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ABSTRACT We report the draft whole-genome sequence of Rothia nasimurium iso-
lated from a porcine tonsil. The genome encodes a nonribosomal peptide synthe-
tase predicted to produce valinomycin, a cyclic dodecadepsipeptide ionophore. Pre-
viously, valinomycin was known to be produced only by Streptomyces species and
isolates belonging to the Bacillus pumilus group.

Members of the Rothia genus are commonly found as commensal bacteria in oral
and intestinal microbiomes of humans, pigs, and rodents (1–3). Here, we report

the whole-genome sequence of a Rothia nasimurium isolate from palatine tonsils of
healthy piglets that inhibits the growth of multiple strains and serotypes of the porcine
pathogen Streptococcus suis, demonstrated using agar overlay and agar well diffusion
methods. The genome sequence was determined to gain insight into the molecular and
genetic basis underlying the antimicrobial potential of this isolate.

Genomic DNA was extracted from a culture of Rothia nasimurium isolate that we
designated PT-32, grown in brain heart infusion broth (Oxoid, Basingstoke, UK), and
sequenced at BaseClear (Leiden, The Netherlands) using an Illumina HiSeq 2500 system
on a paired-end library with 125 cycles. FASTQ sequence files were generated using the
Illumina Casava pipeline 1.8.3. Quality assessment was based on Illumina Chastity
filtering, removal of reads containing adapters and/or PhiX control signal using a
BaseClear in-house filtering protocol, and finally by using the FASTQC quality control
tool version 0.10.0. CLC Genomics Workbench 8 was used for trimming of low-quality
bases and assembly of reads into contigs. The optimal k-mer size was determined using
KmerGenie (4). The contigs were linked and placed into scaffolds using the SSPACE
Premium scaffolder 2.3 (5). GapFiller 1.10 (6) was used for automated closing of gapped
regions within the scaffolds.

After filtering and quality assessment, 3,611,913 paired mapped reads were assem-
bled into 45 scaffolds, creating a genome with a total size of 2,685,591 bp, having an
average 170-fold coverage and an average G�C content of 57.98%. The NCBI Prokary-
otic Genome Annotation Pipeline (7) predicted 2,215 protein-coding genes, 50 tRNA
genes, and 3 rRNA genes. The 16S rRNA gene sequences of phylogenetic neighbors
were found using the EzTaxon server (8), with strain PT-32 showing the highest
sequence similarity (97.89%) to R. nasimurium.

antiSMASH 3.0 (9) was used for identification and annotation of secondary metab-
olite biosynthesis gene clusters. One nonribosomal peptide synthetase (NRPS) cluster
was identified that codes for an NRPS assembly line organization identical to those of
vlm from Streptomyces (10–14) and ces from Bacillus (15, 16). Based on the sequences
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and substrate specificity predictions of its adenylation domains, this NRPS cluster was
predicted to synthesize a compound highly similar or identical to valinomycin, a
cyclododecadepsipeptide ionophore with antibiotic activity (10, 11, 17, 18). This NRPS
cluster is not present in any other publicly available Rothia genome.

This is the first report of a commensal bacterium from mammal-associated micro-
biota containing an NRPS cluster encoding a valinomycin-type nonribosomal peptide.
The availability of this genome sequence will facilitate further studies on the prevalence
and distribution of valinomycin-producing NRPS gene clusters and their ecological
function.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession no. LXWF00000000. The version described in
this paper is version LXWF01000000.
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