
REVIEW ARTICLE

Pattern Recognition Approaches for Breast Cancer DCE-MRI
Classification: A Systematic Review

Roberta Fusco1,2 • Mario Sansone2 • Salvatore Filice1 • Guglielmo Carone1 •

Daniela Maria Amato1 • Carlo Sansone2 • Antonella Petrillo1

Received: 30 September 2015 / Accepted: 29 March 2016 / Published online: 31 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We performed a systematic review of several

pattern analysis approaches for classifying breast lesions

using dynamic, morphological, and textural features in

dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI). Several machine learning approaches, namely

artificial neural networks (ANN), support vector machines

(SVM), linear discriminant analysis (LDA), tree-based

classifiers (TC), and Bayesian classifiers (BC), and features

used for classification are described. The findings of a

systematic review of 26 studies are presented. The sensi-

tivity and specificity are respectively 91 and 83 % for

ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92

and 87 % for TC, and 82 and 85 % for BC. The sensitivity

and specificity are respectively 82 and 74 % for dynamic

features, 93 and 60 % for morphological features, 88 and

81 % for textural features, 95 and 86 % for a combination

of dynamic and morphological features, and 88 and 84 %

for a combination of dynamic, morphological, and other

features. LDA and TC have the best performance. A

combination of dynamic and morphological features gives

the best performance.

Keywords Dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) � Breast cancer � Patter
recognition approach � Classification

1 Introduction

Breast cancer is the most common cancer among women in

the Western world. It is the second leading cause of cancer

death in women today (after lung cancer) and is estimated

to cause 15 % of cancer deaths [1]. Therefore, screening

for early diagnosis of breast cancer is of great interest.

The currently widespread screening method is RX

mammography, which plays an important role in clinical

practice [2, 3]. However, this method has some drawbacks:

it uses ionizing radiation, it is not adequate for young

women because of their high-density breasts, and detection

of breast lesions is difficult because of the lack of func-

tional information. Breast ultrasound (US) is able to detect

additional cancers in women with dense breasts and neg-

ative mammography and is helpful for the characterization

of mammographically detected abnormalities, evaluation

of tumor size and nodal status, and guiding needle biopsy

[4]. However, it is of limited value in detecting additional

ipsi- or contra-lateral malignant lesions.

Magnetic resonance imaging (MRI) and in particular the

emerging methodology of dynamic contrast-enhanced

(DCE)-MRI has demonstrated great potential in the

screening of high-risk women, staging newly diagnosed

breast cancer patients, and assessing therapy effects thanks

to its minimal invasiveness and ability to visualize dynamic

(functional) information not available with conventional

imaging. Therefore MRI, and in particular DCE-MRI, is

gaining popularity as an important complementary diag-

nostic tool for the early detection of breast cancer [2–5].
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MRI is currently used as a complement to conventional

X-ray mammography in the diagnosis of breast lesions [2].

It has been shown that 17–34 % of cancer foci visible on

breast MRI are not detected by mammography. Because of

the higher cost and increased time required to read an MRI

data set (*400 images per patient), MRI will probably

never be a complete replacement for mammography, but it

is certainly an excellent screening tool for high-risk

patients. Reducing the workload required to read an MRI

data set would make it a more practical clinical screening

tool. Therefore, the development of methods using low-

cost hardware for lesion detection and classification is of

great interest. X-ray mammography remains the gold

standard for breast cancer screening and offers high two-

dimensional (2D) resolution, which is advantageous for

detecting small variations in tissue composition, such as

micro-calcifications [3].

However, due to the constraints of imaging a three-di-

mensional (3D) structure in a single plane, breast US or

DCE-MRI is often used as a secondary imaging technique

when a suspicious lesion is found using mammography

[3, 5]. DCE-MRI is also very good at imaging dense

breasts, but its major advantages over mammography and

US are the ability to (a) image the entire breast as thin

slices that comprise the entire breast volume and (b) mea-

sure variations in contrast uptake that provide information

about the vascularity of the breast tissue [6].

On account of breast DCE-MRI’s high 3D resolution

and its ability to acquire kinetic contrast information, its

lesion detection sensitivity is close to 100 % [7], much

higher than that of either mammography or US [1]. How-

ever, the specificity of breast DCE-MRI is low, with

reported rates of between 30 and 70 % [7, 8].

In addition to the problem of low specificity, another

shortcoming of breast MRI is that only experienced radi-

ologists are able to accurately distinguish benign from

malignant tumors [1, 9]. This often leads to high rates of

inter-observer variability [9]. Therefore, one of the chal-

lenges in facilitating increased acceptance of breast DCE-

MRI as a screening modality is reducing false positive

detection errors, thereby boosting detection specificity.

Additionally, the inter-observer variability for breast DCE-

MRI must be minimized.

For these reasons, several authors have proposed using

various features in DCE-MRI images to decide whether a

given tumor is benign or malignant. For example, radiol-

ogists differentiate tumors based on features that describe

the biological activity of the tumor using dynamic

parameters (vascularization, permeability, flux) [10–22],

tumor size, tumor boundary shape (morphological charac-

teristics), or tumor heterogeneity (textural features)

[23–49].

Computer-aided diagnosis (CAD) systems, using pattern

analysis approaches, have the potential to assist radiolo-

gists in the detection and classification of breast cancer. A

key component of the development of such CAD systems

is the selection of an appropriate classification function

responsible for separating malignant and benign lesions.

In the last two decades, many studies have addressed the

problem of tumor lesion classification based on DCE-MRI

data analysis. It is has been recognised that this problem

can be addressed in a pattern recognition framework with

the use of opportune features and classifiers.

Despite large effort, there is still no agreement on the

features most suitable for this task. Many kind of features

have been used. Dynamic features take into account the time

course of the contrast agent within the lesion, but they can

fail to describe other features of the lesion, such as tumor

heterogeneity. Textural features have thus been introduced.

Compartmental modeling can add useful information con-

cerning vascular permeability. Furthermore, morphological

features have been traditionally used in tumor classification

and they can be added to other dynamic features, with the

additional advantage that tumor morphology can be delin-

eatedmore precisely using the dynamic information ofDCE-

MRI. Spatiotemporal features have been suggested to com-

bine spatial and dynamic information.

Similarly, it is not clear what kind of classifiers can give

the best performance. Several classifiers have been used. It

is generally recognised that tree-based classifiers are more

easily accepted by humans because they can require to

simple threshold-based rules; however, they can suffer

from over-fitting. Linear classifiers are also easy to design

and understand, but linear combinations of features do not

always have simple interpretations. More sophisticated

classifiers such as artificial neural networks (ANN) and

support vector machine (SVM) are strongly non-linear and

thus classification hyperplanes are difficult to interpret.

Moreover, not all classifiers work well with all types of

features; therefore, various combinations of classifier-fea-

tures have been attempted.

This study surveys the literature of the last two decades

that focuses on features and classifiers used for the clas-

sification of tumor lesions detected from DCE-MRI data.

We performed a systematic review of several machine

learning algorithms proposed in the literature for classify-

ing breast lesions using dynamic [10–22], morphological,

and textural features in DCE-MRI [23–49]. This study

considers the following machine learning approaches:

ANN, SVM, linear discriminant analysis (LDA), tree-based

classifiers (TC), and Bayesian classifiers (BC). This sys-

tematic review is conducted using a meta-analysis. As

such, our objective is not to present a short summary of all

studies, but instead to focus on aspects common to all
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studies and present a statistical analysis of the performance

of the algorithms in the literature.

2 Review of Methodology

2.1 Search Criteria

Several electronic databases were searched, namely

PubMed (US National Library of Medicine, http://www.

ncbi.nlm.nih.gov/pubmed), Scopus (Elsevier, http://www.

scopus.com/), Web of Science (Thomson Reuters, http://

apps.webofknowledge.com/), and Google Scholar (https://

scholar.google.it/). The following search criteria were

used: ‘‘breast cancer’’ and ‘‘breast lesions’’ for the clinical

domain and ‘‘DCE-MRI’’, ‘‘Dynamic Contrast Enhanced-

MRI’’, and ‘‘Dynamic Contrast Enhanced-Magnetic Reso-

nance Imaging’’ for the diagnostic test. To make sure that

no study was missed, a free-text search was also per-

formed. The search covered the years from 1995 through

2014. Furthermore, all reference lists of the obtained

papers were scrutinized for studies not indexed in the

electronic databases.

If not otherwise stated, all the studies reviewed herein

fulfill the following criteria: (1) thorough clinical charac-

terization of the patients with DCE-MRI (studies using

other diagnostic techniques were excluded); (2) specifica-

tion of applied classifiers; (3) accuracy of classifier repor-

ted in terms of sensitivity and specificity; and (4) used one

of the following classifiers: ANN, SVM, LDA, TC, or BC.

In the present review, all relevant studies were scruti-

nized, but only studies that satisfied the inclusion criteria

are included in the review (Fig. 1). Furthermore, this

analysis was carried out only for studies of subjects with

breast lesions. Information extracted from each study

included the title, authors, year of publication, sample size,

age of subjects, reference standard, and numbers of true

positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN).

2.2 Pattern Recognition Approach

As many textbooks are available on this subject [34–39],

only a brief and informal description of the main concepts

is given.

Using the pattern recognition approach, the subjects are

divided into different classes, each one characterized by

different features (dynamic, morphological, textural, clin-

ical, spatiotemporal, pharmacokinetic). The classes were

formed in such a way that individuals belonging to a given

class were characterized by similar values, occupying a

region in the multidimensional feature space, well sepa-

rated from the other classes.

Pattern recognition methods are based on three main

phases: feature extraction/selection, training, and classifi-

cation. While the training and classification tasks can be

considered a well-defined area, the extraction/selection of

the most appropriate features for a specific field of research

must be delineated specifically.

In the first phase, feature extraction means that existing

features are combined to produce new ones. Several

methods can be used to achieve this task. The main prob-

lem is that during the transformation (linear or non-linear

feature combination), the physiological meaning of the

original features may be lost.

In feature selection, only some of the features are chosen to

eliminate redundant features, thus improving system efficiency.

Two types of approach can be used for feature selection,

namely wrapped and filter methods. A wrapper method uses a

specific classifier to evaluate the features. This leads to high

performance, since the selected features are the most appro-

priate for the chosen classifier. The filter method does not take

into account the classifier. It is thus less computationally

expensive when the number of features is very large.

After feature extraction/selection, testing is conducted,

in which the classifier is designed using a training data set

with the characteristics of the population under investiga-

tion. The classifier first has to be proven using a testing data

set, which is different from the training data set. The per-

formance of the classifier and its sensitivity to the training

and testing data sets can be analyzed using two methods: the

leave-one-out method and the 10-fold method.

The leave-one-out method removes elements from the

data set, one at a time. Then, the classifier is designed

based on the remaining elements and is tested using the

removed ones. This method can only be used on a small

database. For the 10-fold method, the data set is divided

into 10 subsets, and then a procedure similar to that of the

leave-one-out method is applied.

For the final validation, a validation data set, which is

different from both the training and testing data sets, is

typically aplied. The final phase is classification. Various

machine learning algorithms can be used, such as ANN,

SVM, LDA, TC, and BC.

A widely used strategy is to consider different classifiers

at the same time. Each classifier receives the same set or

subset of features as input and the final decision on the

class is taken using an adequate scheme.

2.3 Classifiers

In this survey, we focus on the most commonly used

classifiers, namely ANN, SVM, LDA, TC, and BC. A brief

informal description of each classifier is given. The theo-

retical details of these classifiers can be found elsewhere

[26–29].
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2.3.1 Artificial Neural Networks

ANN is a set of mathematical models that mimic the

behavior of neurons in the human brain, connected to

each other through synapses. A neural network is a col-

lection of elements (neurons) that are individually able to

perform a fairly simple task and are interconnected with

each other through unidirectional channels in order to

perform more complex behavior. The output signal of the

network is calculated on the basis of an input signal

(feature vector) and the local memory of each neuron. An

intermediate hidden layer of neurons is applied in clas-

sification problems that cannot be solved by a single-layer

network. An input-hidden-output structure is called a

multilayer perceptron (a single-layer network is called a

perceptron). The set of inputs and the contents of the

local memory are considered the inputs of a suit-

able transfer function that calculates the output, which

will be propagated to other neurons, and so on, until it

reaches the final output of the network [34–39]. This

architecture is capable of drawing a hyperplane in the

feature space that separates the classes. Typically, it

achieves this task using an algorithm for updating weights

called back propagation [34–39].

2.3.2 Support Vector Machines

SVM is a binary classifier that separates data using a

hyperplane, determined based on selected points from the

training set. While the traditional methods for classification

are based on the minimization of empirical risk, or the

optimization of performance on the training set, SVM

minimizes the structural risk, i.e., the probability that new

samples are classified correctly for a fixed probability

distribution of the data.

Given a set of linearly separable data, there are various

hyperplane separators that discriminate the data correctly.

SVM identifies the hyperplane that, in addition to being

correct for the training set, is also able to maximize the

margin, defined as the sum of the distances between the

hyperplane and the nearest points on both sides of it. Such

points are called support vectors and are the only points of

the training set used for determining the optimal hyper-

plane [34–36].

2.3.3 Linear Discriminant Analysis

LDA is a method of classification whose basic idea is to

build decisional contours to separate the objects of the

Fig. 1 Included and excluded studies in systematic review
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classes using the optimization of the error criterion. The

method is based on the fact that the distributions of data

with a large variance between two classes and those with a

smaller variance within each class are easy to separate

[34–37].

2.3.4 Tree-Based Classifiers

A TC is based on the idea of dividing a complex decision

into a union of many easier ones, so that at the end, the

solution obtained reflects the desired one. This kind of

classifier has the advantage of being very fast. A TC sim-

plifies complex calculations and deletes unnecessary ones,

and is also very intuitive and easily understandable [34–36].

2.3.5 Bayesian Classifiers

A Bayesian network is a probabilistic graphical model of

knowledge in an uncertain domain that can be used to build

a BC, which estimates statistical data from the training set

to calculate the posterior probability. The main advantages

of BC are a simple association between the knowledge of

the model and that of the data, and ability to model reality

in conditions of uncertainty [34–36].

2.4 Features for Breast Classification

2.4.1 Dynamic Features

Dynamic features (DYN) describe the temporal dynamics

of the signal through measures obtained directly from the

time-intensity curve. They are therefore model-free, since

they are not calculated according to a model. The main

dynamic features are area, maximum intensity ratio, rela-

tive enhancement, relative enhancement slope, basal sig-

nal, perfusion index, sum of intensities difference (SOD),

wash-in, wash-out, and time to peak [41, 42, 49].

2.4.2 Pharmacokinetic Features

Pharmacokinetic features (PK) reflect some physiological

parameters of tissues and are calculated on the basis of

mathematical models according to a model-based strategy

[45–48]. They include extracellular extravascular space

(EES), plasma space, and transfer constants between the

plasma space and the EES. Moreover, when more complex

kinetic models were used, pharmacokinetic features also

include permeability flux, extraction fraction, and capillary

transit time [45–48].

2.4.3 Spatiotemporal Features

Spatiotemporal features (STEP) model the signals in a

four-dimensional space to capture not only the temporal

dynamics and the architectural characteristics, but also the

spatial variations of the voxels. Spatial and temporal

properties are combined to obtain these features [17, 33].

2.4.4 Morphological Features

Morphological features (MOR) describe the shape and

structure of the region of interest obtained in detection. The

main morphological features are area, circularity, com-

pactness, complexity, perimeter, radial length, smoothness,

roughness, sphericity, eccentricity, volume, rectangularity,

solidity, speculation, convexity, curvature, and edge

[25, 32, 40, 41].

2.4.5 Textural Features

Textural features (TEX) are based on the texture of the

image, i.e., its geometric structure. There are many defi-

nitions of texture; in general terms, it can be seen as a

function of local spatial variation in the intensity of the

voxels. Therefore, textural features replace the original

values of the voxels with measures that describe their

statistical properties: mean, median, standard deviation,

kurtosis, and skewness [43, 44].

2.4.6 Clinical Features

Clinical features (CLI) relate to the patient’s medical

records and can provide additional information or instruc-

tions that may be useful for classification [31].

2.5 Data Analysis

All data analysis were performed using the software Rev-

Man (version 5.2) [50]. Forest plots were constructed to

graphically present the sensitivity and specificity values,

with corresponding 95 % confidence intervals (CIs), for the

individual studies. A summary receiver operating charac-

teristic (sROC) curve was constructed using the same

software.

Table 1 Numbers of studies and patients per classifier

Classifier Number of studies Total number of patients

ANN 17 1960

SVM 8 949

LDA 4 133

TC 2 176

BC 3 343
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Fig. 2 Forest plot of sensitivity and specificity, with corresponding 95 % CIs, of included studies, divided by classifiers
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3 Results

By using the search terms described earlier, we identified

153 studies from 1995 through 2014. Of these, 55 studies

used diagnostic techniques other than DCE-MRI, 34

studies did not specify which classifiers were used, 29 did

not have sufficient data (did not report sensitivity and

specificity), and 9 studies used classifiers that were

excluded from this review. 26 studies remained for

inclusion in our meta-analysis, 20 were performed after

2000 (Fig. 1).

As shown in Table 1, the studies included in this review

are divided by classifier as follows: 17 used ANN, 8 used

SVM, 4 used LDA, 2 used TC, and 3 used BC. Some

studies used multiple classifiers. The results of this first

meta-analysis are shown in Figs. 2 and 3. Figure 2 shows

the values of TP, FP, FN, TN, sensitivity, and specificity

for each study, divided according to the applied classifier.

Figure 3 shows the sROC curves for each classifier.

The included studies also considered different features.

In this second systematic meta-analysis, we considered

only the studies that reported a detailed description of used

features (22 of the 26 included studies). The most used

features were dynamic features, followed closely by mor-

phological features, and then textural features (Table 2).

The results of this second meta-analysis are shown in

Figs. 4 and 5, which respectively show the forest plot and

the sROC curves.

4 Discussion

In the last two decades, many studies have tackled the

problem of tumor lesion classification based on DCE-MRI

data analysis. It is has been recognized that this problem

can be addressed in a pattern recognition framework with

the use of suitable features and classifiers. The present

study performed a systematic review of several machine

Fig. 3 Sensitivity and

specificity plotted in receiver

operating characteristic space

for individual studies; sROC

curves are plotted from data

points for each classifier

Table 2 Numbers of studies

and patients per feature
Feature Number of studies Total number of patients

DYN 8 1000

MOR 2 49

TEX 4 668

DYN ? MOR 6 930

DYN ? MOR ? other 2 125
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learning algorithms proposed in the literature to classify

breast lesion using several features categories such as

dynamic, morphological, and textural features in DCE-

MRI. Our results indicate that the choice of features does

not affect the selection of the classifier; in fact, many

authors used different combinations of features and clas-

sifiers, without compromising the validity of their study.

We can thus safely say that the choice of features and that

of classifier must not necessarily be related.

Although machine learning algorithms heavily depend

on the training data and extracted features and the reported

sensitivities and specificities cannot be compared directly,

we can draw some conclusions. Based on the collected

data, the averagevalues of sensitivity and specificity were

calculated for each classifier. The sensitivity and specificity

were respectively 91 and 83 % for ANN, 85 and 82 % for

SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82

and 85 % for BC.

Fig. 4 Forest plot of sensitivity and specificity, with corresponding 95 % CIs, of included studies, divided by features
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The average values are 90 % for sensitivity and 83 %

for specificity. At first, it might seem that LDA and TC

have the best performance (Fig. 2); however, from Table 1,

these two classifiers have the smallest samples of patients.

In fact, LDA was used in only 4 studies, with a total of 133

patients, and TC was used in only 2 studies, with for a total

of 176 patients.

In Fig. 3, the sROC curves corresponding to the SVM,

ANN, and BC classifiers are in red, black, and yellow,

respectively. These three curves are almost superimposed.

A few studies achieved very good performance in term of

both sensitivity and specificity. Considering all the studies

involving ANN, SVM, and BC, these classifiers appear to

have similar performances. However, these performance

seem less precise than those seen previously; this probably

stems from the fact that the statistical samples used in these

cases are larger, and thus more accurate estimations of

performance were obtained.

We now discuss the results of our second meta-analysis.

From Fig. 4, we calculated the average values of sensitivity

and specificity for each type of feature. The sensitivity and

specificity are respectively 82 and 74 % for dynamic fea-

tures, 93 and 60 % for morphological features, 88 and

81 % for textural features, 95 and 86 % for a combination

of dynamic and morphological features, and 88 and 84 %

for a combination of dynamic, morphological, and other

features.

In Fig. 5, the sROC curves show that dynamic and

morphological features used alone have similar

performances, but they are not precise. Better performance

can be achieved using multiple features simultaneously. In

Fig. 5, the least and most accurate curves are for studies

that used only dynamic features and those that used a

combination of dynamic and morphological features,

respectively. Table 2 shows that 8 studies used only

dynamic features, with a total of 1000 patients, and that 6

studies used a combination of dynamic and morphological

features, with a total of 930 patients. The numbers of sta-

tistical samples in these cases are very similar and thus the

performance improvement is associated with the use of

more kinds of feature.

The contribution of literature surveys in general and of

systematic reviews in particular, is to collect much infor-

mation (in this case, types of classifiers, types of features,

results on small and large populations, etc.) in a single

place. This study adopted a systematic approach to sum-

marize the performances (weighted on the basis of popu-

lation size) of many studies, giving an overall indication of

which methods can give good results. It must be underlined

that even if a technique shows promising results for a small

patient population, it must be verified with larger samples

before it can become a standard protocol that clinicians can

use in routine examinations.

5 Conclusion

This study performed a systematic review of several pat-

tern analysis approaches for classifying breast lesions using

dynamic, morphological, and textural features in (DCE-

MRI) images. Our results indicate that LDA and TC have

the best performance and that the remaining classifiers

analyzed in this review (ANN, SVM, and BC) have similar

performances, but are less precise than LDA and TC. This

probably stems from the fact that the numbers of statistical

samples used for the latter classifiers are larger, allowing a

more accurate analysis. Moreover, dynamic and morpho-

logical features achieve better performance when used

simultaneously in a given classifier.

One of the main issues that emerged from this study is

the lack of standardization of the breast MRI exam. The

scanning protocols for breast MRI vary in terms of pulse

sequence parameters, spatial and temporal resolutions, field

of view, exam duration, contrast agent dose injected, type

of infusion, image pre- and post-processing, etc. This

number of variables makes it difficult to compare studies.

Efforts at an international level should be directed toward

the assessment of guidelines.

A second issue related to the previous one is the lack of

a publically available database of breast MRI images for

the assessment of pattern recognition algorithms for feature

extraction and classification. Such a database will improve

Fig. 5 Sensitivity and specificity plotted in receiver operating

characteristic space for individual studies; sROC curves are plotted

from data points for each feature
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the evaluation of algorithms for image processing, feature

extraction, and classification. Moreover, small sample

sizes, which is an issue in a large number of the examined

studies, could be addressed in this way.

A third issue is the variety of feature types used in

previous studies. The majority of formulas used in previous

studies try to extract information from the time course of

the contrast agent and from the heterogeneity of the tumor.

However, often, because of differences in MRI scanning

protocols, the mathematical formulas of certain features

cannot be directly used in different MRI settings. More-

over, blindly mixing features is not always a good approach

because the mixtures cannot be properly understood by the

clinician. An optimal set of features should be capable of

effectively classifying tumors, be used in every MRI set-

ting, and be as simple as possible to make sense for

radiologists.

If the space of features is good, the project of the clas-

sifier would be simplified (e.g., linear or minimum dis-

tance). However, it is in general possible to obtain better

performance by using more sophisticated classifiers (ANN,

SVM, etc.) in combination with mixed features. The risk in

this case is that an incomprehensible (to humans) set of

features could emerge in combination with a strongly non-

linear classifier. The adequacy of such a situation is

questionable.
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