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Abstract: Although various linear log-distance path loss models have been developed for wireless
sensor networks, advanced models are required to more accurately and flexibly represent the path
loss for complex environments. This paper proposes a machine learning framework for modeling
path loss using a combination of three key techniques: artificial neural network (ANN)-based
multi-dimensional regression, Gaussian process-based variance analysis, and principle component
analysis (PCA)-aided feature selection. In general, the measured path loss dataset comprises multiple
features such as distance, antenna height, etc. First, PCA is adopted to reduce the number of features
of the dataset and simplify the learning model accordingly. ANN then learns the path loss structure
from the dataset with reduced dimension, and Gaussian process learns the shadowing effect. Path loss
data measured in a suburban area in Korea are employed. We observe that the proposed combined
path loss and shadowing model is more accurate and flexible compared to the conventional linear
path loss plus log-normal shadowing model.

Keywords: wireless sensor network; path loss; machine learning; artificial neural network (ANN);
principle component analysis (PCA); Gaussian process; multi-dimensional regression; shadowing;
feature selection

1. Introduction

Wireless sensor network comprises typically multiple sensor nodes and central base stations,
where the sensors measure physical status of the environment and report it to the central base station
via radio signal. Path loss is a phenomenon between the transmitter and receiver in the strength
of radio signal as it propagates through space. Since radio receivers require a certain minimum
power (sensitivity) to be able to successfully decode information, path loss prediction is essential in
mobile communications network design and planning such as link budget, coverage analysis, and
locating base station. Many existing path loss models [1–14] adopt a linear log-distance model, which is
empirically derived by assuming a linear proportionality between the path length and the path loss, and
by determining a proportional factor through the adequate linear regression analysis of the measured
data. The linear log-distance model is simple and tractable, but it does not guarantee accurate path
loss prediction performance for all radio propagation environments. Advanced modeling methods are
required to more accurately and flexibly represent the path loss for complex and various environments.
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Path loss models are classified into empirical, deterministic, and semi-deterministic models.
The empirical models are based on the measurements and use statistical characteristics. This model
is a simple way of estimating path loss, not taking all of the many parameters that determine path
loss into account. Distance is the most essential parameter of path loss model and its physical effect
on the path loss is mathematically expressed using a linear log-distance function in literature. Thus,
linear log-distance path loss plus shadowing model is used as a baseline for most empirical models
and given by [2]

PL = PL0 + 10n log 10
(

d
d0

)
+ Xσ, for d ≥ d0 (1)

where d is the length of the path and PL0 is the path loss at the close-in reference distance d0, which
is generally determined by the measuring points close to the transmitter. n is the path loss exponent
representing the rate of change of path loss as the distance increases. The shadow fading denoted by
Xσ is a Gaussian random variable with zero mean and σ standard deviation in dB. Most measurement
based path loss models extend the baseline given in Equation (1) to incorporate the effect of other main
radio parameters such as frequency [1,3,4,6], the height of the transmit and receive antennas [1,3,4,6],
clutter and terrain [1,5,6], the percentage of the area covered by buildings in the built up area [7], and
line-of-sight and non-line-of-sight [8–10]. Meanwhile, Jo et al. [14] improved the Modified Hata model
to suit the higher frequency band of 3–6 GHz. This model is also an empirical model and adopts a
linear log-distance function, which is labeled “(2) Proposed” in Figure 1. It is worth noting that the
measured data are well presented by linear regression in Figure 1a, but not especially for the distances
less than 200 m in Figure 1b. This is a typical example of the need for a model that can accurately
represent both data distributions.

Machine learning is a set of methods based on a dataset and modeling algorithms to make
predictions. These days, machine-learning-based techniques are utilized in image recognition, natural
language processing, and many other fields. Machine learning tasks can be classified as supervised
learning and unsupervised learning. The purpose of supervised learning is to learn a relation or
function between inputs and outputs, which is for classification or regression problems. On the other
hand, unsupervised learning is to derive hidden rules or relationships from unlabeled data.

The machine learning approach to path loss modeling is expected to provide a better model,
which can generalize well the propagation environment since the model is being learned through
training with the data collected from the environment. The prediction of propagation path loss is
regarded as a regression problem, as stated in the literature [15–17]. In this context, path loss models
have been developed by various supervised learning techniques such as support vector machine
(SVM) [16,18], artificial neural network (ANN) [19–22], random forest [17], K-nearest neighbors
(KNN) [17]. The authors of [19–22] provided path loss prediction using ANN models, which provide
more precise estimation over the empirical models. Zhang et al. [21] developed a real-time channel
prediction model, which could predict path loss (PL) and packet drop for dedicated short-range
communications.

However, they did not deal with a multi-dimensional regression framework for path loss modeling
with various features, called the radio environment factors, such as distance, frequency, antenna height,
etc. In regression, many candidate functions are adopted because the related inputs are unknown.
However, many of these features would be irrelevant or redundant. Furthermore, most of input
features do not provide discrimination ability for prediction. To construct a good estimator, the
input data need to be converted into a reduced representation set of features by using dimensionality
reduction techniques [23] such as principal component analysis (PCA) or singular value decomposition
(SVD). Very few articles (e.g., [16]) have applied PCA to learning path loss with a reduced input data.
Meanwhile, no studies have been conducted on the development of shadowing models using machine
learning although shadowing is a major factor in determining path loss.
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(a) Area A: four story small-scale buildings, contiguous storefronts
adjacent to sidewalks, and narrow streets

(b) Area B: fifteen-story large-scale apartment complex, distant to
sidewalks, and wide streets

Figure 1. Measured path loss and linear-log distance models presented in [14].

In this work, we employ PCA for extracting key features. Dimensionality reduction is justified
from the fact that the actual dimension might be larger than the intrinsic dimension. Then, the
objectives of dimensionality reduction are to convert input data into a reduced representation set of
features, while keeping as much relevant information as possible. We mainly develop a combined path
loss and shadowing model, where ANN multilayer perceptron (ANN-MLP) learns path loss variations
dependent on the input data with reduced features. For analyzing shadowing effect, we use Gaussian
Process (GP) priors for extracting variance over training data. Based on generalized variance bounds,
we can give more accurate confidence level over the path loss mean value. Finally, we attempt to
combine ANN and Gaussian process models to build an optimal model in two key aspects: mean path
loss value and shadowing effect variance.

The rest of this paper is organized as follows. Section 2 describes procedure of the proposed
machine-learning-based path loss analysis. Section 3 presents the simulation results of feature
extraction using PCA and its effect on path loss prediction accuracy of ANN-MLP learning.
Sections 4 and 5 detail ANN-MLP and Gaussian process, respectively. Measurement system and
scenarios are described in Section 6. Section 7 presents experimental results. We conclude in Section 8.

2. Machine Learning Based Path Loss Prediction

The path loss model maps the input features onto the output (path loss observation) values. It is
not only important to model a predictor that can produce accurate predictions, but also how derive
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more generalized model that does fluctuate due to specific conditional inputs. In this paper, as shown
in Figure 2, we propose a three-step approach, dimensional reduction techniques, combining nonlinear
regression models and variance analysis for predicting the path loss in a suburban environment. While
the ANN-MLP-based nonlinear model focuses on how to accurately predict the path loss value, the
PCA and the variance analysis balance it to produce a more generalized model.

Figure 2. Procedure of machine-learning-based path loss analysis.

2.1. Feature Selection

Once measured data are collected, a dimensionality reduction strategy is applied to obtain simpler
feature space in order to expedite the learning. Although there are various types of features in
effect on the path loss variation, practical measurable features are the frequency, the height of the
transmitting antenna (elevation altitude), the height of the receiving antenna (elevation altitude), and
the difference between these two heights. We analyzed features using PCA for evaluating correlation
of values between each features and the path loss. The result shows that log distance and log frequency
determine over 70% of the path loss variation. In addition, based on the correlation distribution
analysis, it can be inferred that various features are dependent on each other.
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2.2. Data Preprocessing

ANN is a learning model and its accuracy depends on the training data introduced to it. Aside
from its algorithmic and tuning options, well distributed, sufficient, and accurately measured set of
data is the prerequisite for acquiring an accurate model. In this perspective, data preprocessing is an
essential procedure toward obtaining an ANN learning model. Sampling and normalization are also
conducted to reduce process time and prevent bias. The objective of learning is to find the optimal
weights on given learning data which enables precise prediction. The key factor for obtaining the right
weight is to normalize the magnitude of input values, which minimizes side effects from different
scales. For instance, with the same increase with 0.0005, different magnitude of inputs with 0.001
and 0.1 can produce a quite dramatic results in gradient, 0.5 and 0.005. If the input features are not
properly normalized, backpropagation with iterative partial derivatives throughout MLP-NN can risk
deriving biased weights. Based on propagation characteristics of the input features and balancing the
different scale of them, we applied logarithmic transformation on the frequency (MHz) and distance
(m) values. Then, data are divided by train and test sets with running iterations by cross-validation
for offsetting sampling bias. Cross-validation is a resampling procedure used to evaluate machine
learning models on a limited data sample. The procedure has a single parameter called k, which
indicates how many groups the given data sample are split into. As such, the procedure is often
called k-fold cross-validation. For preparing learning data, all the measured data are divided into two
sets, training (80 %) and testing (20 %), with uniform random sampling. The test set is for adjusting
hyperparameters for model optimization.

2.3. Path Loss Model

ANN is a nonlinear regression system motivated by learning the weighted network of latent
variables through backpropagation. The ANN model outperforms the polynomial regression model
in prediction performance [24] and handles more dimensions than the look-up table method [25].
Considering the complex propagation due to the fluctuating heights and complex distribution of
buildings in urban area, the nonlinear model can fit better to linear regression. We applied the logistic
sigmoid function as an activation function within ANN networks.

2.4. Shadowing Model

Shadowing is attenuation on signal power, which is caused by obstacles between the transmitter
and receiver through scattering, reflection, diffraction, and absorption. The receiver power variation
due to path loss is observed over long distances, whereas variation due to shadowing occurs by the
formation of obstructing object or the length of it. Traditionally, shadowing was treated as a coefficient
with normal distribution since it is hard to generalize the characteristics of obstacles and, generally, its
effects on path loss are trivial. However, in outdoor environment with various obstacles, shadowing
effects play a significant role in analyzing path loss prediction with certain confidence level.

3. PCA

PCA is a dimension reduction technique that linearly transforms the original space into a new
space of smaller dimensions while simultaneously describing the variability of the data as much as
possible. In fact, the PCA projects along the eigenvectors of the covariance matrix corresponding to the
largest eigenvalues, where the eigenvectors points in the direction with the highest amount of data
variation. In addition, the magnitude of eigenvalues can be used to estimate the intrinsic dimension of
the data. Indeed, if x eigenvalues have a magnitude much larger than the remaining ones, the number
x can be regarded as the true dimension of the data. Clearly, a linear technique is able to only extract
linear correlations between variables, whereas it usually overestimates the intrinsic dimension for the
data having complex relations.
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Figures 3 and 4 show the path loss prediction results of learning with four features (transmitting
antenna height, receiving antenna height, transmitting/receiving antennas heights ratio, and distance)
and PCA-applied one feature (distance), respectively. We can easily notice that the performance of
PCA-applied simple model is similar to the original multi-featured training model, as shown in the
summarized prediction loss error comparison in Table 1. The data analysis with major variables from
PCA requires more effort in experimental data gathering and learning time cost compared to multiple
variables model. PCA can filter out unnecessary noise or less-related independent variables, so that
the major variables derived from PCA reflect the more inherent path loss properties and result in
higher accuracy. The training cost for applying the learning method is crucial since it can be a feasible
factor in a real environment. The one variable model in ANN-MLP and GP model takes 10% and 1%,
respectively, of the training time compared to the four-variable model. Therefore, we can focus on a
distance feature along the same frequency for ANN model training in the following sections.

(a) 450 MHz

(b) 1450 MHz

(c) 2300 MHz

Figure 3. Four-feature-based ANN-MLP model.
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(a) 450 MHz

(b) 1450 MHz

(c) 2300 MHz

Figure 4. Single-feature-based ANN-MLP model.

Table 1. Prediction loss comparison for PCA-applied and original 4-featured data.

Model/Error (dB) RMSE MAE MAPE MSLE R2

4-feature-based Model 8.40197 6.47590 4.85529 0.00393 0.67463
Single-feature-based Model 8.61307 6.58675 4.94076 0.00413 0.66113
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4. ANN-MLP

The most common type of ANN is the MLP neural network in which multiple neurons are
arranged in layers, starting from an input layer, followed by hidden layers, and ending with an
output layer. The outputs from each node at the layer are the weighted sum of its inputs over an
activation function. We design the fully connected ANN-MLP, which constitutes several hidden
layers of nodes and a single hidden layer of the network structure is depicted in Figure 5. More
specifically, zn

(l) = [z(l)1,n z(l)2,n · · · z(l)M,n]
T is the nth column vector of the M× N matrix Z(l) in the lth

layers (l = 1, 2, · · · , L− 1), given by

z(l)n = H(a(l)n ) = [H(a(l)1,n) H(a(l)2,n) · · · H(a(l)M,n)]
T , (2)

a(l)n =

{
W(l,n) · xn for l = 1

W(l,n) · z(l−1)
n for l = 2 · · · L− 1 ,

(3)

where xn = [x1,n · · · xD,n]
T is the nth column vector of the D× N matrix X in input layer. Here, we

assume D features with each N data. The weight matrices for the layer l = 1 and for the layers
l = 2, 3, . . . , L− 1 associated with xn are given by

W(1,n) =


w(1,n)

1,1 w(1,n)
1,2 · · · w(1,n)

1,D

w(1,n)
2,1 w(1,n)

2,2 · · · w(1,n)
2,D

...
...

. . .
...

w(1,n)
M,1 w(1,n)

M,2 · · · w(1,n)
M,D

 and (4)

W(l,n) =


w(l,n)

1,1 w(l,n)
1,2 · · · w(l,n)

1,M

w(l,n)
2,1 w(l,n)

2,2 · · · w(l,n)
2,M

...
...

. . .
...

w(l,n)
M,1 w(l,n)

M,2 · · · w(l,n)
M,M

 , (5)

respectively. In this study, three types of the commonly used activation functions are evaluated, namely
rectifier, logistic sigmoid, and hyperbolic tangent functions. The Rectified Linear Unit (Relu) [26]
function, given by Equation (6), is known for ramp function that allows the model to easily obtain
sparse representation.

H(a) = max(0, a). (6)

The logistic sigmoid function is a nonlinear activation function that derives smooth thresholding
curve for artificial neural network. The output range of the standard logistic sigmoid function is from
0 to 1, from the following equation:

H(a) =
1

1 + e−a . (7)

The drawback of standard logistic sigmoid function is that strongly negative inputs are mapped
to near zero, which can cause a neural network to become stuck during training. The hyperbolic
tangent function, given by Equation (8), is a differential nonlinear activation function such the negative
inputs are mapped to large negative values and the zero inputs are mapped near zero.

H(a) =
ea − e−a

ea + e−a . (8)
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All these activation functions are bounded, nonlinear, monotonic, and continuously
differentiable.The universal approximation theorem [27] shows that a feedforward neural network
with three layers and finite number of nodes can approximate any continuous function under moderate
assumptions on the activation function in any desired accuracy. However, some highly nonlinear
problems need more hidden layers and nodes, since the degree of nonlinearity depends on the number
of layers and nodes.

Figure 5. Block diagram of ANN-MLP with D features.

The ANN learning is obtained by updating the weights along the MLP neural network in
consecutive iterations of feedforward and backpropagation procedures. Using Equation (2), the
feedforward computation is performed on the following equation:

z(L−1)
n = H(W(L−1,n)H(W(L−2,n)H(· · ·W(2,n)H(W(1,n)xn)))). (9)

The prediction value ŷn from the final output of feedforward procedure is a(L)
1,n , which is linear

output of zL−1
n and w(L) = [w(L)

1,1 w(L)
1,2 · · ·w

(L)
1,M] at the last layer without applying activation function as

given by

ŷn = a(L)
1,n = w(L,n) · z(L−1)

n . (10)

The objective of the training is minimize the loss function by adjusting the ANN weightsW =

{W(l,n)}l=1,··· ,L and n=1,··· ,N . The loss function is given by

J(W) =
1
N

N

∑
n=1
|ŷn − yn|2 +

α

2

N

∑
n=1

L

∑
l=1
||W(l,n)||22, (11)

where ŷn is prediction value for given weightW , and yn is measured path loss values. 1
N ∑N

n=1 |ŷn −
yn|2 is the mean square error (MSE), α

2 ∑N
n=1 ∑L

l=1 ||W(l,n)||22 is an L2-regularization term that penalizes
the ANN model from overfitting, and α is the magnitude of the invoked penalty.

After feedforward phase, adaptive updates for the weight on each connections are conducted
by backpropagation [28]. Starting from initial random weights, the backpropagation is repeatedly
updating these weights based on gradient descent of loss function with respect to the weights.
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∂J

∂w(l,n)
j,i

=
∂J

∂a(l)j,n

(z(l−1)
i,n )

∂J

∂a(l)j,n

=


H′(a(l)j,n)∑M

k=1 w(l+1,n)
k,j

∂J
∂a(l+1)

k,n

for l = 1 · · · L− 1

∂J
∂a(l)1,n

for l = L,
(12)

where H′(a(l)j,n) = dH/da(l)j,n is the derivative for the corresponding activation function. Finally, the
weights are updated as follows.

w(l,n)
j,i ← w(l,n)

j,i − λ
∂J

∂w(l,n)
j,i

= w(l,n)
j,i − λ

∂J

∂a(l)j,n

(z(l−1)
i,n ), (13)

where λ is the learning rate, the hyperparameter for controlling the step-size in parameter
updates. This backward pass propagates from the output layer to previous layers with updating
weights for minimizing the loss, as shown in Equation (13). After finishing backpropagation
up to the first layer’s weights, it continues to the next iteration of another feedforward and
backpropagation process until the weight values are converged certain tolerance level, which is
another hyperparameter determining the model. For backpropagation optimization, the Quasi-Newton
method, which iteratively approximates the inverse Hessian with O(N2) time complexity, is applied.
The Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [29–31] is most practical batch
method of the Quasi-Newton algorithms and we use the Scipy version of it.

5. Gaussian Process

The Gaussian process is kernel-based fully Bayesian regression algorithm that computes a
posterior predictive distributions for new data. The Gaussian process is the extension of multivariate
Gaussians, which is useful in modeling collections of real-valued variables by its analytical properties.
A Gaussian process is a stochastic process based on a sub-collection of random variables that has a
multivariate Gaussian distribution. A collection of random variables {h(x) : x ∈ X} is drawn from a
Gaussian process with mean function m(·) and covariance function k(·, ·) if any finite set of elements
x1, · · · , xm ∈ X, the associated finite set of random variables h(x1), · · · , h(xm) have distribution,


h(x1)

...

h(xm)

 ∼ N




m(x1)

...

m(xm)

 ,


k(x1, x1) · · · k(x1, xm)

...
. . .

...

k(x1, x1) · · · k(xm, xm)


 . (14)

The mean expression of the Gaussian process model consists of the mean function m(x) and the
covariance function, i.e., kernel k(x, x′), in the following equation. The final expression is expressed
as follow.

h(x) ∼ GP(m(·), k(·, ·)) (15)

The mean function and covariance function are aptly named as follows,

m(x) = E(h(x)) (16)

k(x, x′) = E[(h(x)−m(x))(h(x′)−m(x′))] (17)
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for any x, x′ ∈ X. A function h(·) drawn from a Gaussian process prior is an extremely
high-dimensional vector from a multivariate Gaussian. In other words, the Gaussian process provides
a method for modeling probability distributions over functions.

Let S = {(x(i), y(i))m
i=1} be a training set with unknown distribution. In the Gaussian process

regression model,

y(i) = h(x(i)) + ε(i), i = 1, ..., m (18)

where the ε(i) are noise variables with independent N(0, σ2) distributions. Similar to Bayesian linear
regression, a prior distribution over functions h(·) is assumed that it is regarded as a zero-mean
Gaussian process prior,

h(·) ∼ GP(0, k(·, ·)) (19)

for some valid covariance function k(·, ·).
Let X∗ be testing points drawn from the same unknown distribution. The marginal distribution

over any set of input points belonging to X must have a joint multivariate Gaussian distribution

[
h(X)

h(X∗)

]
∼ N

(
0,

[
K(X, X) K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
. (20)

Based on noise assumption (ε(i) ∼ N(0, 1)), the noise term can be derived as[
ε

ε∗

]
∼ N

(
0,

[
ε2I 0

0 ε2I

])
(21)

As a result, the sum of independent Gaussian random variables is also Gaussian, thus[
y(X)

y(X∗)

]
=

[
h(X)

h(X∗)

]
+

[
ε

ε∗

]
∼ N

(
0,

[
K(X, X) + ε2I K(X, X∗)

K(X∗, X) K(X∗, X∗) + ε2I

])
(22)

Finally, using the rules for conditioning Gaussians, we have

y∗|y, X, X∗ ∼ N(µ∗, Σ∗), (23)

where µ∗ is predicted mean values and Σ∗ is standard deviation values for given distribution, which
are given by

µ∗ = K(X∗, X)(K(X, X) + σ2I)−1y (24)

Σ∗ = K(X∗, X∗) + σ2I− K(X∗, X)(K(X, X) + σ2I)−1K(X, X∗). (25)

Gaussian process regression derives the model based on the relationship between input (X) and
output (Y) being given by the unknown function h. The input data X are the feature values such as
distance, frequency, etc. The output data Y are the measured path loss value for given input data.
Through the Gaussian process, we learn the relationship h(·) between input and output.

We can estimate the posterior distribution using Bayesian inference, which consists of a
prior distribution and likelihood function. Gaussian process is an attractive model for use in
regression problems since it allows quantifying uncertainty of predictions due to the errors in the
parameter estimation as well as inherent noise in the problem. Furthermore, the model selection and
hyperparameter selection methods used in the Bayesian method are directly applicable to Gaussian
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processes. Similar to locally-weighted linear regression, Gaussian process regression is non-parametric
and consequently can model intrinsically arbitrary functions of the input points.

The Gaussian process uses the kernel as a function of covariance that can model various
distributions in terms of mean square derivatives for a variety of different data. That is, when x
and x’ are close values, the covariance value between those points becomes large, and, inversely, when
x and x’ are distant values, the covariance value becomes small. In other words, the closer the value is,
the larger the weight it gets, and vice versa. In addition, the distribution of the near and far values is
smoothly derived during Gaussian process learning.

k(xi, xj) = exp(− 1

2d( xi
length_scale ,

xj
length_scale )

2
) (26)

Kernels (also called covariance functions in the context of Gaussian processes) are a crucial
ingredient of Gaussian processes which determine the shape of the prior and posterior of the Gaussian
process. They express the function being learned by defining the similarity of two data points combined
with the assumption that similar data points have similar target values. The kernel can be divided
into stationary and non-stationary kernels. Stationary kernels only depend on the distance of two
data points and not on their absolute values, therefore they do not change in the the conversion of
input space. On the other hand, non-stationary kernels depend on the specific value of the data point.
Stationary kernels can further be classified into isotropic and anisotropic kernels, where isotropic
kernels are also unaltered by a rotation of input space. Common types of kernel function are Constant
kernel, Radial-basis function (RBF) kernel, Matern kernel, Rational quadratic kernel, Exp-Sine-Squared
kernel, and Dot-Product kernel. Alpha value is a value to adjust the noise level, and it is added to the
diagonal values of the kernel matrix. The larger is the noise, the more training data should be applied.

6. Measurement System and Scenarios

Path loss was measured for three frequencies 450, 1450, and 2300 MHz. The measurement system
is composed of a transmitter and a receiver, as shown in Figure 6. The transmitter consisted of
cw-generator, power amp, transmitting antenna, and RF cable for connecting each system component.
The receiver was composed of the continuous wave (CW) signal receiving part and the GPS signal
receiving part. The CW signal receiving part was composed of a receiving antenna, a low noise
amplifier (LNA), a spectrum analyzer, and a laptop. The receiving antenna, LNA, and spectrum
analyzer were connected by RF cables, and the spectrum analyzer and the laptop were connected by
GPIB cable. Both transmitting and receiving antennas had omni-directional radiation patterns. The GPS
signal processing system was equipped to obtain accurate distance data between the transmitter and
receiver. The GPS signal receiving part consisted of a GPS receiving antenna, a GPS signal processing
board, and a laptop. Signals from the GPS signal processing board are transferred to the laptop through
a serial port using the RS-232 protocol. The GPS data and CW signal power levels were synchronized
using the measured time information, and GPS data were converted into position data.

Measurements were conducted in the suburbs of a small town called Nonsan, which consists of
residential areas with 1–4-story buildings, agricultural land, and very low hills. As shown in Figure 7,
the transmitting system was installed on the roof of a four-story building, and the transmitting antenna
height was 15 m above ground level. The receiving system was mounted on a vehicle and the receiving
antenna height was 2 m above ground level. Figure 8 depicts the measurement path and received
power level using a color bar. The distance between the transmitter and receiver was within about
3.5 km and the vehicle was moved to receive the power at various distances. The moving speed of the
vehicle was maintained so that the separation distance between the measuring points ranged from 25
to 30 cm.
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Figure 6. Block diagram of the measurement system.

Figure 7. Installation environment of the measurement system.

To reduce the Doppler effect due to vehicle movement, the vehicle speed was kept at 30 km/h or
less. In the data refining process, the power level measure at 30 km/h or more was filtered out, and
then the data were time-averaged to remove the effect of short-term fading. Since the bandwidth used
for the measurement was 10 kHz, received power was ideally −134 dBm; however, the noise level
observed during field measurements was around −110 dBm. Therefore, −100 dBm, which is above
10 dB of noise signal, was defined as an effective reception level for stable data refinement.
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Figure 8. Measurement path and received power level.

7. Results and Discussion

7.1. Evaluation Metrics

This section describes experimental results for the different models in three frequencies. The path
loss values were predicted with distance from 1 to 3.1 km (in logarithmic distance 0.0–0.49).
The predicted path loss values were calculated with the measured data for evaluating prediction
error. We applied various prediction error metrics such as root mean squared error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE), mean squared logarithmic error
(MSLE), and squared R (R2) with different perspective. RMSE is defined by

RMSE =

√√√√ 1
N

N

∑
n=1
|ŷn − yn|2. (27)

RMSE represents the square root of the differences between predicted values and observed values
or the quadratic mean of these differences. Although RMSE and MSE are similar in terms of models
scoring, they are not always immediately interchangeable for gradient based methods.

MAE is defined by

MAE =
1
N

N

∑
n=1
|ŷn − yn| . (28)

MAE is a linear index, which means that all the individual differences are weighted equally in the
average. It tends to be less sensitive to outliers than MSE.

MAPE is defined by

MAPE =
100%

N

N

∑
n=1

∣∣∣∣ ŷn − yn

yn

∣∣∣∣ . (29)

MAPE is considered as the weighted version of MAE and therefore the optimal constant
predictions for MAPE were found to be the weighted median of the target values [32]. MAPE is
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commonly used as a loss function for regression problems and in model evaluation, because of its very
intuitive interpretation in terms of relative error.

MSLE is just MSE calculated in logarithmic scale as

MSLE =
1
N

N

∑
n=1

(log(yn + 1)− log(ŷn + 1))2. (30)

= MSE(log(yn + 1), log(ŷn + 1)). (31)

From the perspective of logarithm, it is always better to predict more than the same
amount less than target in that RMSLE penalizes an under-predicted estimate greater than an
over-predicted estimate.

R2 is closely related to MSE, but has the advantage of no scale. Thus, R2 has a value between −∞
and 1, regardless of the output value. To make it more clear, this baseline MSE can be regarded as the
MSE that the simplest possible model would get. The simplest possible model would be to always
predict the average of all samples. A value close to one indicates a model with little error, and a value
close to zero represents a model very close to the baseline. Thus, R2 represents how good our model is
against the naive mean model.

R2 = 1− ∑n
n=1(yn − ŷn)2

∑n
n=1(yn − ȳn)2 , where ȳ =

1
n

n

∑
n=1

yn. (32)

7.2. Activation Functions for ANN-MLP Model

A key element in the ANN configuration is the activation function that determines the nonlinear
transformation for the given learning data. To find the optimal activation function, we examined the
prediction loss values (RMSE, MAE, MAPE, MSLE, and R2) which are processed with the validation
set, which was initially sampled separately from learning data. To minimize the variance from
hyperparameters in learning ANN-MLP models, L-BFGS algorithm was mainly used, which is a batch
type of computational optimization method, different from other stochastic mini-batch approaches.
For the reference, the fixed hyperparameter of learning rate, epoch, and tolerance rate were set to 0.001,
1000, and 0.00001, respectively, throughout the course of experiments.

For ANN models, to derive a better fit for various distribution and express nonlinearity of path
loss characteristics, choosing the right activation function is crucial. Based on the results in Figures 9–11,
we can find quite diverse figures from alternating activation function network. In Table 2, we evaluate
three different activation functions for ANN-MLP network architecture. Comparing hyperbolic tangent
and ReLU activation function, the performance of the sigmoid shows better performance in overall
metrics. Even though many different types of activation functions exist, we designated the aigmoid
function for simplifying network architecture and further performance comparison.
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Figure 9. Path loss prediction based on ANN-MLP with Sigmoid activation function for 450, 1450, and
2300 MHz.

Figure 10. Path Loss prediction based on ANN-MLP with ReLU activation function for 450, 1450, and
2300 MHz.

Figure 11. Path Loss prediction based on ANN-MLP with tangent hyperbolic activation function for
450, 1450, and 2300 MHz.
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Table 2. Comparison of prediction accuracy of different metrics for Gaussian process model.

Model Error (dB) RMSE MAE MAPE MSLE R2

ANN-MLP
(Sigmoid)

450 MHz 7.87647 5.89603 4.84501 0.00407 0.39747
1450 MHz 8.96238 6.80976 4.93310 0.00419 0.46041
2300 MHz 8.23471 6.20676 4.41919 0.00343 0.48938

Overall 8.52169 6.48413 4.87674 0.00405 0.66402

ANN-MLP
(ReLU)

450 MHz 8.42747 6.84639 5.63144 0.00468 0.31022
1450 MHz 9.32876 7.22502 5.22711 0.00453 0.41540
2300 MHz 8.79632 6.75497 4.83320 0.00394 0.41735

Overall 9.17173 7.23891 5.43902 0.00466 0.61081

ANN-MLP
(tanh)

450 MHz 7.93312 6.02763 4.95792 0.00414 0.38877
1450 MHz 8.90661 6.77473 4.90238 0.00412 0.46711
2300 MHz 8.54053 6.58882 4.72276 0.00374 0.45075

Overall 8.54226 6.54968 4.93007 0.00407 0.66239

7.3. Prediction Accuracy of Path Loss Model

We compared the prediction loss values (RMSE, MAEm MAPE, MSLE, and R2) of the proposed
ANN-MLP with other models. The ANN-MLP model is presented in Figure 12, and the popular log
linear regression model and two-ray model [33] are presented in Figures 13 and 14. Received signal
consists of the line-of-sight path and the ground reflected path in the two-ray model and the resulting
path loss is given by

PL =

{
PLc + 40 log10(d/dc) for d ≥ dc

PLc + 20 log10(d/dc) for d < dc
, (33)

where break point distance dc = 4hthr/λ and the path loss at the distance PLc = 20 log10
(
16πhthr/λ2)

are given as a function of transmitting antenna height ht, receiving antenna height hr, and wavelength
λ. Given that the break point distances are 180, 580, and 920 m for frequencies 450, 1450, and 2300
MHz, respectively, and ht = 15 m and hr = 2 m, the path loss values beyond the break point distance
are shown in Figure 14.

The following sections consider the results of modeling with Gaussian processes shown in
Figure 15. Gaussian processes can be modeled for mean values and standard deviations. The mean
value is a model of the path loss prediction value, and the standard deviation predicts the range of the
expected path loss values. The standard deviation can be used to predict the minimum and maximum
path loss that can be distributed at the given input. The Gaussian process was trained using RBF kernel
function as

k(xi, xj) = exp(−1
2

d(
xi
l

,
xj

l
)2), (34)

The RBF kernel is a stationary kernel and also known as the squared exponential kernel. It is
characterized by a length-scale parameter l, which is either a scalar or a vector with the same number
of dimensions as the inputs. This kernel is infinitely differentiable, which implies that Gaussian
processes with this kernel as a covariance function have mean square derivatives of all orders, and are
thus very smooth.

In Table 3, we evaluate the results obtained for linear, ANN-MLP, and Gaussian process model.
The prediction loss values (RMSE, MAE, MAPE, and MSLE) from Gaussian process and linear model
are higher than ANN-MLP model and the lower R2 value shows that its prediction values are not as
good fits as ANN-MLP model, which means ANN-MLP slightly outperforms Gaussian process in the
path loss prediction. Based on the results in Figures 12–15, we can easily find that ANN-MLP model is
more sensitive and tweak well on complex data distribution. On the other hand, the straight line is
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too simple to represent the change in pathloss over distance, and Gaussian process model also shows
smooth shapes reluctant to tweak on localized distribution. Unlike other models, the two-ray model
for d ≥ dc are independent of frequency, as shown in Equation (33). The two-ray model produces
much prediction error compared with other models since its assumption of line-of-sight sight and flat
terrain are not guaranteed.

Figure 12. Path loss prediction based on ANN-MLP for 450, 1450, and 2300 MHz.

Figure 13. Path loss prediction based on linear model.

Figure 14. Path loss prediction based on two-ray model.
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Figure 15. Path loss prediction based on Gaussian process for 450, 1450, and 2300 MHz.

The first Fresnel radius at the midpoint between the transceiver is given by r =
√
( λd

4 ), which
range from 6 to 24 m. Given the antenna heights ht = 15 m and hr = 2 m, the terrain and objects
are likely to be inside of the first Fresnel zone. However, the places for measurement campaign is
not ideal flat terrain, but they have different ground height for each receiver position. Accordingly,
the clearances of the first Fresnel zone are highly variable. As a result, ANN is more practical in
such environments.

Table 3. Comparison of prediction accuracy of different metrics for Gaussian process model.

Model Error (dB) RMSE MAE MAPE MSLE R2

ANN-MLP

450 MHz 7.87647 5.89603 4.84501 0.00407 0.39747
1450 MHz 8.96238 6.80976 4.93310 0.00419 0.46041
2300 MHz 8.23471 6.20676 4.41919 0.00343 0.48938

Overall 8.52169 6.48413 4.87674 0.00405 0.66402

Linear
Model

450 MHz 8.52682 6.93022 5.68143 0.00476 0.31199
1450 MHz 9.27597 7.19697 5.17684 0.00442 0.41033
2300 MHz 8.98500 6.96090 4.95213 0.00406 0.38408

Overall 9.22838 7.30487 5.46315 0.00467 0.60944

Two-ray
Model

450 MHz 12.88614 10.64310 8.31157 0.01084 −0.58098
1450 MHz 30.69274 29.15810 20.03675 0.05465 −5.45023
2300 MHz 31.50410 30.23772 20.66583 0.05734 −6.86500

Overall 26.46132 23.34631 16.33805 0.04094 −2.24508

Gaussian
Process

450 MHz 8.53235 6.82668 5.60452 0.00479 0.29261
1450 MHz 9.30737 7.05678 5.11159 0.00447 0.40428
2300 MHz 8.73691 6.83405 4.85415 0.00387 0.44244

Overall 8.94361 6.97418 5.23819 0.00446 0.63462

7.4. Prediction Accuracy of Combined Path Loss and Shadowing Model

As shown in the following equation, a simple log-distance model based on existing deterministic
regression analysis has to rely on predetermined variables PL0 and n, and empirically measured
log-normal shadowing Xσ.

PL = PL0 + 10n log10(d) + Xσ , f or d ≥ 1 km, (35)

where PL0 is the path loss at 1 km distance. On the other hand, the learning-based model can predict
the targeted values based on actual distribution of training data, which is able to build more accurate
forms of regression model with nonlinear characteristics. In particular, steep slope or complex shaped
data distribution can be accurately estimated in this model, since nonlinear model can fit better to
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those cases than linear model. In addition, the key variables are determined by PCA by evaluating
impact level upon co-distribution of input features. By analyzing two variables, the proposed model
comprises of ANN-MLP based path loss model and Gaussian process based shadowing model as

PL = PL_ANN(d) + GPσ , f or d ≥ 1 km (36)

In Figure 16 and Table 4, we assess prediction coverage that quantifies how closely the predicted
values from a model match the actual test data within the standard deviation range. More specifically,
the prediction coverage is a ratio of the number of measured data in the range of α to β to total number
of measured data, where α and β are given by

α =

{
PL0 + 10n log10(d)− rσ1 for the linear model in Equation (35)

PL_ANN(d)− rσ2 for the proposed model in Equation (36)
(37)

β =

{
PL0 + 10n log10(d) + rσ1 for the linear model in Equation (35)

PL_ANN(d) + rσ2 for the proposed model in Equation (36)
(38)

(a) GP-based Shadowing (b) Original Shadowing

Figure 16. Training graph for the proposed and the linear model with 1× standard deviation.

The conventional shadowing effect is a simple assumption that the mean difference along the
predicted value forms the Gaussian distribution, whereas the deviation value derived by the Gaussian
Process is based on the correlation analysis. It is a mathematical model for correlation analysis so that
errors can be accurately derived. As can be seen from the results in Table 3, the shadowing effect of the
existing linear model (1450 MHz, σ: 81.5%, 2σ: 99.9%, 3σ: 100%) shows different coverage than the
theoretical value of Gaussian distribution. On the other hand, the predictive model coverage derived
from the GP model reflects the actual Gaussian distribution (based on 1450 MHz, σ: 68.4%, 2σ: 95.0%,
3σ: 99.2%). The two models have ideal coverage values of 68%, 95%, and 99.7% for r = 1, 2, 3 when
they perfectly match the measure data. For overall frequencies, the proposed model shows around
69.6%, 94.8%, and 99.2% of coverage, whereas the linear model marks 80%, 98%, and 99.8% of coverage
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for r = 1, 2, 3, respectively. These results mean the proposed model predicts shadowed path loss more
accurately than the linear model.

Table 4. Prediction coverage by different models.

Frequency 450 MHz 1450 MHz 2300 MHz Overall

Linear Model (r = 1 /68%) 76.5% 81.5% 82.1% 80%
Linear Model (r = 2 /95%) 95.4% 99.9% 100.0% 98%
Linear Model (r = 3 /99.7%) 99.6% 100.0% 100.0% 99.8%

Proposed Model (r = 1 /68%) 68.8% 68.4% 71.7% 69.6%
Proposed Model (r = 2 /95%) 94.2% 95.0% 95.2% 94.8%
Proposed Model (r = 3 /99.7%) 99.4% 99.2% 99.2% 99.2%

8. Conclusions

In this paper, we develop a new approach for the prediction of the path loss based on machine
learning techniques: dimensionality reduction, ANN-MLP, and Gaussian process. Tests were designed
to evaluate whether dimensionality reduction could support the same path loss prediction accuracy
as well as provide confidence level in regression problem based on combining ANN-MLP and
Gaussian Process. Using PCA method, dimensionality reduction of the four feature model led to more
generalized model with one feature and reduced significant amount of time in training model. The
one variable model in ANN-MLP and GP model takes 10% and 1%, respectively, of the training time
compared to the four-variable model. By deriving variance from GP, we can design a data-driven
model for shadowing effect. The combined path loss and shadowing model, the final outcome of this
study, accurately predicts the measured path loss with coverage error less than 1.6 %, whereas the
conventional linear log-distance plus log-normal shadowing model has coverage error less than 12%.
The new approach would be beneficial for the site-specific design of wireless sensor network with
high reliability.

We could extend this study for various ANN structures with different numbers of hidden layers
and nodes. Future extension could also develop the ANN-based model that is able to predict only
the extra path loss above the reference distance. This makes it possible to develop a model for any
reference distance, which will further improve the practicality of the model. It could be possible
to apply the proposed method to the development of predictive models with the influence of other
variables such as antenna height and building height.
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