rates were observed in results from
LT-FH but with lower magnitude compared to the previous setting.
TAPE-LTFH had slightly inflated type I error rates. One explanation
is that LT-FH phenotypes are less concordant in the latter setting
since there is a smaller number of individual sharing identical family
history under a more complicated pedigree. On the other hand, type
I error rates from TAPE and SAIGE were relatively well controlled
with a slight deflation.

One of the important features of TAPE is the use of a kinship
matrix in addition to (dense) GRM to account for increased correl-
ation among phenotypes. Two additional analyses were performed
to investigate the influence of no kinship variance component
(TAPE-nok) and mis-specified kinship matrix (TAPE-misk) on cali-
bration of TAPE under the eight-member family pedigree scenario.
For TAPE-nok, the sparse kinship matrix was not included as an
LMM variance component and inflated empirical type I error was
observed (Supplementary Fig. S4). For TAPE-misk, the true kinship
matrix of an eight-member family pedigree was replaced with a
slightly mis-specified one (Supplementary Fig. S5) in Steps 1 and 2.
The empirical type I error of TAPE-misk was similar to that of
TAPE. The results indicated that the impact of a slightly mis-
specified kinship matrix was negligible, while the inclusion of the
kinship matrix as a variance component is crucial in controlling type
I error rate when family information is incorporated into the
analysis.

To assess empirical power, we compared the average v2 statistics
of causal SNPs (Fig. 2) and the proportion of causal SNPs significant
at empirical a level (Supplementary Fig. S6) for simulated datasets
with sample size 10 000 under different genetic effects and case–con-
trol ratio. For each dataset, 100 000 independent variants with MAF
0.1 were simulated in which 1% were causal, and we generated 100
datasets for each setting. TAPE-WP and TAPE-LTFH achieve
greater detection power over SAIGE, with a 21.0% and 26.5%
average increase in average v2 statistics, and a 18.3% and 22.4%
average increase in proportion of causal SNPs detected, respectively.

Table 1. Empirical type I error rates for TAPE-WP, TAPE-LTFH, LT-

FH and SAIGE, estimated using 109 independent SNPs and a sam-

ple size of 10 000 (a ¼ 5� 10�8)

Case:control MAF TAPE-WP TAPE-LTFH LTFH SAIGE

2500 pairs of siblings and 5000 independent individuals

1:99 0.001 4.977e�08 1.019e�07 5.928e�06 4.418e�08

5:95 0.001 5.115e�08 8.275e�08 1.252e�06 4.368e�08

10:90 0.001 5.476e�08 7.452e�08 5.489e�07 4.641e�08

1:99 0.01 5.455e�08 1.069e�07 1.409e�07 3.963e�08

5:95 0.01 5.143e�08 1.158e�07 1.940e�07 4.341e�08

10:90 0.01 5.459e�08 9.086e�08 1.141e�07 4.980e�08

1:99 0.10 5.007e�08 1.275e�07 1.500e�07 3.964e�08

5:95 0.10 5.213e�08 1.639e�07 1.238e�07 4.355e�08

10:90 0.10 6.416e�08 7.782e�08 7.232e�08 4.650e�08

625 8-member families and 5000 independent individuals

1:99 0.001 3.329e�08 9.028e�08 4.446e�06 3.832e�08

5:95 0.001 3.051e�08 6.563e�08 8.171e�07 4.245e�08

10:90 0.001 2.967e�08 5.145e�08 3.751e�07 4.721e�08

1:99 0.01 3.742e�08 9.792e�08 4.818e�07 4.547e�08

5:95 0.01 3.156e�08 7.906e�08 1.463e�07 4.311e�08

10:90 0.01 2.978e�08 6.215e�08 8.811e�08 4.324e�08

1:99 0.10 3.113e�08 7.730e�08 1.000e�07 3.895e�08

5:95 0.10 3.050e�08 7.983e�08 6.025e�08 4.232e�08

10:90 0.10 3.163e�08 6.372e�08 5.857e�08 4.546e�08

Note: Two types of population structure were considered: (i) sample con-

sists of 2500 pairs of siblings and 5000 independent individuals; and (ii) sam-

ple consists of 625 8-member families and 5000 independent individuals.
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LT-FH also had increased v2 over SAIGE by 27.5% and had a
22.1% average increase in detection rate, but it suffered from type I
error inflation especially when analyzing related samples.

To investigate how more complex relatedness structures will in-
fluence simulation results, we further simulated a population in
which related individuals form families with eight members
(Supplementary Fig. S5). TAPE-WP achieves greater detection
power over SAIGE GWAS results, with a 24.1% average increase in
average v2 statistics and a 30.6% average increase in proportion of
causal SNPs detected. TAPE-LTFH has higher overall power than
both LT-FH and SAIGE under such relatedness structure
(Supplementary Fig. S6), with a 27.5% average increase in average
v2 statistics and a 40.8% average increase in proportion of signifi-
cant SNPs detected over SAIGE, whereas for LT-FH the increase is
25.6% for average v2 statistics and 36.6% for proportion of signifi-
cant SNPs detected.

In general, TAPE-WP and TAPE-LTFH yielded well-controlled
type I error rate even when case–control ratio is unbalanced, which
makes the incorporation of family disease information in genetic as-
sociation test feasible in the presence of sample relatedness and gains
detection power. In addition, TAPE-LTFH achieved higher detec-
tion power than LT-FH, especially under the simulation scenario
with more complex relatedness structure.

3.2 Computation time
Computation time was evaluated using randomly selected samples
from 408 898 white British individuals in UKB data for type II dia-
betes (case:control¼1:20) with M ¼ 100000 variants. Projected
computation time for 21 million variants with MAF 	 0:01% was
estimated and plotted on log10 scale against sample size varying
from 10 000 to 408 898 (Supplementary Fig. S7). Computation time
for TAPE-LTFH is similar to that for TAPE-WP and is therefore
omitted in the plot. A break-down of run time for null model estima-
tion and P-value calculation is presented in Supplementary Table
S3. Since TAPE fits the model with two-variance-components and
uses ESPA in P-value calculation, which requires additional compu-
tation, TAPE was slower than SAIGE and LT-FH. Overall, TAPE is
scalable to analyze biobank size data. For genome-wide analysis of
testing 21 million variants, TAPE required 16 CPU hours with
40 000 samples and 284 CPU hours with 408 898 samples.

3.3 Analysis of binary traits in biobank data
We analyzed 10 binary disease outcomes with available parental dis-
ease status in the UKB (Table 2).

Figures 3 and 4 present Manhattan plots and Q–Q plots strati-
fied by MAF categories for two phenotypes with different case–con-
trol ratio: type II diabetes (case–control ratio 1:20), and Parkinson’s
disease (case–control ratio 1:350). Plots for all 10 diseases in the
analysis are shown in Supplementary Figures S8 and S9. For dis-
eases, such as Parkinson’s disease (Fig. 4), the observed quantile dis-
tribution of �log10(p) corresponding to SNPs with MAF<0.01 for
LT-FH method in the Q–Q plot curved off in the middle of the
graph, indicating potential type I error inflation due to
unaccounted-for relatedness structure. Similar problematic patterns
can also be found in LT-FH Q–Q plots for lung cancer, depression,
chronic bronchitis, colorectal cancer and cerebral ischemia

(Supplementary Fig. S8), but not in plots for TAPE-WP and TAPE-
LTFH.

To assess the calibration of testing methods, we performed strati-
fied LDSC with the baselineLD model to obtain the attenuation
ratios (Finucane et al., 2015) (Supplementary Table S2). For traits
with more unbalanced case–control, TAPE-WP consistently yields
relatively lower attenuation ratios than TAPE-LTFH, while LT-FH
generates the highest attenuation ratio, indicating poor calibration.
For example, the average attenuation ratio for type II diabetes
(case:control¼1:20) is 0.110, 0.120 and 0.142 for TAPE-WP,
TAPE-LTFH and LT-FH, respectively; for Parkinson’s disease
(case:control¼1:360), the average attenuation ratio is 0.125, 0.222
and 0.462 for TAPE-WP, TAPE-LTFH and LT-FH, respectively.
Since we used all the individuals regardless of relatedness, the obser-
vation supports the previously reported result that LT-FH suffers
poor calibration in related samples due to concordance between
phenotypes from closely related samples, such as sibling pairs

Fig. 2. Average v2 values of causal variants with N¼ 10 000 (5000 independent individuals and 2500 pairs of siblings), comparing TAPE-WP, TAPE-LTFH, LT-FH and

SAIGE. For each dataset, 100 000 independent variants were simulated and 1% variants were selected as causal variants with four different effect sizes. A total of 100 datasets

were generated to calculate average v2 values. MAFs of variants were 0.1

Table 2. Summary of 10 traits in UKB

Trait Phecode Case:control Parental prevalence

Parkinson’s disease 332 1:360 0.0186

Dementias 290.1 1:406 0.0609

Lung cancer 165.1 1:181 0.0604

Depression 296.2 1:33 0.0462

Type II diabetes 250.2 1:20 0.0845

Hypertension 401 1:4 0.2388

Chronic bronchitis 496.2 1:136 0.0785

Colorectal cancer 153 1:87 0.0499

Ischemic heart disease 411 1:11 0.2373

Cerebral ischemia 433.3 1:138 0.1348

Fig. 3. Manhattan plot for the UKB association test results from SAIGE (first row),

TAPE-LTFH (second row) and TAPE-WP (third row) among white British

(N¼408 898). Left: type II diabetes (Phecode 250.2); right: Parkinson’s disease

(Phecode 332). Significant clumped variants are identified using a window width of

5 Mb and a linkage disequilibrium threshold of 0.1
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(Hujoel et al., 2020). On the contrary, TAPE-WP is able to generate
better calibrated results under such situations, followed by TAPE-
LTFH. Due to the above-mentioned potential type I error inflation
of LT-FH method for samples with relatedness, we only compare
the proposed method with SAIGE, which is also capable of handling
related samples. Supplementary Table S1 lists the number of signifi-
cant variants and significant clumped variants at a ¼ 5� 10�8

detected by TAPE-WP, TAPE-LTFH and SAIGE. Significant
clumped variants were further identified by clumping genome-wide
significant variants with 5 Mb window size and linkage disequilib-
rium threshold r2 ¼ 0:1 using PLINK software (Purcell et al., 2007).
TAPE-WP identified 84 more genome-wide significant clumped var-
iants than SAIGE for type II diabetes, and 5 more for Parkinson’s
disease. For TAPE-LTFH, a total of 111 more genome-wide signifi-
cant clumped variants were identified for type II diabetes, and 7
more for Parkinson’s disease as compared to SAIGE. For all 10 dis-
eases analyzed, a total of 663 genome-wide significant clumped var-
iants were identified by TAPE-WP, including 33 clumped variants
with MAF<1%; whilst a total of 344 clumped variants were identi-
fied by SAIGE, of which 25 were with MAF<1%. For TAPE-LTFH,
a total of 726 genome-wide significant clumped variants were identi-
fied, including 63 clumped variants with MAF<1%.

For additional analysis, we applied TAPE-WP, TAPE-LTFH and
SAIGE to two binary phenotypes for 72 298 individuals with family
disease history in the KoGES data and analyzed 8 million variants.
Disease prevalence among sample individuals and their relatives is
shown in Supplementary Table S4. For diabetes (case:-
control¼1:12), TAPE-WP identified 14 more genome-wide signifi-
cant clumped variants than SAIGE, while TAPE-LTFH identified 15
more than SAIGE. For gastric cancer (case:control¼1:191), both
TAPE-WP and TAPE-LTFH identified three genome-wide signifi-
cant clumped variants (rs760077, rs35972942 and rs2978977)
while no variants were genome-wide significant by SAIGE. The
three clumped variants have been previously reported to be associ-
ated with gastric cancer among Chinese or Japanese population (Du
et al., 2020; Tanikawa et al., 2018; Yan et al., 2020), but not among
Korean samples. Manhattan plots and Q–Q plots are presented in
Supplementary Figures S10 and S11.

4 Discussion

We propose a robust method that incorporates family disease infor-
mation for genetic association test while accounting for case–control
unbalance and close relatedness in the population. Previous studies
have shown that additional information from family disease history
can help improve test power, yet challenges remain (i) to control for
type I error inflation induced by increased correlation of pheno-
types; and (ii) to account for unbalanced distribution of phenotypes

after being adjusted by family disease information. Our TAPE
framework uses both a dense GRM and a sparse kinship matrix in
the LMM to account for sample relatedness and family history-
induced correlations. Empirical saddlepoint approximation is
adopted to control for type I error inflation under unbalanced
phenotypic distribution. Optimization strategies, such as PCG, for
computing components with matrix inversion, and runtime GRM
calculation from raw genotypes were implemented to improve com-
putation efficiency and reduce memory usage.

For the null model, both sparse kinship matrix and GRM are
included in the TAPE framework as variance components to account
for the potential phenotypic concordance. The use of two or more
variance components in mixed model has been shown to better con-
trol for test statistics inflation and improves association power as
well as prediction accuracy in standard GWAS and family studies
(Speed and Balding, 2014; Widmer et al., 2014), yet we are not
aware of existing methods that apply more than one variance com-
ponents to mixed model while incorporating family disease history.
From simulation studies, we show that the absence of kinship matrix
in variance components leads to inflated type I error rates of associ-
ation test results. This result echoes previous findings from LT-FH
(Hujoel et al., 2020), and indicates a possible solution to control for
phenotypic correlation introduced by incorporating family disease
information. When estimating variance parameters, the TAPE
framework improves computation efficiency by applying PCG algo-
rithm on top of the sparse estimated kinship matrix and the dense
GRM, where sparsity of the estimated kinship matrix is ascertained
by proper thresholding.

The analytical framework of TAPE allows for flexible choice of
outcome variables. For example, TAPE-LTFH uses LT-FH pheno-
types in the proposed two-variance-component mixed model. We
show by simulation studies that TAPE-LTFH can better control for
type I error inflation than LT-FH and achieves higher power. It
remains a future work to better capture latent risk while accounting
for phenotypic concordance to further improve association power
using external information, such as family disease history. When
there is relatively high sample relatedness in the target population,
TAPE-WP is recommended since it consistently controls type I error
better than TAPE-LTFH and LT-FH while being capable of incorpo-
rating family disease history from the whole population. For studies
with exploratory or discovery purposes, we would recommend
TAPE-LTFH, as it increases power for detecting possible associa-
tions, and can keep type I error inflation on a controllable level.

For both TAPE-LTFH and LT-FH in the study, we used the poster-
ior mean genetic liability from the LT-FH method proposed by Hujoel
et al. as the outcome variable for all individuals (including related
ones), which is computed conditioning on test samples’ binary pheno-
types and family disease history. Since the original LT-FH study sug-
gested against the use of LT-FH phenotypes for related individuals, we
also evaluated the performance of two corresponding methods, TAPE-
LTFHc and LT-FHc, which adjust phenotypes based on the presence
of genetically related individuals in the data (details in Supplementary
Note S3). Simulation studies (Supplementary Note S3) and UKB data
analysis (Supplementary Note S4) show that this approach can help
lowering type I error rates for both TAPE-LTFHc and LT-FHc, but at
the cost of a decrease in detection power.

We also note several limitations of our proposed method. First,
the potential difference in the phenotype classification for genotyped
individuals and their relatives is not accounted for in the TAPE
framework. For example, phenotypes of genotyped individuals in
UKB dataset were defined using the PheWAS codes aggregated from
ICD9 and ICD10 codes, whereas parental phenotypes were
extracted from self-reported surveys. The different phenotype classi-
fication standard may induce bias in the adjusted phenotype after
incorporating family disease history. The second limitation lies in
the modeling assumption of infinitesimal genetic effects, i.e. the ef-
fect size of each variant follows a standard Normal distribution,
which may yield less detection power when the assumption does not
match the true underlying genetic architecture.

Despite the above-mentioned limitations, the TAPE framework
is the only existing approach that incorporates family disease history

Fig. 4. Q–Q plot for the UKB association test results from SAIGE, LT-FH, TAPE-

LTFH and TAPE-WP among white British (N¼408 898), categorized by MAF. Up:

type II diabetes (Phecode 250.2); bottom: Parkinson’s disease (Phecode 332)
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while handling related samples and phenotype unbalance. With the
increasing accessibility to large-scale biobank data with population
relatedness and family disease history information, our proposed
method is expected to contribute to improving detection power for
genetic association studies, especially for late-onset diseases that are
underrepresented in the sample cohorts.
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