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Background and Objective: Parkinson disease (PD) with rapid eye movement

(REM) sleep behavior disorder (PD-RBD) tend to be a distinct phenotype with more

severe clinical characteristics and pathological lesion when compared with PD without

RBD (PD-nRBD). However, the pathological mechanism underlying PD-RBD remains

unclear. We aim to use the resting-state functional magnetic resonance imaging

(rs-fMRI) to explore the mechanism of PD-RBD from the perspective of internal

connectivity networks.

Materials and Methods: A total of 92 PD patients and 20 age and sex matched

normal controls (NC) were included. All participants underwent rs-fMRI scan and clinical

assessment. According to the RBD screening questionnaire (RBDSQ), PD patients were

divided into two groups: PD with probable RBD (PD-pRBD) and PD without probable

RBD (PD-npRBD). The whole brain was divided into 90 regions using automated

anatomic labeling atlas. Functional network of each subject was constructed according

to the correlation of rs-fMRI blood oxygenation level dependent signals in any two brain

regions and network metrics were analyzed using graph theory approaches. Network

properties among three groups were compared and correlation analysis was made using

distinguishing network metrics and RBDSQ scores.

Results: We found both PD-pRBD and PD-npRBD patients existed small-world

characteristics. PD-pRBD showed a wider range of nodal property changes in neocortex

and limbic system than PD-npRBD patients when compared with NC. Besides,

PD-pRBD showed significant enhanced nodal efficiency in the bilateral thalamus and

betweenness centrality in the left insula, but, reduced betweenness centrality in the right

dorsolateral superior frontal gyrus when compared with PD-npRBD. Moreover, nodal

efficiency in the bilateral thalamus were positively correlated with RBDSQ scores.

Conclusions: Both NC and PD patients displayed small-world properties and

indiscriminate global measure but PD-pRBD showed more extensive changes of nodal

properties than PD-npRBD. The increased centrality role in the bilateral thalamus and the

left insula, and disruption in the right dorsolateral superior frontal gyrus may play as a key

role in underlying pathogenesis of PD-RBD.

Keywords: Parkinson disease, REM sleep behavior disorder, resting-state functional magnetic resonance imaging,

functional network, graph theory
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INTRODUCTION

Rapid eye movement sleep behavior disorder (RBD) is an
abnormal state of sleep, characterized by lost muscle atonia
and abnormal dream acting behavior. It is thought to have a
strong correlation with α-synucleinopathies, especially Parkinson
disease (PD) (1, 2). It can occur either before or after
the onset of typical motor symptoms of PD (3). Compared
to PD patients without RBD (PD-nRBD), PD patients with
RBD (PD-RBD) are more likely to have psychiatric disease,
more severe autonomic dysfunction, motor manifestation, and
cognitive impairment (4, 5). This indicates that PD-RBD tends
to be a special disease phenotype, which means more serious
pathology of Lewy bodies and clinical characteristics. However,
we still know very little about the pathogenesis of RBD
in PD.

Magnetic resonance imaging (MRI) is a non-invasive
and convenient technique, which is widely used to explore
the pathogenesis of central nervous system diseases. Some
researchers successively explored structure changes in PD-
RBD patients using voxel-based morphometry, diffusion tensor
imaging and structural correlation network methods. They
found PD-RBD has decreased volume in more or less cortical
and subcortical structures such as thalamus, hippocampus,
and cingulate cortex (6–12). In addition to brain structure,
a few researchers also used the resting-state functional MRI
(rs-fMRI) to search changes of brain function in PD-RBD.
Gallea found PD-RBD showed decreased functional connectivity
between pedunculopontine nucleus and anterior cingulate
cortex (13). And Li found PD-RBD had decreased amplitude
of low-frequency fluctuations in primary motor cortex and
premotor cortex (14). Nevertheless, recent studies tend to regard
neurodegenerative process as network-based neurodegeneration
rather than only based on isolated regions (15).Wemust not only
focus on the dysfunction of key brain regions, but also consider
the collective effects between various brain regions and systemic
overall-level disorders.

Suitably, the fMRI-based graph theory analysis allows the
brain to be studied as a complex network, and it can
reflect dynamic interactions between different brain regions by
describing and analyzing the local and global characteristics of
a graph composed of nodes and edges (16). This technique has
been used to detect abnormal communication in the brain. Suo
found the configurations of brain functional network in PD were
perturbed and correlated with the severity of the disease (17).
And another study found idiopathic RBD (iRBD) patients had
reduced centrality in left superior parietal lobule when compared
with healthy controls (18). However, the mechanism of overall
brain functional network regulation and property changes in
PD-RBD patients is still unknown.

The purpose of this study is to explore the underlying
mechanism of PD patients with probable RBD (PD-pRBD) from
the perspective of functional network regulation. We propose
a hypothesis that PD-pRBD patients have characteristic brain
functional network features and topological changes. Therefore,
we construct a brain functional network of PD-pRBD patients
using graph theory analysis to describe the characteristics of the

brain network and explore its relationship with RBD symptom in
PD patients.

MATERIALS AND METHODS

Participants and Clinical Evaluation
The rs-fMRI data of PD patients and normal controls were
from the Parkinson’s Progression Markers Initiative (PPMI)
database (www.ppmi-info.org/data). Written informed consent
was obtained from all participants, and all PPMI sites was
approved by their respective ethics committee. PD patients and
NC were both divided into two groups according to the RBD
screening questionnaire (RBDSQ) scores. A score of ≥6 of
RBDSQ was considered as probable RBD (pRBD) in the present
study (19). NC with pRBD were excluded. For an independent
subject, we usually selected the baseline data, unless poor
image quality, the follow-up data were selected. Then, 68 PD-
npRBD patients, 32 PD-pRBD patients, and 20 NC were initially
contained. Participants’ neuropsychological performance was
measured across a variety of cognitive tests. Verbal memory
was assessed by the Hopkins Verbal Learning Test (HVLT).
Verbal fluency was assessed by the Semantic Fluency Test (SF).
Processing speed was assessed by the Symbol Digit Modalities
Test (SDMT). Visuospatial ability was assessed by the Benton
Judgement of Line Orientation Test (BJLO). Executive function
was assessed by the Letter-Number Sequencing Test (LNS).
Motor function was evaluated using Movement Disorder Society
Unified Parkinson’s Disease Rating Scale part three (MDS-
UPDRS-III) and Hoehn & Yahr (H&Y) stage.

FMRI Data Acquisition and Preprocessing
All fMRI images were acquired on 3.0 T Siemens scanners
(Erlangen, Germany) at different centers using the
ep2d_RESTING_STATE sequence. The acquisition parameters
were as follows: repetition time = 2,400ms; echo time = 25ms;
flip angle= 80◦; voxel size= 3.3 mm3; slice thickness= 3.3mm;
and each brain volume comprised 40 axial slices and one
functional run contained 210 brain volumes. The fMRI images
were preprocessed using DIPABI software (http://rfmri.org/
dpabi). The steps were as follows: removal of the first 10 volumes,
slice timing, realignment, spatial normalization through EPI
templates, smoothing with a Gaussian kernel of 6 × 6 × 6 full
width at half maximum, linear detrending, the regression of
nuisance and temporal band-pass filtering (0.01–0.1Hz). Finally,
after ruling out poor-quality images, 62 PD-npRBD patients, 30
PD-pRBD patients, and 20 NC were retained to final analysis.

Construction of Network
The network was constructed using GRETNA (http://www.nitrc.
org/projects/gretna/). First, the whole brain was divided into
90 cortical and subcortical regions of interest by using the
automated anatomic labeling atlas with each region representing
a network node. Next, to define the edges of the network, we
acquired the mean time series of each region and calculated the
Pearson correlations of the mean time series between all pairs of
nodes. This resulted in a 90 ∗90 Pearson correlation matrix for
each participant. Thematrix was binary according to a predefined
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threshold, if the Pearson correlation coefficient between any two
regions exceeds the threshold, there will be an edge between that
two regions (8).

Network Analysis
We applied a sparsity threshold (0.05–0.5, with an interval
of 0.05) to all correlation matrices. For the brain network
at each sparsity level, we calculated both global and nodal
network properties and the area under the curve (AUC) for each
property over the sparsity range. The global properties include
small-world, network efficiency, assortativity, synchronization
and hierarchy. The nodal properties include nodal clustering
coefficient, nodal shortest path length, nodal efficiency,
nodal local efficiency, nodal degree centrality and nodal
betweenness centrality.

Small-world properties indicate that the information
segmentation and integration achieve a balance maximizing the
efficiency of information transfer with a relatively low wiring
cost. Network efficiency measures the global efficiency of parallel
information transfer in a network. Assortativity reflects the
connection trend of nodes which have similar numbers of edges.
Synchronization measures the possibility all nodes fluctuate in
the same wave pattern. The hierarchy coefficient reflects the
presence of a hierarchical organization of network (20).

The clustering coefficient of a node measures the possibility
its neighbor interconnect. The nodal local efficiency measures
the communication efficiency among its first neighbors when
the node is removed. The shortest path length and efficiency
of a given node quantifies the efficiency of parallel information
transfer of that node in the network. The degree centrality and
betweenness centrality of a given node reflects its importance on
information transfer (20).

Statistical Analysis
The analyses of demographic and clinical data and global
network properties were performed with SPSS version 25.0.
Continuous variables were compared use one-way analysis
of variance (ANOVA) with pairwise t-test (with Bonferroni
correction) or Kruskal-Wallis 1-way ANOVA with pairwise
Mann -Whitney U Test (with Bonferroni correction) according
to its distribution. Categorical variables were compared use Chi-
square statistics. We choose P < 0.05(two-tailed) to indicate that
the difference was statistically significant.

The analysis of the AUC of nodal network properties was
performed using general linear model with age, gender, and
head motion as nuisance covariates. For multiple comparisons
of nodal network properties, we use false-positive correction [P
= 1/90 (1/N) = 0.01, N means 90 compared nodes in total,
which implies that the expected average false positive rate is
<1 in each analysis] (21–24), and use Bonferroni correction to
adjust the p-value when comparing the nodal network properties
in the general linear model among three groups (PD-pRBD,
PD-npRBD, and NC).

Finally, Spearman correlations were analyzed to examine
relationships between networks properties with significant group
effects and clinical characteristics with significant group effects

(RBDSQ scores). We did correlation analysis cross the whole
patient group (PD-pRBD and PD-npRBD).

RESULTS

Demographic and Clinical Characteristic
Demographic and clinical data of 62 PD-npRBD patients, 30
PD-pRBD patients, and 20 NC were presented in Table 1. There
was no significant difference except RBDSQ scores between PD-
pRBD and PD-npRBD groups (p < 0.001). The education years
of NC were higher than two PD patient groups (p < 0.001).
The MDS-UPDRS-III score of NC were lower than PD groups
(p < 0.001).

Small-World Characteristics
We found that over the sparsity value of 0.05–0.5, gamma
was larger than 1, lambda was near 1 and sigma was larger
than 1 for all functional connectivity networks of three groups
(Figure 1). This indicated that typical small-world characteristic
existed among NC, PD-npRBD, and PD-pRBD patients. There
was no significant difference among three groups of small-world
characteristics (aGamma, aLambda, aSigma) (p > 0.05).

Global Network Measures
We did not find any significant difference of global network
measures (small-world, network efficiency, assortativity,
synchronization and hierarchy) through AUC analyses among
the three groups.

Regional Network Measures
Comparisons Between NC and PD-pRBD

(PD-npRBD)

When compared with NC, PD-pRBD had wider regions with
increased nodal measures than PD-npRBD. PD-pRBD showed
increased nodal measures in frontal lobe (left olfactory, p
= 0.006), limbic lobe(right post cingulum, p = 0.005; left
hippocampus, p = 0.003), and sub cortical gray nuclei (left and
right thalamus, p = 0.004, p = 0.006) for nodal efficiency; in
frontal lobe (left olfactory, p = 0.009), limbic lobe (right post
cingulum, p = 0.005; left hippocampus, p = 0.003), and sub
cortical gray nuclei (left caudate, p = 0.005; left thalamus, p =

0.009) for nodal degree centrality; in frontal lobe (left olfactory, p
= 0.004) and parietal lobe (left inferior parietal gyrus, p= 0.008)
for nodal betweenness centrality. PD-npRBD showed increased
nodal measures in frontal lobe (right middle frontal gyrus, p
= 0.004) for betweenness centrality when compared with NC
(Figure 2).

Also, when compared with NC, PD-pRBD had wider regions
with decreased nodal measures than PD-npRBD. PD-pRBD
showed decreased nodal clustering coefficient in frontal lobe
(right middle frontal gyrus, p = 0.007) and parietal lobe (right
superior parietal gyrus, p = 0.003), decreased nodal efficiency in
occipital lobe (left inferior occipital gyrus, p = 0.008), decreased
nodal local efficiency in parietal lobe (right superior parietal
gyrus, p = 0.006), decreased nodal degree centrality in occipital
lobe (bilateral inferior occipital gyrus, p= 0.003, p= 0.006). PD-
npRBD showed decreased nodal clustering coefficient and local
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TABLE 1 | Demographic and clinical characteristics of PD patients and controls.

Variables NC (n = 20) PD-npRBD (n = 62) PD-pRBD (n = 30) P-value

NC vs. PD-npRBD vs. PD-pRBD PD-npRBD vs. PD-pRBD NC vs. PD-npRBD NC vs. PD-pRBD

Number (F/M)a 4/16 24/38 7/23 0.16 – – –

Age, yearsb 64 ± 9.448 61.32 ± 10.390 61.87 ± 9.566 0.583 – – –

Education, yearsc 16 (14.5–17.75) 16 (13.75–17.25) 16 (14-18) <0.001 0.374 <0.001 <0.001

BJLO scorec 13 (11-15) 13 (12-14) 13 (12-14) 0.741 – – –

LNS scorec 11 (10-12) 12 (10-13) 11 (7.75–12.25) 0.119 – – –

SF scoreb 53.20 ± 10.483 55.69 ± 10.167 49.33 ± 10.857 0.076 – – –

SDMT scoreb 47.833 ± 11.978 45.929 ± 8.719 42.083 ± 7.891 0.087 – – –

HVLT Total Recall scoreb 48.33 ± 9.225 48.77 ± 11.815 45.53 ± 16.205 0.523 – – –

HVLT Delayed Recall scoreb 45.93 ± 10.433 49.58 ± 12.430 46.67 ± 14.731 0.452 – – –

HVLT Retention scorec 44 (39-50) 53.5 (43.75–56) 49.5 (40.25–56.25) 0.178 – – –

HVLT Discrimination Recognition scorec 52 (49–59) 53 (44–57) 56 (45–57.25) 0.88 – – –

MDS-UPDRS-III scorec 0 (0–1) 19 (12-25) 25 (14-36) <0.001 0.081 <0.001 <0.001

Hoehn & Yahr (H&Y) staged – 2 (1-2) 2 (1.75–2) – 0.292 – –

RBDSQ scorec 3 (2-4) 3 (2-4) 9 (7-11) <0.001 <0.001 0.819 <0.001

Data shown as mean ± standard deviation or median (quartiles 25–75%) when appropriate. Bold for P < 0.05.
aChi-square test.
bANOVA.
cKruskal-Wallis 1-way ANOVA.
dMann -Whitney U-test.

When ANOVA showed significant differences, we performed post hoc comparisons using Students-Newman-Keuls. When Kruskal-Wallis 1-way ANOVA showed significant differences, we performed a pairwise comparisons.

PD-pRBD, Parkinson’s disease with probable rapid eye movement sleep behavior disorders; PD-npRBD, Parkinson’s disease without probable rapid eye movement sleep behavior disorders; BJLO, Benton Judgement of Line Orientation

Test; LNS, Letter-Number Sequencing Test; SF, Semantic Fluency Test; SDMT, Symbol Digit Modalities Test; HVLT, Hopkins Verbal Learning Test; MDS-UPDRS, Movement Disorder Society Unified Parkinson’s Disease Rating Scale;

RBDSQ, RBD screening questionnaire; ANOVA, one-way analysis of variance.
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FIGURE 1 | The small-world properties of brain functional network. (A) gamma (normalized cluster coefficient) is larger than 1, (B) lambda (normalized characteristic

path length) is close to 1, (C) sigma (small-worldness) is larger than 1, showing that the brain functional networks in three groups have small-world characteristics.

NC, normal controls; PDnpRBD, PD patients without probable rapid eye movement sleep behavior disorder; PDpRBD, PD patients with probable rapid eye movement

sleep behavior disorder.

efficiency in right middle frontal gyrus (p = 0.001, p = 0.006)
(Figure 2).

Comparisons Between PD-npRBD and PD-pRBD

When comparing with PD-npRBD, PD-pRBD showed increased
nodal efficiency in the bilateral thalamus (p = 0.007, p = 0.006)
and increased betweenness centrality in the left insula (p =

0.006), as well as decreased betweenness centrality in the right
dorsolateral superior frontal gyrus (p= 0.004) (Figures 2, 3).

Correlation Analysis
We found that the RBDSQ score correlated positively with nodal
efficiency of bilateral thalamus (r= 0.2387, p= 0.0219; r= 0.218,
p= 0.0368) (Figure 4).

DISCUSSION

In this study, we used graph theory analysis to explore the
changes of topology properties of brain functional networks
in PD-pRBD an PD-npRBD patients. There are two principal
findings in the present study. Firstly, the functional networks
of both PD groups (PD-pRBD and PD-npRBD) retained small-
world properties and global function. Secondly, PD-pRBD had
wider nodal parameter changes than PD-npRBDwhen compared
with NC, the efficiency of the bilateral thalamus and the
betweenness centrality of the left insula were increased and the
betweenness centrality of the right dorsolateral superior frontal
gyrus was decreased in PD-pRBD patients when compared with
PD-npRBD patients. And the bilateral thalamus efficiency was
positively correlated with RBDSQ scores.

Small-World Properties and Global
Measure of PD and NC
Small-world properties indicate that the information
segmentation and integration achieve a balance maximizing the
efficiency of information transfer with a relatively lowwiring cost.
Our study found PD patients and NC exhibited typical features
of the small-world, and there was no significant difference in
small-world properties and global measure among three groups.

This was consistent with previous studies (11, 17, 25, 26). That
is to say, the information of brain can be integrated effectively
in both PD patients and NC. And the global network properties
of PD patients and NC were similar. However, there were
also some studies that showed different results from ours.
For example, Suo found the clustering coefficient and global
efficiency of PD patients was decreased, and the local efficiency
and characteristic path length was increased when compared
to NC (17). Luo found the PD group showed lower clustering
coefficient and local efficiency than NC (26). The discrepancy
of these results may be due to the difference of severity of PD
patients, parameters of image acquisition, method of processing,
and the heterogeneity of PD patients.

Altered Nodal Measure in PD-pRBD
Compared With NC
In this study, we found PD-pRBD patients showed extensive
changes of nodal measure when compared with NC. The nodes
whose network property were increased mainly located in left
olfactory, left inferior parietal gyrus, right post cingulum, left
hippocampus, bilateral thalamus, left caudate. And the nodes
whose network property were decreased mainly located in right
middle frontal gyrus, right superior parietal gyrus, bilateral
inferior occipital gyrus. These nuclei were often mentioned
in studies about PD or PD-RBD patients. A fMRI study
comparing functional network of PD and NC reported the
degree was decreased in occipital gyrus and increased in
inferior parietal gyrus, post cingulum (27). Another similar study
about PD patients also reported decreased node centralities
and connectivity strength in occipital regions (26). Moreover,
some PET studies about iRBD reported increased metabolism in
thalamus and hippocampus, decreased metabolism in occipital
lobe (28, 29). This may indicate that the decreased occipital
function and increased function of limbic system and sub cortical
gray nuclei play an important role in the development of PD
and RBD. As for the entorhinal cortex, some studies reported
that olfactory impairment was a marker of RBD and PD (30).
Pathological studies about PD-RBD also reported accumulation
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FIGURE 2 | Comparisons of regional network measures. Group differences of (A) clustering coefficient, (B) efficiency, (C) local efficiency, (D) degree centrality, and (E)

betweenness centrality between any two groups (PD-pRBD vs. NC, PD-npRBD vs. NC, and PD-pRBD vs. PD-npRBD).The red (blue) nodes in three panels,

respectively, indicated increased (decreased) regional network measures in PD-pRBD (vs. NC), PD-npRBD (vs. NC), and PD-pRBD (vs. PD-npRBD). The results were

visualized using the BrainNet Viewer (Beijing Normal University, http://www.nitrc.org/projects/bnv/). NC, normal controls; PD-npRBD, PD patients without probable

rapid eye movement sleep behavior disorder; PD-pRBD, PD patients with probable rapid eye movement sleep behavior disorder.
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FIGURE 3 | Violin plot of different regional network measures between two groups of PD. Descriptions of the betweenness centrality of the right SFGdl and the left

insula, and efficiency of the bilateral thalamus among three groups. (A) The betweenness centrality of the right dorsolateral superior frontal gyrus was decreased, (B)

the betweenness centrality of the left insula was increased, and (C,D) the efficiency of the bilateral thalamus was increased in PD-pRBD patients when compared with

PD-npRBD patients. The **indicated that the difference was significant (P < 0.01). NC, normal controls; PDnpRBD, PD patients without probable rapid eye movement

sleep behavior disorder; PDpRBD, PD patients with probable rapid eye movement sleep behavior disorder; SFGdl, dorsolateral superior frontal gyrus.

of α-synuclein in entorhinal cortex (31). So, the increase of
network property in left olfactorymay be a kind of compensation.

Decreased Betweenness Centrality of
Right Dorsolateral Superior Frontal Gyrus
(PD-pRBD vs. PD-npRBD)
Although both PD-pRBD and PD-npRBD patients kept the
small-world properties and normal global communication

function, we found PD-pRBD had a wider range of nodal
properties changes than PD-npRBD patients, especially in the
dorsolateral superior frontal gyrus (SFGdl). We found PD-
pRBD had decreased betweenness centrality in the SFGdl when
compared with PD-npRBD (p = 0.0036, t = −2.99). The
SFGdl is located in the upper prefrontal cortex and forms the
frontoparietal network. The frontoparietal network is considered
to be a flexible cognitive control center, which regulates and
integrates high-level emotions and consciousness (32). PD-pRBD
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FIGURE 4 | Correlations of the bilateral thalamus efficiency with RBDSQ scores. (A) The significant positive correlations between left thalamus efficiency and RBDSQ

scores. (B) The significant positive correlations between right thalamus efficiency and RBDSQ scores. The red solid regression line indicated that the correlation was

significant (P < 0.05). The pink shade represents the 95% confidence interval. The correlation analysis was applied cross the whole patient group. RBDSQ, rapid eye

movement sleep behavior disorder screening questionnaire.

patients have a characteristic decentralization of the SFGdl, which
may weaken the frontoparietal network function and reduce
the ability of emotional and cognition regulation. There were
some studies presented that PD patients with RBD tend to
perform worse in cognitive test (8, 10, 33). Therefore, some
scholars believe that the characteristic decentralization of SFGdl
in PD-pRBD patients may be related to the decline in cognitive
regulation. However, our study did not find a significant decline
in cognitive function in the PD-pRBD patients. This may be
because the sample size was insufficient to cause significant
changes in clinical cognition performance in our study. Of
course, the functional impairments we observed in PD-pRBD
patients may just reflects the nature of RBD itself associating with
neurodegeneration rather than worse cognitive performance as
reported in iRBD patients (34). The association of the SFGdl and
RBD needs more studies with large sample size to validate.

Increased Efficiency of Bilateral Thalamus
(PD-pRBD vs. PD-npRBD)
Thalamus is a small structure within the brain located just
above the midbrain between cerebral cortex and brain stem and
has extensive nerve connections to both. The main function
of the thalamus is to relay motor and sensory signals to the
cerebral cortex. It also regulates sleep and wakefulness. Some
previous morphometry studies showed markedly reduced gray
matter volume in the bilateral thalamus of PD-pRBD patients
in comparison with PD-npRBD patients and the volume of
thalamus is negatively correlated with RBDSQ scores (7, 8, 12).
And some previous functional studies also reported changes of
thalamus function. Positron emission tomography (PET) studies
have reported increased metabolism in thalamus of iRBD (35,
36). A fMRI study reported that resting-state thalamo-occipital
functional connectivity was increased in iRBD patients (37).
And a pathologic study reported that PD patients with sleep
disorder showed more severe α-synuclein pathology in thalamus
(31). Combined with our findings that efficiency of the bilateral

thalamus was increased in PD-pRBD and correlated positively
with RBDSQ scores, we speculate that increased thalamus
efficiency is the compensation for the reduced thalamus volume
and more severe pathology to maintain normal function of brain
global information transfer. The number of studies exploring
changes of PD-RBD functional connectivity was small. Future
studies could focus on functional connectivity of thalamus and
the combination of volume changes in PD-RBD patients.

Increased Betweenness Centrality of Left
Insula (PD-pRBD vs. PD-npRBD)
The cortical limbic system related to controlling emotions is
considered to be involved in RBD, as the behaviors observed
in RBD are violent and the recalled dreams are unhappy
and fearful (38). The insular cortex is considered as limbic-
related cortex. The insula is well-situated for the integration
of information relating to bodily states into higher-order
cognitive and emotional processes. It receives information from
“homeostatic afferent” sensory pathways through the thalamus
and sends output to some other limbic-related structures, such
as the amygdala and ventral striatum (39). A study focused
on structural correlation network reported that the nodal
betweenness and degree of limbic system was increased (11).
And a PET study of iRBD reported increased metabolism in
hippocampus. These results suggest that the function of the
limbic system was increased in RBD patients. This is consistent
with our results. In addition, some previous studies found
that compared with PD-npRBD, PD-pRBD patients showed
reduced volume of the left insula (6). Other studies reported
a decrease in the volume of other limbic systems such as
the left posterior cingulate and hippocampal gray matter (10).
And a pathologic study reported that PD patients with sleep
disorder showed more severe α-synuclein pathology in limbic
system than those without sleep disorder (31). Based on these
results, we speculate that the increased betweenness centrality
of the left insula is compensatory to volume decrease and
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pathological involvement to maintain the overall information
conversion efficiency of the brain. However, some studies based
on morphometry did not find any significant difference in limbic
system (7, 12, 14). The difference may be due to the size
of the sample and the severity of the patient’s symptoms. In
the future, it is necessary to study large samples and combine
multi-modal images.

Limitations
There are several limitations in this study. First, we
used the RBDSQ score to group PD patients rather than
polysomnography. However, the RBDSQ score used to identify
RBD have a high sensitivity (96%) and specificity (85%) (40).
Second, the cerebellum was not included as nodes because many
images we downloaded did not coverage of the cerebellum
completely. Future studies covering these regions are needed to
further explore the topological structures for the brain networks
of PD-RBD patients. Third, we carried out a cross-sectional study
and the symptom of patients were relatively mild. In the future,
longitudinal follow-up studies and patients with more severe
symptoms should be included to help us further understand the
pathogenies of PD-RBD.

CONCLUSIONS

Both NC and PD patients displayed small-world properties
and indiscriminate global measure but PD-pRBD showed more
extensive changes of nodal properties than PD-npRBD. The
increased centrality role in the bilateral thalamus and the
left insula, and disruption in the right dorsolateral superior
frontal gyrus may play as a key role in underlying pathogenesis
of PD-RBD.
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