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Abstract

Objectives: China is one of the 22 tuberculosis (TB) high-burden countries in the world. As TB is a major public
health problem in China, spatial analysis could be applied to detect geographic distribution of TB clusters for targeted
intervention on TB epidemics.

Methods: Spatial analysis was applied for detecting TB clusters on county-based TB notification data in the national
notifiable infectious disease case reporting surveillance system from 2005 to 2011. Two indicators of TB epidemic
were used including new sputum smear-positive (SS+) notification rate and total TB notification rate. Global Moran’s /
by ArcGIS was used to assess whether TB clustering and its trend were significant. SaTScan software that used the
retrospective space-time analysis and Possion probability model was utilized to identify geographic areas and time
period of potential clusters with notification rates on county-level from 2005 to 2011.

Results: Two indicators of TB notification had presented significant spatial autocorrelation globally each year
(p<0.01). Global Moran’s / of total TB notification rate had positive trend as time went by (=6.87, p<0.01). The most
likely clusters of two indicators had similar spatial distribution and size in the south-central regions of China from
2006 to 2008, and the secondary clusters in two regions: northeastern China and western China. Besides, the
secondary clusters of total TB notification rate had two more large clustering centers in Inner Mongolia, Gansu and
Qinghai provinces and several smaller clusters in Shanxi, Henan, Hebei and Jiangsu provinces.

Conclusion: The total TB notification cases clustered significantly in some special areas each year and the clusters
trended to aggregate with time. The most-likely and secondary clusters that overlapped among two TB indicators had
higher TB burden and risks of TB transmission. These were the focused geographic areas where TB control efforts
should be prioritized.
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Introduction

Great achievements have been made for Tuberculosis (TB)
control during last two decades. The prevalence of TB had
decreased globally from over 250 cases per 100,000
population in 1990 to 170 cases per 100,000 in 2011[1].
However, TB continues to be a major public health problem in
China with an estimated 1 million incident cases reported which
alone contributed 11% to the global TB incident in 2010[2]. And
the number of new TB cases in China ranks second in the
world, despite that substantial progress has been made and
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the prevalence of TB had decreased from 215 per 100,000 in
1990 to 108 per 100,000 in 2010.

TB is an airborne infectious disease with spatial
autocorrelation in distribution[3,4]. The risks of TB transmission
in an area are influenced by the epidemics of TB in neighboring
areas, as shown by high-risk transmission areas cluster in
some regions. Geographically, the burden of TB is highest in
Asia and Africa globally. About 60% of reported TB cases
occur in the South-East Asia and Western Pacific regions, and
24% in the African Region[1]. In China, the epidemic of TB is
unevenly distributed within the country with higher prevalence
in rural, especially in the relatively poor north and west areas.
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According to the 5" national TB survey in 2010, the highest
prevalences of active TB and sputum smear-positive (SS+) TB
were observed in the west region, whereas the east region had
the lowest prevalences[5]. The uneven distribution of the TB in
the country highlights the importance of geographically tailed,
pro-poor strategies in TB prevention and control in resources
scarcity regions of China.

New approaches such as spatial clustering analysis are
powerful in identifying infectious disease epidemics. Spatial
clustering analysis can detect spatial autocorrelation when the
values of variables at nearby locations are not independent
from each other[6]. The basic assumption of spatial
autocorrelation is that biological processes such as speciation,
extinction, dispersal or species interactions are distance-
related[7]. Spatial autocorrelation may be seen as an
opportunity for further analysis, as it provides information for
inference of process from pattern such as geographic dispersal
of TB[8,9]. A study conducted by Roza DL had used spatial
analysis to identify the areas with elevated risk of TB and
evaluate the influences of social vulnerability[10]. Factors
affecting the distribution and pattern of TB, including TB
notification rate and TB incidence rate etc., usually show
spatial autocorrelation and obvious spatial heterogeneity[11],
which is difficult for the traditional model to deal with[12]. The
TB epidemic environments which have limited resources and
tools to assist decision support need to take account of these
limitations. However, spatial antocorrelation is one way to
expore the relationship of factor among the neighboring areas.
Additionally, there are few surveys developed for describing TB
spatial distribution based on county-level nationally in China.

The Chinese government has established a routine reporting
system for notifiable infectious diseases in the 1950s[13,14]. In
response to the outbreak of Severe Acute Respiratory
Syndrome (SARS) in 2003, the system was switched from
paper-based to web-based reporting. Currently this daily web
based surveillance system covers 37 notifiable infectious
diseases including TB and web-based reporting has been
achieved in almost all the counties in China[15,16]. Every case
of TB diagnosed is reported by county center for disease
prevention and control (CDC) with information on age, sex,
address, results of smear microscopy, diagnosis and other
clinical information through the web based surveillance system
from which notification data is generated. In China, county
CDC takes the responsibility of case management and report
within the county, and the case detection rate of TB in China
has reached 89% according to the WHO[1].

The aim of this study is to use the spatial clustering analysis
of county level TB notification data from 2005 to 2011 in China
to determine the clustering areas of TB epidemic to provide
evidences to local and national TB control program for strategy
development and intensified intervention.

Materials and Methods
2.1: Setting
China has four administrative levels — town, county,

prefecture and province from low to high in rural, corresponding
to community, district, city and municipality in urban area[17].
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Table 1. Number of counties and population in China from
2005 to 2010.

Variable 2005 2006 2007 2008 2009 2010
No. of counties 2862 2860 2859 2859 2858 2856
No. of population (10

130756 131448 132129 132802 133474 134091
thousand)

doi: 10.1371/journal.pone.0083605.t001

The basic unit of reporting TB in the web based surveillance
system is the county/district-level in rural and urban area. All
counties/districts in mainland China were included in this study.
The number of counties changed from 2862 in 2005 to 2856 in
2010 with the merging of some counties as part of
administrative reorganization (Table 1)[18].

2.2: Data source

County/district level TB notification data from 2005-2011 was
extracted from the national surveillance system for notifiable
infectious disease(Surveillance database). Defined by the
results of smear microscopy and treatment history, two
indicators were used in this study, i.e., notification rates of new
SS+ TB and total TB (including SS+, sputum smear-negative
(SS-), sputum smear not done, tuberculous pleurisy cases and
extrapulmonary TB). The denominator of notification rate was
the population in each county respectively from the national
surveillance system. And the Cochran-Armitage Test was
applied for tread test. All the TB data was geocoded and
matched to the county-level polygon maps of the geographic
information (Geographic database from China CDC) at a
1:1,000,000 scale as the layer’'s attribute table by the same
identified number. Furthermore, a county-level point layer
containing information on latitudes and longitudes of central
points for each county was created for the spatial-temporal
analysis.

2.3: Spatial clustering analysis

2.3.1: Global spatial clustering analysis. Spatial
autocorrelation which is an assessment of the correlation of a
variable in reference to spatial location of the variable, is a
match between location similarity and attribute similarity[19].
Global Moran’s [/, a global test statistics for spatial
autocorrelation, is based on cross-products for measuring
attribute association[20]. The value of Global Moran’s / varies
between -1 and 1. A higher positive Moran’s [ indicates that
values in neighboring positions tend to cluster, while a lower
negative Moran’s | implies that higher and lower values are
interspersed. When Moran’s | is near 0, there is no spatial
clustering, meaning that the data are randomly distributed[21].
The data of this study were stored by ArcGIS 10 software to
create a spatial database and the global spatial autocorrelation
analysis was conducted using the package of Spatial
Autocorrelation (Moran’s /) in ArcGIS 10. Furthermore, the
reverse distance between two areas was considered as the
conceptualization of spatial relationship, implying that nearby
neighboring features had a larger influence on the computation
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for a target feature than that features far away[22]. Both Z-
score and p-value were calculated to evaluate the significance
of Global Moran’s /. In addition, Global Moran’s | scatter plot
describing the trend and linear regression analysis was used to
test the relationship between Global Moran’s / and time.

2.3.2: Spatial-temporal clustering analysis. SaTScan
version 9.1.1 using Kulldorf method of retrospective space-time
analysis and Possion probability model, was applied to identify
geographic areas and time period of potential clusters with high
rates that had statistically significantly exceeded TB notification
rates of nearby areas(p<0.05). SaTScan is a open source
cluster software program developed by the National Cancer
Institute (NCI) and other institutions. And the space-time scan
statistics can be used for time-periodic surveillance, where the
analysis is repeated every year[23]. Not only the geographical
information, but also the time-periodic variable can be utilized
by the space-time scan statistics to explore the possible spatial
concentration and temporal persistence. In this study, the
surveillance database for 7 years was collected from 2005 to
2011. TB cases notified in each county were used and
recorded against the population in the same county which was
assumed as the population in the Possion probability model.
The space-time scan statistic creates an infinite number of
discrete, cylindrical windows with a circular geographic base
and with height corresponding to time. The base is defined
exactly as for the purely spatial scan statistic, while the height
reflects the time period of potential clusters. Each cylindrical
window was evaluated as a possible TB space-time cluster[23].
Therefore, the space-time scan statistic that can use both the
geographical information and the time-periodic variable
simultaneously is more suitable for the database. The
distribution and statistical significance of the space-time
clusters was analyzed by means of Monte Carlo replication
under the null hypothesis with the default 999 replications to
ensure adequate power for defining clustering. Most likely
clusters and secondary clusters were reported by SaTScan.
The likelihood function is maximized over all window locations
and sizes, and the one with the maximum likelihood constitutes
the most likely cluster, which is least likely to have occurred by
chance. Secondary clusters were detected in the same way as
for the most likely cluster, by comparing the log likelihood ratio
of secondary clusters in the real data set with the log likelihood
ratios of the most likely cluster in the simulated data sets[23].
TB Clusters including most likely cluster and secondary
clusters, were presented in this study.

Results

3.1 TB notification rate

The study included all the counties/districts in mainland
China across the 7-year study period. Total TB notification rate
was decreasing from 2005 to 2011 (z=-123.19, p<0.01).
Notification rate of new SS+ TB(z=-86.72, p<0.01) had the
same trend with notification rate of total TB as well. (Table 2)
The matched rates between the geographic database and the
surveillance database were over 90% from 2005 to 2011.
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Table 2. Matching of surveillance and geographic
databases and mean of three TB notification rates in China
from 2005 to 2011.

Mean of notification rate(/  Matched rate among different databases

100,000) (%)
Year new SS+ total TB Geographic Surveillance
2005 40.5 86.2 91 95
2006 41.4 92.7 91 95
2007 40.2 94.1 91 95
2008 39.0 90.6 93 95
2009 37.1 85.2 93 95
2010 35.3 80.2 93 95
2011 319 78.1 93 94

doi: 10.1371/journal.pone.0083605.t002

Table 3. Global spatial autocorrelation analysis of TB by
Global Moran’s / in China from 2005 to 2011.

Global Moran's /

Indicators Year Moran's | Z-score p-value

New SS+ notification rate 2005 0.28 58.64 <0.01
2006 0.19 60.79 <0.01
2007 0.20 40.65 <0.01
2008 0.25 57.50 <0.01
2009 0.26 59.51 <0.01
2010 0.26 60.76 <0.01
2011 0.30 67.83 <0.01

Total TB notification rate 2005 0.17 36.38 <0.01
2006 0.16 49.93 <0.01
2007 0.17 36.81 <0.01
2008 0.22 50.49 <0.01
2009 0.25 57.82 <0.01
2010 0.28 65.08 <0.01
2011 0.28 64.77 <0.01

doi: 10.1371/journal.pone.0083605.t003

3.2: Spatial clustering analysis

3.2.1: Global spatial clustering analysis by Global
Moran’s |. In general, the significant global spatial
autocorrelation existed in new SS+ notification rate and total
TB notification rate from 2005 to 2011 respectively (p <0.01)
(Table 3). The higher the absolute value of Global Moran’s / is,
the stronger a spatial autocorrelation exists. The Global
Moran’s | of total TB notification rate increased from 2005 to
2011 (=6.87, p<0.01). It meant that TB cases had the trend
with time to cluster in some areas globally. However, there
were no trend on new SS+ notification rate in global spatial
autocorrelation (t=1.29, p=0.25) (Figure 1).

3.2.2: Spatial-temporal clustering analysis by
SaTScan. Spatial-temporal clustering analysis by SaTScan
indicated that the most likely clusters with high rates of new SS
+ notification and total TB notification respectively which had
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Figure 1. Trends of Moran’s | on two TB notification rates in China from 2005 to 2011.

doi: 10.1371/journal.pone.0083605.g001

similar clustering size, located spatially in the south-central
regions of China from 2006 to 2008 (Table 4, Figure 2).
However, the secondary clusters of total TB notification rate
(Figure 2-B) had different distribution from that of new SS+
notification rate (Figure 2-A). The secondary clusters of new
SS+ notification rate was in two extreme regions: (1) northeast
of China including Heilongjiang province and the parts of Inner
Mongolia and Jilin province, (2) west of China including the
west parts of Tibet and Xinjiang Autonomous Region. Besides,
the secondary clusters of total TB notification rate had two
more large clustering centers in Inner Mongolia, Gangsu and
Qinghai province and some small clustering centers in Shanxi,
Henan, Hebei and Jiangsu province.

Discussion

Spatial-temporal analysis by SaTScan such as described in
this study identified TB space-time clusters. The present
analysis underscored the first and secondary clusters where
people bear the persistant burden of TB, and detected 3-year
persistence of excess TB burden with the highest relative risk
from 2006 to 2008. Simultaneously, most clusters for new SS+
notification rate mentioned above overlapped with the clusters
for total TB notification rate. The most likely and secondary
clusters which overlapped among Figure 2-A and B had higher
TB burden and more risks of TB transmission and these should
be the important areas for TB control nationally. Interventions
should be targeted for these overlapped clusters and
surrounding areas.

New SS+ TB as the numerator of new SS+ notification rate is
one part of Total TB as the numerator of Total TB notification
rate. Total TB includes SS+ TB, SS- TB, sputum smear not
done, tuberculous pleurisy cases and extrapulmonary TB. It is
widely believed that smear positive patients with TB are more
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Table 4. Significant high-rate TB Clusters detected by
SaTScan in China from 2005 to 2011.

Indicators
Category of New SS+ Total TB
clustering Index notification rate notification rate
. Number of clustering
Most likely cluster 1 1
centers
Coverage of clustering
. 639 651
centers (counties)
Log likelihood ratio 16072 36820
P <0.01 <0.01
Secondary Number of clustering
24 62
clusters centers
Coverage of clustering
. 263 340
centers (counties)
Log likelihood ratio 20~9145 14~27430

P <0.01 <0.05
doi: 10.1371/journal.pone.0083605.t004

infectious than smear negative patients. Thus new SS+
notification rate is one indicator of TB transmission risk and
Total TB notification rate is one indicator of TB burden.
Because Type A region in Figure 2 was under the coverage of
clusters for new SS+ notification rate but not under the
coverage of clusters for total TB notification rate, Type A region
had less TB burden than the neighboring areas on SS- cases,
sputum smear not done, tuberculous pleurisy cases and
extrapulmonary TB, but more risks of TB transmission. This
may be explained by (1) Type A region is mountainousand has
facilities with lesser techniques of TB diagnosis. Many TB
patients with atypical symptoms of TB in Type A region had to

December 2013 | Volume 8 | Issue 12 | e83605



TS e\
"‘l-t;“q'?ﬁ

’:l MOST LIKELY CLUSTER
P<0. 01

SECONDARY CLUSTERS
P<0. 01

0 710 1420 2130 2840
- —— s— Kilo meter

l:] MOST LIKELY CLUSTER
P<0. 01

SECONDARY CLUSTERS
P<0. 05

N

ﬁ:L 0 710 1420 2130 2840
i - ——— — Kilo meter

Clustering Distribution of Tuberculosis in China

A

Type A region

Type B region

B

Figure 2. SaTScan analysis on new SS+ notification rate (A) and total TB notification rate (B) from 2005 to 2011.
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go to the big hospitals with high techniques for further patients then were reported by those big hospitals (2). this area
diagnosis which are located in other big cities. As such TB is characterized by low temperatures and hence the people live
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in the very close proximity which increases the risk of TB
transmission among the inhabitants.

In addition, two more large clusters were identified in Inner
Mongolia, Gangsu and Qinghai Provinces and several smaller
clusters in Hebei, Shanxi, Henan and Jiangsu Provinces
(Figure 2-B). These clusters were in the relatively poor
provinces with less techinques of TB diagnosis and treatment.
Hohhot and Taiyuan cities as the provincial capitals of Inner
Mongolia and Shanxi provinces respectively have designed TB
facilities with higher techniques for TB diagnosis and treatment,
clustered more cases which can not be diagnosed in local
hospitals with lesser techniques in other prefecture cities or
counties. As an indicator of TB burden, total TB notification rate
lumps together SS- cases, sputum smear not done,
tuberculous pleurisy cases and extrapulmonary TB besides SS
+, this was associated with more clustering as shown in Figure
2-B. This patient flow from prefecture city or county to
provincial capital could result in the difference of clusters
between Figure 2-B and A. Furthermore, the clustering of
global spatial autocorrelation showed positive trend with the
time globally (t=6.87, p<0.01). It meant that the spatial
distribution of total TB notification rate became more and more
clustered as time went by. And as one challenge in China, the
patient flow from prefecture city or county to provincial capital
that will continue for better diagnosis and treatment in a few
years, is one of the factors to influence the clustering of TB.

Global spatial clustering analysis was performed to evaluate
whether the global spatial clustering exist globally and Global
Moran’s I is a gloabal index for the spatial cluatering analysis.
Furthermore, the trend test of Moran’s / indicated whether the
clusters would aggregate with time. However, the clustering
areas can not be detected by Global spatial clustering analysis.
Therefore, Spatial-temporal clustering analysis by SaTScan
was utilized. SaTScan would still be concentrated in the
geographical clustering areas. Simultaneously, it would be
extended in a third dimension reflecting the population size as
it changes over time. Although the results of global spatial
autocorrelation on new SS+ notification rate didn’t indicate
significant temporal trend, the statistical analysis of Global
Moran’s | every year was significant and the clusters were
detected by SaTScan in the south-central, northeast and west
regions of China. As patients with sputum smear—negative TB
are less infectious than patients with sputum smear—positive
TB[24], this may suggest that close contacts of patients with
positive smear were more likely to develop TB disease[25].
Thus, areas of clusters for new SS+ notification rate had more
risks of TB transmission than the other areas. But these
clusters didn’t have the trend to aggregate year by year due to
insignificant statistics of the trend test for Moran’s . Thus, it
was suggested that these areas of clusters for new SS+
notification rate with high risk of TB transmission in population
should allow prioritization of focused infection control
interventions.

Spatial analysis has been used to detect the distribution and
pattern of various infectious diseases and non-communicable
diseases by GIS, SaTScan and other softwares, and acquired
meaningful results[26,27]. Researchers can detect patterns
and relationships in the data based on geography through
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spatial analysis. Because these clusters carry a disproportional
burden of excess TB, the results are helpful for TB control
activities that direct public health action and guide
interventions. Clusters including most likely clusters and
secondary clusters, were presented in this study prioritized for
public health action according to the statistical analysis[28].
Thus, to accomplish the target of descreasing TB cases, it will
be necessary to (1) implement more effective and stronger
measures to control TB transmission in the clusters, especially
in the clustering areas of new SS+ notification rate; (2) intensify
the case-finding, not only of SS+ cases but also of SS-, sputum
smear not done, tuberculous pleurisy cases and
extrapulmonary TB in the clusters of total TB notification rate
and other cities or counties in the same provinces (Figure 2-B);
(3) enhance treatment and management of TB cases under
programmatic conditions in all clusters. These techniques
applied in this study contribute to TB control and prevention in
China, and then the resouces of TB control can be rearranged
according the analysis.

The identification of TB risk areas using surveillance data
based on geographic community is a relatively inexpensive
undertaking[29]. However, a handful focused on TB have been
conducted[30], especially in China. In addition, some previous
studies focused on small geographical areas and lacked
national coverage. This study that analyzed the basic reporting
unit, county-level at the national wide scale, is therefore the
first to analyze risk at county level nationally. The national
representativeness is better than the other studies of the
sample and the bias decreased, due to subject increasing to
the whole country for spatial analysis.

Though our study demonstrated the usefulness of spatial
and temporal clustering analyzing by ArcGIS and SaTScan in
China, it still had some limitations. Firstly, the data was
analysed at county-level - the basic unit of surveillance system
in China - which is not the smallest unit of administrative
regionalization. Some towns with insignificant clustering might
be covered by the clusters based on the county-level.
Secondly, while the matched rates were over 90% between
Geographic database and Surveillance database, the
unmatched subjects might influence the spatial analysis.
Thirdly, potential risk factors that could be associated with the
clustering were not assessed in this study. The effect of risk
factors to the clustering of TB notification rates including
natural and social-economic factors, could be assessed and
adjusted in the futher studies.

Disease clusters detection in space and/or time may play a
great role in public health policy making. Systemic utilization of
cluster detection techniques for regular surveillance of TB may
help the TB program in disease control activities[30]. This study
had identified the significant space-time clusters of TB. The
integrated analysis of different clusters of 2 notification rates
may be used to guide the provision and optimization of TB
control strategies in China. And the good cost-effectiveness
would be achieved if more resource and effective measures for
TB control were provided and implemented in these clusters.
The experience and methods of TB clusters detection and
analysis in this study will benefit to other high TB burden
countries as well.
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