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Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the
stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is
unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated
transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE
BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate
hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a
previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a
critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in
leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.
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Introduction

In plants, microRNAs (miRNAs) regulate target genes
through miRNA-guided cleavage or translational repression
of mRNAs that have highly complementary motifs to the
regulatory miRNA. Because of the high sequence comple-
mentarity that is apparently required in most cases for
miRNA target interaction, computational target identifica-
tion is much more simple and much less ambiguous than in
animals [1–3]. Although translational repression may be more
widespread than previously thought by those not familiar
with the field [4], much of the available evidence suggests that
the sequence requirements for regulation by mRNA cleavage
and translational repression are very similar [5–7]. In general,
the phenotypes of plants in which target genes have been
inactivated by knockout mutations closely resemble those in
which the corresponding miRNAs are overexpressed. In
addition, even closely related miRNAs can have a unique
spectrum of target genes, without evidence for cross-
regulation at the level of mRNA cleavage or translational
repression [8]. One of the few exceptions appears to be an
engineered mutation in a microRNA 398 (miR398) target
gene that prevents efficient mRNA cleavage but still allows
translational repression [9].

Many miRNAs that are conserved throughout flowering
plants target transcription factor genes that control various
aspects of development (recently reviewed in [10–12]). Several
of these in turn modulate the response to hormones, such as
the miR159-regulated GAMYB (GIBBERELLIC ACID MYB)
genes [13–15], or the miR160- and miR167-regulated ARF
(AUXIN RESPONSE FACTOR) genes [16–19]. Another set of
ARF genes is controlled by TAS3 (TRANS-ACTING SIRNA
LOCUS 3), which encodes trans-acting small interfering RNAs
(siRNAs) [20–23]. Finally, miR393 regulates a group of related

auxin receptors that includes the F-box protein TIR1
(TRANSPORT INHIBITOR RESPONSE 1) [24].
While the vast majority of plant miRNAs have been found

by large-scale sequencing [25–31], the first described plant
miRNA mutant, jaw-D, overexpresses an miRNA, miR319a,
that had not been previously identified by deep sequencing
[32]. In addition, the major targets of miR319a, a series of
related TCP transcription factor genes, were also the first
targets that were identified experimentally, rather than
through computational predictions.
The TCPs constitute a plant-specific group of transcription

factor genes. Although the conserved TCP domain does not
share sequence similarity with other characterized DNA-
binding domains, it has been predicted to adopt a basic helix-
loop-helix (bHLH) structure. Teosinte Branched1 (TB1) from
maize, CYCLOIDEA (CYC) from Antirrhinum, and the PCNA
promoter binding factors (PCF1 and PCF2) from rice are the
founding members of the TCP family [33,34]. TB1, CYC, and
its close homolog DICHOTOMA (DICH) control various
aspects of plant form, and the mutant effects suggest that they
negatively regulate growth [35–37]. The PCFs are also
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implicated in growth control because they bind to promoter
motifs that are essential for the expression of the cell cycle
regulator PCNA [33]. The Arabidopsis genome encodes at least
24 TCPs, which fall into two major groups, classes I and II
[34,38]. In contrast to the class II factors including TB1 and
CYC/DICH, class I factors such as TCP20 are positive
regulators of growth, and it has been suggested that
competition on similar DNA binding sites between class I
and class II factors is very important in shaping shoot
morphology [38,39].

The five miR319-regulated TCPs in Arabidopsis belong to
class II. This group of TCP genes is represented in Antirrhinum
by CINCINNATA (CIN) [40]. Like jaw-D, in which mRNA levels
of TCP2, TCP3, TCP4, TCP10, and TCP24 are all strongly
reduced, cin loss-of-function mutants have highly crinkled
leaves [32,40]. A detailed developmental analysis showed that
CIN is required for the arrest of cell division in the peripheral
regions of the leaf. In cin mutants, derepressed growth in the
periphery leads to a change from the wild-type form with
zero leaf curvature to negative leaf curvature, which is
expressed as crinkles that cannot be flattened without cutting
the leaf [40]. Conversely, reduced leaf size is seen in
Arabidopsis as well as tomato plants in which miR319 control
of TCP genes is impaired [32,41]. Finally, experiments with
dominant-negative versions have indicated that all class II
TCPs, including those that are not regulated by miR319, have
similar effects on plant growth [42].

Leaf history starts with the recruitment of founder cells at
the flanks of the shoot apical meristem, which develop into
leaf primordia (reviewed in [43]). Cell division in the leaf is
terminated by a front of mitotic arrest moving from the distal
to the proximal part, after which the leaf gains size by cell
expansion. The expanded leaf transforms from a metabolic
sink into a source for carbon assimilation. The last stage in
the life of a leaf is senescence, during which nutrients are
coordinately exported to sink tissue, photosynthesis de-
creases, and chlorophyll is degraded, visible in the change
of leaf color from green to yellow. Finally, the cells die [44,45].
The senescence program includes the differential expression

of many hundreds of genes [46–49]. Several signaling
molecules are involved in leaf senescence, including salicylic
acid, and the plant hormones ethylene, cytokinin, and
jasmonic acid (JA) [49–52], although the specific mechanisms
by which these hormones control senescence are not well
understood.
Here, we reveal a new role of miR319-regulated TCP genes,

which links leaf morphogenesis with other processes, includ-
ing JA biosynthesis and senescence. We propose that the
miR319/TCP regulatory module coordinates and balances
different events that are important for leaf development and
physiology.

Results

Partially Redundant Activity of TCP Genes
We have previously shown that the jaw-D mutant pheno-

type, with epinastic cotyledons and conspicuously crinkled
leaves, is caused by the overexpression of miR319a [32]. To
determine the contribution of different miR319 targets to
this phenotype, we identified insertional alleles for TCP2,
TCP4, and TCP10. Loss-of-function alleles for all three genes
had slightly epinastic cotyledons and slightly enlarged leaves
(Figure 1). Loss of TCP4 function in addition caused plants to
produce, on average, seven additional leaves before flowering
(Figure S1), similar to the delay observed in jaw-D mutants
[32]. tcp2 tcp4 double mutants showed a further increase in
leaf size, with some signs of crinkling. tcp2 tcp4 tcp10 triple
mutants had the most obvious defects, but were still less
strongly affected than jaw-D plants were (Figure 1). Interest-
ingly, among plants that overexpressed miR319a from a
constitutive 35S promoter, weak lines had bigger, but not
crinkly leaves, similar to the tcp single knockout plants (Figure
S2). In summary, the similar phenotypes of tcp loss-of-
function mutants and miR319 overexpressers confirmed the
conclusion from microarray and other analyses, that the TCP
genes are the major targets of miR319 [3,8,32]. On the other
hand, that all single mutants were only weakly affected
indicated partially redundant function of the different TCP
genes in wild type. These general conclusions are in broad
agreement with defects reported for plants expressing
dominant negative alleles of TCP genes, which mimic many
phenotypes of jaw-D plants [42].
We also prepared plants that expressed a mutant form of

TCP4 linked to GREEN FLUORESCENT PROTEIN (GFP)
sequences under the control of TCP4 regulatory sequences
(rTCP4:GFP). In these plants, TCP4 mRNA escapes regulation
by miR319 due to synonymous changes that reduce sequence
complementarity to miR319 [32]. rTCP4:GFP plants have a
similar, but generally milder phenotype than rTCP4 plants
[32]. Because many more survive to adulthood, we were able
to analyze the effects of increased TCP levels beyond the
seedling stage. Several phenotypic aspects of these plants are
opposite to those seen in tcp loss-of-function or jaw-D
mutants. For example, their cotyledons are hyponastic (bent
upwards) and hypocotyls are longer than those of wild-type
plants (Figure S3A), contrasting with the shorter hypocotyls
of jaw-D (Figure S3B). The rosette leaves of rTCP4:GFP plants
were smaller, more rounded, and often darker green than
those of wild type (Figure S3C), which contrasts with the
larger leaves of jaw-D mutants. In summary, these results
indicated that a variety of leaf sizes and shapes can be
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Author Summary

Short, single-stranded RNA molecules called microRNAs (miRNAs)
regulate gene expression by negatively controlling both the stability
and translation of target messenger RNAs that they recognize
through sequence complementarity. In plants, miRNAs mostly
regulate other regulators, the DNA-binding transcription factors. We
investigated the downstream events regulated by five TCP (TEOSINTE
BRANCHED/CYCLOIDEA/PCF) transcription factors that are controlled
by the microRNA miR319 in Arabidopsis thaliana. The miR319-
regulated TCPs were previously known to be important for limiting
the growth of leaves. By applying a combination of genome-wide,
biochemical, and genetic studies, we identified new TCP targets that
include enzymes responsible for the synthesis of the hormone
jasmonic acid. Our analysis of leaf extracts from plants with increased
activity of miR319 confirms that altered expression of the biosynthetic
genes leads to changed jasmonic acid levels. These plants show also
an altered senescence behavior that becomes more normal again
when the plants are treated with jasmonate. We propose that the
miR319-regulated TCP factors thus coordinate different aspects of leaf
development and physiology: growth, which they negatively regulate,
and aging, which they positively regulate.



obtained by manipulating the levels of miR319 and its targets,
the TCP genes, similar to what has been reported for the
tomato homologs [41].

Effects of Altered TCP Levels on Genome-Wide Expression
Profiles

To identify potential target genes of the miR319-regulated
TCPs, we analyzed the results from several microarray
experiments (Table S1). We separately compared leaves and
shoot apices of wild-type plants with jaw-D plants, which have
increased miR319a activity and therefore reduced TCP
activity. In a third comparison, we analyzed apices from tcp2
tcp4 double mutants and rTCP4:GFP plants, which have
increased TCP activity. We focused on genes that are likely
to be positively regulated by TCPs, as indicated by reduced
expression in jaw-D or tcp2 tcp4 plants, or increased expression
in rTCP4:GFP plants. Because only nine genes were signifi-
cantly down-regulated in tcp2 tcp4 double mutant apices, and
only two of these were not detected in one of the other three
comparisons, we omitted this dataset from further analyses.
The weak transcriptional effects seen in tcp2 tcp4 double
mutants are consistent with the weak morphological defects
when compared with those of jaw-D plants, in which three
additional TCP genes are strongly suppressed.

To obtain first insights into the potential role of the TCP-
responsive genes during development, we made use of a
developmental microarray dataset [53]. The averaged relative
expression levels of the gene sets identified as differentially
expressed in each experiment were highly similar, even
though there was only partial overlap between them (Figures
2A and 3A). In rTCP4:GFP plants, more genes are changed in
their expression than in jaw-D. One explanation could be that
in rTCP4:GFP plants, the TCP4 expression domain is
expanded and hence more cells and tissues are affected than
in plants with reduced TCP activity. In addition, overall TCP
activity is merely attenuated in jaw-D plants, because of the
incomplete clearing of TCP transcripts by miR319, and
because of the partial redundancy between miR319-targeted
and nontargeted TCP genes, all of which have similar
expression patterns (Figure S4) and similar dominant-
negative effects [42].

Figure 1. Phenotypes of Plants with Altered TCP Activity

Ten-day-old seedlings (top) and fully expanded sixth rosette leaves
(bottom) of wild-type, various tcp mutant combinations, and jaw-D
plants, in which miR319a, a negative regulator of TCP2, TCP3, TCP4,
TCP10, and TCP24, is overexpressed.
doi:10.1371/journal.pbio.0060230.g001

Figure 2. Genes Affected by Altered TCP Activity

(A) Averaged RNA expression levels of genes affected in different
genotypes across a developmental microarray dataset [53]. Shown are
genes that are apparently positively regulated by TCPs, because their
expression is reduced in jaw-D, or increased in rTCP4:GFP. See Figure 3A
for size and overlap of gene sets.
(B) Transcript levels of lipoxygenase genes LOX2, LOX3, and LOX4 in
apices, measured by qRT-PCR (average of three independent measure-
ments). Error bars indicate standard deviation.
(C) Averaged expression levels of hormone biosynthesis genes in shoot
apices from different genetic backgrounds, normalized to wild type.
Numbers of genes in each pathway given in parentheses.
(D) Expression profiles of genes that are changed in jaw-D or rTCP4:GFP,
normalized across five different hormone and control treatments [73].
doi:10.1371/journal.pbio.0060230.g002
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Main sites of expression of TCP-responsive genes were leaf-
like organs, including cotyledons, rosette leaves, cauline
leaves, and sepals, consistent with the tissues affected
especially in jaw-D plants [32]. That expression of potential
TCP targets persisted in leaves throughout senescence
suggested that the miR319/TCP regulatory module might
not only be important early in leaf development, but also
during later stages.

Expression Levels of JA Biosynthetic Genes Affected by
miR319/TCP Activity

Using stringent criteria (logit-T per-gene variance p ,

0.025, common variance . 2-fold), only a single gene,
LIPOXYGENASE2 (LOX2), was identified as being affected in
the different microarray comparisons (Table S2). LOX2 was
the second most suppressed gene in our original analysis of
jaw-D plants, after TCP4 itself [32]. The opposite effects
observed in plants with reduced and increased TCP activity,
respectively, indicated that TCPs are important determinants
of LOX2 expression levels in the absence of other stimuli
known to affect LOX2 expression, such as wounding [54,55].

LOX2 encodes a chloroplast-localized lipoxygenase that
catalyses the conversion of a-linolenic acid (18:3) into (13S)-
hydroperoxyoctadecatrienoic acid, the first dedicated step in
the biosynthesis of the oxylipin JA [56]. Apart from LOX2, the
Arabidopsis genome encodes three other lipoxygenases that
are predicted to be chloroplast-localized, LOX3, LOX4, and
LOX6 [57]. The expression of LOX3 and LOX4 could not be
detected by microarray analysis, but more sensitive reverse
transcription followed by real-time PCR showed that ex-
pression of both genes is reduced in jaw-D plants, and
increased in rTCP4 plants as well (Figure 2B).

Since JA is regulated through a positive feedback loop, with
JA inducing the expression of its own biosynthetic genes
[55,56,58], we examined the effect of miR319/TCP on the
entire biosynthesis pathway for JA and other oxylipins, for
which 19 genes have been described in Arabidopsis. The first

steps in JA biosynthesis occur in the chloroplast, and only the
JA precursor OPDA (or its coenzyme A [CoA] ester) are
transported into the peroxisome, where several rounds of b-
oxidation are carried out, leading to the final product, JA
[59,60]. We plotted the average expression level of the JA
biosynthesis genes against the different genotypes that were
subjected to microarray analysis. The average expression of
JA biosynthetic genes was approximately 2-fold reduced in
jaw-D plants compared to wild type, and approximately 4-fold
increased in rTCP4:GFP plants (Figure 2C). We also analyzed
the pathway for the hormones cytokinin, gibberellic acid, and
auxin, all of which have been implicated in leaf development
or leaf physiology. None of the other three pathways showed
as great a contrast between wild-type, rTCP4:GFP, and jaw-D
plants as the JA pathway (Figure 2C, Table S1). When we
analyzed publicly available microarray data for JA response,
we found the data to be consistent with an effect of miR319-
regulated TCPs on endogenous JA levels, since several genes
that are either down-regulated in jaw-D and tcp2 tcp4 plants or
up-regulated in rTCP4:GFP plants are induced in wild-type
plants treated with methyl jasmonate (MeJA) (Figure 2D).
These include genes known from the literature to be
responsive to MeJA, such as PDF1.2 and COR1 [61,62] (Table
S3).

Identification of a JA Biosynthetic Gene as a TCP Target
To understand how miR319a regulates the JA and oxylipin

biosynthesis pathways through the TCP transcription factors,
we turned again to the microarray data that we had obtained
from the different tissues and genotypes with altered miR319/
TCP activity, and we searched for genes that appeared to be
positively regulated by TCPs. With slightly relaxed parame-
ters (logit-T per-gene variance p , 0.05), we identified a set of
117 genes with consistently changed expression (down in jaw-
D and up in rTCP4:GFP) in at least two of the three analyzed
tissues (Figure 3A). In the promoters of this set, the most
common motifs were GGACCA and its complement,
TGGTCC, which were present at least once in 49 genes
(Figure 3B and Table S1).
In parallel, we identified the preferred binding site of TCP4

by in vitro selection [63]. Of 27 clones obtained after ten
rounds of selection, 25 contained a variant of the consensus
motif gGGaCCAC, which includes as a core the GGACCA
motif found in the promoters of TCP-response genes (Figure
4A and Figure S5). Competition experiments with unlabeled
oligonucleotides confirmed the specificity of the TCP4
binding site (Figure 4B). Electrophoretic mobility shift assays
(EMSAs) with oligonucleotides that contained single base pair
mutations indicated some flexibility in the ability of TCP4 to
bind its preferred site in vitro (Figure 4C), which may explain
why the motif deduced from in silico promoter analysis is
only a submotif of the one identified by stringent binding site
selection. The complement of the gGGaCCAC motif is related
to a sequence, G(T/C)GGNCCC, that is preferentially bound
by PCF5, a protein encoded by an miR319-targeted TCP gene
from rice [38].
In plants, metabolic pathways are often coordinately

regulated by the same transcription factors [64], and we
found the TCP motif GGACCA in the promoters of eight out
of 19 oxylipin biosynthesis genes (Table S2). Only two
promoters were expected to have this motif by chance, using
the promoters of all Arabidopsis genes to determine the

Figure 3. Identification of TCP Target Genes

(A) Identification of genes that respond to changes in TCP activity in at
least two of three comparisons. Selection criteria were a combination of
per-gene variance (p , 0.05, logit-T, [85]) and common variance (.2-
fold).
(B) Overrepresented motifs in the promoters of the genes identified in
(A). n is the number of instances across the genes indicated; p is the
probability that this is a chance occurrence, corrected for multiple
testing. The asterisk indicates a motif that is the reverse complement of
the one above.
doi:10.1371/journal.pbio.0060230.g003
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background distribution of the GGACCA motif. No such
overrepresentation was found in the promoters of 13 auxin,
13 cytokinin, and 15 GA biosynthetic genes, with the
GGACCA motif being present in the promoters of only two
GA biosynthetic and one auxin biosynthetic genes, and
missing in the promoters of cytokinin biosynthesis genes
(Table S2).

To investigate whether the TCP binding sites were indeed
required for promoter activity of JA biosynthetic genes, we
focused on the LOX2 promoter, which has four sites with at
most one mismatch to the motif GGACCAC. Using double-
stranded oligonucleotides covering the potential TCP bind-
ing sites in the context of the LOX2 promoter, we performed
EMSAs. The in vitro studies confirmed that TCP4 can bind
strongly to at least two of the consensus motifs (Figure 5A).
To assess the requirement for these binding sites in planta, we
constructed two LOX2:GUS (b-glucuronidase) reporters, one
with the wild-type sequence and one in which the four
consensus motifs were mutated. In untreated plants, the wild-
type reporter had strong GUS activity throughout leaves,

similar to what has been reported [55], whereas the mutant
reporter had very little activity (Figure 5B). Moreover, the
wild-type reporter was less active in tcp2 tcp4 tcp10 triple
mutants (Figure S6), confirming that TCPs positively regulate
LOX2 promoter activity. Together, our findings suggest that
the miR319-targeted TCPs directly regulate expression of
LOX2.
LOX2 strongly responds to wounding or treatment with

MeJA [55,56]. We tested if the mutated LOX2 reporter lacking
TCP binding sites was still responsive to these stimuli.
Wounding of rosette leaves or external treatment of plants
with MeJA led to strong activation of reporter activity within
45 min (Figure 5B), indicating that TCPs are not involved in

Figure 4. DNA-Binding Specificity of TCP4

(A) Consensus binding motif of TCP4, based on a common sequence
found in 25 out of 27 clones selected with recombinant TCP4 protein
(see Figure S5).
(B) Specificity of TCP4 in vitro binding as shown by EMSAs. Unlabelled
double-stranded oligonucleotides that contain the wild-type consensus
sequences (agatgggGGACCACatagatgt) or a mutated version
(. . .GGAACAC. . .) were used in increasing amounts as competitors.

(C) TCP4 binding to mutant sites, based on the consensus sequence used
in (B).
doi:10.1371/journal.pbio.0060230.g004

Figure 5. Functional Analysis of TCP4 Binding Sites in the LOX2 Promoter

(A) TCP4 binding to four consensus sites in LOX2 promoter. (1)
tcagatcctGGACCACtgcaataa; (2) tattaattaAGACCACtcgtaact; (3) ttttaag-
caGGACCAAaacctaaa; and (4) tagatacaGTGGTCCtcctatgca. consensus
motifs are underlined, flanking sequences are from LOX2 promoter.
(B) X-gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid) assay for
b-glucuronidase (GUS) reporter activity. In the mutant promoter, all four
TCP4 consensus sites were mutated. MeJA and wounding treatments
were for 45 min. The photographs show representative results from 20
independent transgenic lines analyzed for each construct.
doi:10.1371/journal.pbio.0060230.g005
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these two responses, but rather regulate the developmental
aspect of LOX2 expression.

JA Levels Affected by Reduced TCP Activity
The strongly reduced expression of JA biosynthetic genes

in jaw-D plants prompted us to ask whether this is
accompanied by a reduction in levels of endogenous JA. We
measured the concentration of JA in planta by using gas
chromatography followed by mass spectrometry [65]. JA levels
are low in resting tissue of both wild-type and jaw-D plants
(Figure 6). A difference between wild-type and jaw-D plants
was most obvious in response to wounding, which strongly
induces JA biosynthesis. Near the peak of JA induction in wild
type, 90 min after wounding [66], JA levels had substantially
increased in both wild-type and jaw-D plants, but were about
four times lower in jaw-D plants. This result is consistent with
the observation that wounding can still activate a LOX2
promoter lacking TCP4 binding sites.

For the microarray analyses, we had used primary
rTCP4:GFP transformants with relatively strong phenotypes,
and found an increase in the expression of JA biosynthetic
genes (Figure 2). Unfortunately, only plants with weak, almost
wild-type–like phenotypes provided sufficient material for JA
measurements, because rTCP4:GFP plants with strong phe-
notypes stay small, have a shorter life span than wild type, and
do not produce seeds. No clear differences in JA levels were
seen in rTCP4:GFP plants with mild leaf phenotypes (unpub-
lished data).

Senescence in Plants with Altered TCP Activity
Neither allene oxide synthase (aos) mutants, which appear to

be completely devoid of jasmonate [66], nor oxophytodienoate
reductase3 (opr3) mutants show an obvious defect in an
induced senescence assay (Figure S8). On the other hand, it
is well known that exogenously applied MeJA can accelerate
the final stage of leaf development, senescence (e.g., [67]), and
several JA biosynthetic genes, including LOX2, are transiently
induced during developmental senescence [49]. Thus, JA
likely plays a role in the control of senescence, but is not
essential for it, as pointed out before [47].

We had noticed that positively regulated TCP targets tend
to be expressed at higher levels in older leaves of wild-type
plants (Figure 2A). An opposite pattern was seen for genes
that were down-regulated in rTCP4:GFP plants (Figure S7).

Considering that the rTCP4:GFP samples analyzed consisted
of apices with small, developing leaves, this observations
suggested that the developmental age of rTCP4:GFP leaves is
advanced relative to that of wild-type leaves. The up-
regulated genes include several genes encoding WRKY
transcription factors, so named after the first four amino
acids of the conserved motif WRKYGQK, which is the
hallmark of this protein family. One of these genes, WRKY53,
is an important positive regulator of senescence [68,69],
which is induced more than 30 times in rTCP4:GFP plants,
although it lacks TCP4 consensus binding motifs in its
promoter (Table S4). The precocious activation in rTCP4:GFP
of genes that are normally expressed only later during leaf
development is consistent with the role of the snapdragon
TCP gene CIN as a regulator of the mitotic arrest front during
early stages of leaf growth [40], and suggests a more general
role for TCPs during leaf aging. This in turn led us to examine
the hypothesis that rTCP4:GFP plants might show a prema-
ture onset of senescence, and that jaw-D plants show a delay
in senescence.
Obvious effects were seen in jaw-D plants grown under long

days; in these plants, leaf senescence was delayed by about a
week (Figure 7A), which is similar to the effects seen in the
senescence mutant oresara9 [70]. In rTCP4:GFP plants,
senescence was slightly accelerated (Figure 7A), consistent
with these rTCP4:GFP plants examined having only relatively
mild morphological defects.
Incubation of detached leaves in the dark induces

senescence within days, and the onset of senescence can be
accelerated by treatment with exogenous MeJA [57,67].
Although there are differences between induced and devel-
opmental senescence (e.g., [49]), we could confirm the delay
observed in on-plant senescence with the in vitro assay. We
monitored chlorophyll degradation and maximum efficiency
of photosystem II (PSII) photochemistry (Fv/Fm) in detached
jaw-D leaves incubated in the dark, and found a delayed
decline in both these indicators of healthy leaves (Figure 7B
and 7C).
We used the in vitro assay also to determine whether the

delayed senescence in jaw-D plants is potentially caused by a
lack of JA or a defect in JA signaling. When we compared jaw-
D to wild type, we found that treatment with exogenous MeJA
restored the senescence response (Figure 8), consistent with
our previous results that TCPs regulate JA biosynthesis,
rather than the JA response.
The findings that MeJA was sufficient to restore senescence

in jaw-D plants, but that JA on its own is apparently not
essential for senescence, suggests that JA acts redundantly
with other pathways during the control of senescence. One
candidate is salicylic acid (SA) signaling, which often
antagonizes the effects of JA [71]. However, jaw-D plants
appeared to be largely normal in their SA response, as
deduced from induction of the marker gene PR1 (Figure S9).

Discussion

We have investigated the biological roles of miR319 and its
targets, a set of five TCP transcription factors, already well
known for their effects on leaf growth. We discovered
additional functions of the miR319-regulated TCPs in JA
biosynthesis and leaf senescence. These findings suggest that
TCP transcription factors function throughout leaf develop-

Figure 6. JA Content of Wild-Type and jaw-D Plants

JA concentration in rosette leaves was measured in triplicate at 0 and 90
min after wounding.
doi:10.1371/journal.pbio.0060230.g006
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ment to coordinate the balance between leaf growth, which
they negatively regulate, and leaf senescence, which they
positively regulate.

Regulation of Growth and JA Biosynthesis by TCPs
Using a combination of microarray meta-analysis, in vitro

DNA binding experiments and reporter gene studies, we
identified the LOX2 gene, which encodes an enzyme catalyz-
ing a key step in JA biosynthesis, as being likely to be directly
regulated by TCPs in vivo. The transcriptional response of
other genes in the JA biosynthesis pathway and the over-
representation of a TCP DNA binding motif in this pathway
suggest that TCPs directly control additional JA biosynthetic
genes. This strategy, coordinated control of metabolic path-
ways by the same set of transcription factors, is commonly
used in plants [64].

Several previous analyses of JA biosynthetic genes, includ-
ing LOX2, have focused on regulatory elements and upstream
factors mediating the effects of wounding or MeJA treatment
[55,56]. Mutation of the TCP binding sites in the LOX2
promoter strongly reduced its activity in the absence of
stimulation by wounding or MeJA, but it did not abolish the
inducibility of the promoter. Our results highlight the
importance of developmental control of LOX2, and of the
fact that developmental regulation can be at least partially
uncoupled from transcriptional induction by wounding or JA
treatment. This finding is consistent with JA playing not only
a role in pathogen and stress response, but also in many
developmental processes. Expression of the TCP genes
themselves is not wound-, pathogen, or MeJA-responsive, as
deduced from publicly available microarray data (http://www.
weigelworld.org/resources/microarray/AtGenExpress/) [72,73],
supporting the conclusion that the TCPs represent a pathway
of JA regulation that is linked to the developmental program
of the plant rather than to environmental responses.
Plants with lower JA levels due to reduced activity of the

enzyme encoding genes DONGLE (DGL) and OPR3 have been
reported to be larger than wild type, while plants that
overexpress DGL are smaller, similar to plants treated with JA
[74,75]. DGL shares overlapping activity with a homolog,
DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), in stamen
maturation [76]. DAD1 in turn is a direct target of the
homeotic transcription factor AGAMOUS (AG), which
regulates both organ identity during early flower develop-
ment and organ development during later stages [77]. In light
of these related findings, the observation that TCP tran-
scription factors and JA have parallel effects on leaf growth
suggests that the oxylipin pathway potentially acts down-
stream of TCPs in affecting growth. Importantly, several links
between JA and cell cycle progression as well as growth have
previously been demonstrated (e.g., [78,79]).

Effects of TCPs and JA on Senescence
Although it is well known that exogenously applied MeJA

can accelerate senescence (e.g. [67]), there have been no
reports that plants with mutations in the JA biosynthetic
pathway are deficient in the senescence program

Figure 8. Restoration of Senescence Response in jaw-D

Detached leaves of wild-type (left leaf of each pair) and jaw-D were
incubated in darkness with increasing concentrations of MeJA. Note that
these assays were carried out to a different time point and in a different
laboratory, compared to the experiments shown in Figure 7, which likely
explains the differences in senescence progression.
doi:10.1371/journal.pbio.0060230.g008

Figure 7. Senescence Responses of Plants with Altered TCP Activity

(A) Fraction of fifth rosette leaves that still contained chlorophyll after the
leaves had stopped growing (wild type, n¼ 28; jaw-D, n¼ 31; rTCP4:GFP,
n¼ 46).
(B) Chlorophyll contents in detached leaves of wild-type and jaw-D,
floated on water in darkness (average of 12 leaves per genotype).
(C) Measurements of PSII photochemistry in detached leaves of wild-type
and jaw-D (average of six leaves per genotype). Error bars indicate
standard deviation.
doi:10.1371/journal.pbio.0060230.g007
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[59,66,76,80–84], which we have confirmed for aos and opr3
mutants using an induced senescence assay (Figure S8).
Nevertheless, a bona fide effect of JA on leaf senescence can
be deduced from the observation that exogenously applied
MeJA fails to induce senescence in the coronatine insensitive1
(coi1) mutant, which is defective in JA signal transduction
[57,75,85]. The coi1 mutant on its own, however, does not
show a senescence defect either. Analyses of biosynthetic
mutants as well as the coi1 signaling mutant therefore both
suggest that endogenous JA is not limiting for natural
senescence.

There is thus an interesting contrast between JA biosyn-
thetic and signaling mutants on the one hand, and jaw-D,
which has decreased JA levels due to reduced expression of JA
biosynthetic genes, on the other hand. We initially considered
the possibility that the TCP4 target LOX2 might be required
for the production of additional metabolites that prevent
senescence, and that LOX2 might thereby directly affect
chloroplast stability. There are no reports that LOX2
catalyzes processes other than the conversion of a-linolenic
acid (18:3) into (13S)-hydroperoxyoctadecatrienoic acid, but
the LOX2-catalyzed step can lead to end products other than
JA [66]. The functions of these other oxylipins are not well
known, and it cannot be ruled out that LOX2-catalyzed
products are involved in JA-independent processes that delay
senescence. An observation that speaks against such a
scenario is that lipoxygenase activity is almost undetectable
in leaf extracts of a recently isolated loss-of-function lox2
mutant. Similar to other JA biosynthetic mutants, these lox2
mutants do not show obvious changes in their senescence
program (L. Dubugnon and E. E. Farmer, unpublished data).

We therefore propose an alternative scenario, namely that
miR319-regulated TCPs control leaf senescence by regulating
not only JA biosynthesis, but also a second, as-yet unidentified
pathway that suppresses senescence in wild-type plants. We
speculate that inactivation of the endogenous JA pathway
alone is not sufficient to delay precocious senescence, due to
such a second, redundantly acting pathway. Because of their
parallel effects on senescence, JA alone should be, however,
sufficient to induce senescence, both in wild-type plants and
in jaw-D plants, which presumably lack activity of both
pathways. Many genes activated in rTCP4:GFP plants are
progressively up-regulated during leaf development, includ-
ing WRKY53, an important positive regulator of senescence
[68,69], suggesting perhaps a more general role for TCPs
during leaf aging.

Most conserved plant miRNAs affect transcription factor
genes with important roles in development [11,12], but in
vivo targets that mediate the effects of these transcription
factors are largely unknown. Our identification of targets of
miR319-regulated TCPs thus provides an important advance
in the understanding of small RNA–controlled regulatory
networks. In addition, it demonstrates that the function of
miRNA-controlled transcription factors is not limited to the
modulation of downstream hormonal responses [13–16,18],
but that miRNAs may, in addition, regulate development
through effects on hormone biosynthesis.

Materials and Methods

Plant material. Plants were grown at 23 8C. All experiments were
done under long days (16 h light), except for microarray analyses,

which were with plants grown under short days (8 h light). Regular
illumination was 125 lmol m�2 s�1. For low light conditions, intensity
was reduced to 15 lmol m�2 s�1. Origin of tcp mutants and gene
identifiers are given in Tables S5 and S6. Wild type was Columbia
(Col-0), unless stated otherwise.

Microarray analyses and promoter motif discovery. Microarray
analyses using the Affymetrix ATH1 platform were performed as
described [86]. For the collection of apices (including the youngest
leaf primordia), plants were dissected under a stereomicroscope, and
all leaves with visible petioles were removed and discarded. Tissue
was harvested directly into liquid N2. Differentially expressed genes
were identified with a combination of per-gene variance (calculated
using logit-T [87]) and common variance based on expression
estimates using gcRMA (http://www.bioconductor.org), a modification
of the robust multi-array analysis (RMA) algorithm [88]. Accession
numbers for microarray experiments are GSE518 (jaw-D) [32], and E-
MEXP-469 (rTCP4:GFP and tcp2 tcp4). Microarray data for hormone
treatment were downloaded from http://www.arabidopsis.org; TAIR
accession numbers are 1007965964 (JA), 1007965859 (auxin), and
1007966175 (GA).

Six to eight–nucleotides-long overrepresented motifs were identi-
fied using a routine implemented in Genespring GX 7.3.1 (Agilent
Technologies, California). Promoters were defined as 800 nucleotides
upstream of the initiation codon, and exact matches among positions
�800 to�10 were considered. The frequency of each individual motif
in the 117 genes that changed in at least two conditions was
compared to the frequency of the same motif in promoters of other,
randomly chosen genes. The Ath1_02_04 annotation was used.

Expression analyses. Real-time RT-PCR using the Opticon Con-
tinuous Fluorescence Detection System (BioRad) was performed as
described [86]. GUS staining was carried out as described [89].

Protein expression and purification. The TCP4 expression con-
struct pRSETC-TCP4-1, designed to express the amino-terminal,
224–amino acid fragment of TCP4 including the DNA-binding
domain, was transformed into the Escherichia coli strain BL21 (DE3)
pLysSpSBET. 100ml LB containing 100lg/ml ampicillin was inocu-
lated with 1 ml of overnight culture and grown at 37 8C to mid-log
phase. Recombinant protein expression was induced with 1 mM
isopropyl b-L-thiogalactoside (IPTG). Cells were harvested after 3 h of
induction. Cells were lysed by sonication in 2 ml of lysis buffer (50
mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 1 mg/ml lysozyme).
The lysate was centrifuged and the supernatant was loaded onto a Ni-
NTA spin column (Qiagen). Recombinant protein was eluted in 150 ll
volume containing 500 mM imidazole. Eluted protein was dialyzed
against 50 mM NaH2PO4, 300 mM NaCl and 10% glycerol for 6 h.
Purification was monitored by protein blot using anti-His HRP
conjugate antibodies (Qiagen).

Random binding site selection.Methods described earlier [63] were
used. The double-stranded oligonucleotide targets (R704), which
contained random 18-mer sequences flanked by 19 bp defined
sequences on both ends, were prepared by annealing oligonucleotides
R704 (GGAAACAGCTATGACCATG [N]18 ACTGGCCGTCGTTT-
TAC) and 704 (GTAAAACGACGGCCAGT) followed by primer
extension with Klenow fragment. Recombinant protein was incu-
bated with 3.6 lg of double stranded R704 in 15 ll of 1 X binding
buffer containing 0.1 M KCl, 10 ng of salmon sperm DNA, and 10 lg
of bovine serum albumin (BSA). The DNA-protein complex was
separated by polyacrylamide gel electrophoresis, bound oligonucleo-
tides were eluted from the gel and dissolved in 20 ll of TE. The
recovered DNA was amplified by 14 cycles of PCR with primers 703
(GGAAACAGCTATGACCATG) and 704. The PCR product (30 ll)
was extracted with phenol/chloroform and ether, and 10 ll was
subjected to next round of selection. With each round of selection,
the number of PCR cycles was reduced by one cycle to avoid
generation of high–molecular weight PCR products. The DNA from
the tenth round of selection was amplified by PCR, purified on a 20%
polyacrylamide gel and cloned into the pGEM-T Easy vector
(Promega) for sequencing.

EMSAs. Double-stranded DNA probes were generated by anneal-
ing oligonucleotides and primer extension with [a-32P]-dCTP using
Klenow enzyme. The binding reaction was carried out in a total
volume of 10 ll containing ;10 fmol of oligonucleotide probe, 1 X
binding buffer (20 mM HEPES-KOH, pH 7.8, 100 mM KCl, 1 mM
EDTA, 0.1 % BSA, 10 ng herring sperm DNA, and 10% glycerol) and
5–100 ng of recombinant protein. The mixture was incubated for 30
min at room temperature and loaded on 6% native polyacrylamide
gel. Electrophoresis was conducted at 4 V/cm for 45 min in 0.5 x TBE
electrophoresis buffer at room temperature. The gels were auto-
radiographed using a phospho-imager.

Site-directed mutagenesis. Mutagenesis was carried out using the
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QuikChange Multi Site-Directed Mutagenesis Kit (Stratagene),
according to the manufacturers instructions. Primer sequences are
available on request. The four sites and positions of mutations (with
ATG asþ1) are: (1) position�1173 to�179, mutated at�1174,�1176;
(2) position �944 to �949, mutated at �944, �946, �949; (3) position
�432 to �437, mutated at �432, �434; (4) position �300 to �305,
mutated at �303, �305.

Jasmonate quantification. Protocol 2 of Mueller and colleagues [65]
with an oxygen-18 labeled internal standard was used.
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