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Investigating molecular transport 
in the human brain from MRI 
with physics‑informed neural 
networks
Bastian Zapf1, Johannes Haubner2, Miroslav Kuchta2, Geir Ringstad  3,4, 
Per Kristian Eide  5,6 & Kent‑Andre Mardal  1,2*

In recent years, a plethora of methods combining neural networks and partial differential equations 
have been developed. A widely known example are physics-informed neural networks, which solve 
problems involving partial differential equations by training a neural network. We apply physics-
informed neural networks and the finite element method to estimate the diffusion coefficient 
governing the long term spread of molecules in the human brain from magnetic resonance images. 
Synthetic testcases are created to demonstrate that the standard formulation of the physics-informed 
neural network faces challenges with noisy measurements in our application. Our numerical results 
demonstrate that the residual of the partial differential equation after training needs to be small for 
accurate parameter recovery. To achieve this, we tune the weights and the norms used in the loss 
function and use residual based adaptive refinement of training points. We find that the diffusion 
coefficient estimated from magnetic resonance images with physics-informed neural networks 
becomes consistent with results from a finite element based approach when the residuum after 
training becomes small. The observations presented here are an important first step towards solving 
inverse problems on cohorts of patients in a semi-automated fashion with physics-informed neural 
networks.

In the recent years there has been tremendous activity and developments in combining machine learning with 
physics-based models in the form of partial differential equations (PDE). This activity has lead to the emergence 
of the discipline “physics-informed machine learning”1. Therein, nowadays, arguably one of the most popular 
approaches are physics-informed neural networks (PINNs)2–4. They combine PDE and boundary/initial condition 
into a non-convex optimization problem which can be implemented and solved using mature machine learning 
frameworks while easily leveraging modern hardware (e.g. GPU-accelerators). One of the benefits of the PINN 
compared to traditional numerical methods for PDE is that no computational mesh is required. Further, inverse 
PDE problems are solved in the same fashion as forward problems in PINNs. The only modifications to the code 
are to add the unknown PDE parameters one seeks to recover to the set of optimization parameters and an addi-
tional data-discrepancy term to the objective function. The PINN training process, however, is challenging and 
can require significant computing resources. Several works have put forward approaches to address this issue, 
among them extreme learning machines5, importance sampling6 and adaptive activation functions7. Another 
challenge in training PINNs is balancing boundary, initial and PDE loss terms. This challenge has been addressed 
by adaptive weighting strategies8–11, as well as theory of functional connections12,13. Despite these challenges, the 
effectiveness of the method has been demonstrated in a wide range of works, examples include turbulent flows14, 
heat transfer15, epidemiological compartmental models16 or stiff chemical systems17.

Among other approaches18–20, PINNs can be used to discover unknown physics from data. In the context 
of computational fluid dynamics, PINNs have been successfully applied in inverse problems using simulated 
data, see, e.g.,14,21–24 and real data25,26. A comprehensive review on PINNs for fluid dynamics can be found in27.
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In this work, we solve an inverse biomedical flow problem in 4D with unprocessed, noisy and temporally 
sparse MRI data on a complex domain. Classical approaches require careful meshing of the brain geometry and 
making assumptions on the boundary conditions28. In patient-specific brain modeling the meshing is particularly 
challenging and requires careful evaluation of the generated meshes29. Physics-informed neural networks have 
been applied for the discovery of unknown physics from data without meshing and without regularization3. This 
makes the PINN method an appealing and promising approach that avoids major challenges in our applica-
tion and is therefore well worth investigation. However, PINNs introduce other challenges such as the choice 
of the network architecture, the optimization algorithm and hyperparameter tuning, e.g., weight factors in the 
loss function. Nevertheless, it is worth to examine how PINNs perform compared to classical algorithms in our 
application.

We aim to perform a computational investigation of the glymphatic theory based on and similar to28,30 with 
PINNs. We apply them to model the fluid mechanics involved in brain clearance. Various kinds of dementia 
have recently been linked to a malfunctioning waste-clearance system - the so-called glymphatic system31. In this 
system, peri-vascular flow of cerebrospinal fluid (CSF) plays a crucial role either through bulk flow, dispersion 
or even as a mediator of pressure gradients through the interstitium32. While imaging of molecular transport in 
either rodents33 or humans34 points towards accelerated clearance through the glymphatic system, the detailed 
mechanisms involved in the system are currently debated35–40.

Our approach builds on previous work where the estimated apparent diffusion coefficient (ADC) for the dis-
tribution of gadobutrol tracer molecules over 2 days, as seen in T1-weighted magnetic resonance images (MRI) 
at certain time points, is compared with the ADC estimated from diffusion tensor images (DTI)28. The ADC of 
gadobutrol was estimated from the T1-weighted images based on simulations using the finite element method 
(FEM) for optimal control of the diffusion equation. The findings were then compared to estimates of the appar-
ent diffusion coefficient based on DTI. The latter is a magnetic resonance imaging technique that measures the 
diffusion tensor of water on short time scales, which in turn can then be used to estimate the diffusion tensor 
for other molecules, such as gadobutrol28. The limited amount of available data prevents from quantifying the 
uncertainty in the recovered parameters, and makes it a challenging test case for comparing PINNs and finite 
element based approaches.

Among other works involving physics-informed neural networks and MRI data41,42 several works have previ-
ously demonstrated the effectiveness of PINNs in inverse problems related to our application. PINNs have been 
applied to estimate physiological parameters from clinical data using ordinary differential equation models43, 
but we here consider a PDE model. Parameter identification problems involving MRI data and PDE have been 
solved using PINNs26,44, but the geometries are reduced to 1-D and hence, taking into account the time depend-
ence of the solution, an effectively two-dimensional problem is solved. Both approaches further involve a data 
smoothening preprocessing step.

To the best of our knowledge, this work is the first to estimate physiological parameters from temporally 
sparse, unsmoothened MRI data in a complex domain using a 4-D PDE model with PINNs. We start to verify the 
PINNs approach on carefully manufactured synthetic data, before working on real data. The synthetic testcases 
reveal challenges that occur for the PINNs due to noise in the data and the sensitivity of the neural network 
training procedure to different choices of hyperparameters. For all of the chosen hyperparameter settings, we 
evaluate the accuracy of the recovered diffusion coefficient based on the value of the PDE and data loss. For 
the synthetic test case, as well as for the real test case, it is required to ensure vanishing PDE loss in order to be 
consistent with the finite element approach. The question on how this is achieved is addressed by heuristics. 
We investigate using the ℓ1-norm instead of ℓ2-norm for the PDE loss as an alternative to avoid the overfitting. 
We further discuss how to solve additional challenges that arise when applying the PINNs to real MRI data. 
Throughout the paper, we solve the problem with both PINNs and FEM.

Problem statement
Given a set of concentration measurements cd(xj , ti) at four discrete time points ti ∈ {0, 7, 24, 46} h and voxel 
center coordinates xj ∈ � , where � ⊂ R

3 represents a subregion of the brain, we seek to find the apparent diffu-
sion coefficient D > 0 such that a measure J(c, cd) for the discrepancy to the measurement is minimized under 
the constraint that c(x, t) fulfills

The apparent diffusion coefficient takes into account the tortuosity � of the extracellular space of the brain and 
relates to the free diffusion coefficient Df = �

2D46. Similar to Valnes et al.28 we here make the simplifying assump-
tion of a spatially constant scalar diffusion coefficient. Diffusion of molecules in the brain matter is known to be 
anisotropic46,47. In Supplementary Section S2 online we assess the anisotropy in the white matter for the patient 
under consideration in this work. The fractional anisotropy is 0.27± 0.15 in � , indicating that molecular dif-
fusion is rather isotropic. Moreover, we show there that simulations based on anisotropic, inhomogeneous DTI 
are, up to relative error of 9% , comparable to simulations based on the patient-specific isotropic, homogeneous 
mean diffusion coefficient. This serves as justification for the simplifying assumption of a constant diffusion 
coefficient used in this work. The initial and boundary conditions required for the PDE (1) to have a unique 
solution are only partially known, and the differing ways in which we choose to incorporate them into the the 
PINN and FEM approaches are described in sections “The PINN approach” and “The finite element approach”.

Our workflow to solve this problem on MRI data is illustrated in Fig. 1. Figure 2a illustrates the white matter 
subregion � ⊂ R

3 we consider in this work. Figure 2b shows a slice view of the concentration after 24 h for the 

(1)
∂

∂t
c = D�c in�× (0,T).
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three datasets considered in this work, i.e., MRI data, synthetic data with and without noise. In all cases, we use 
data at T = {0, 7, 24, 46} h (after tracer injection at t = 0).

Figure 1.   Flowchart illustrating our workflow from clinical images to estimated tracer diffusivity in the human 
brain. From the FreeSurfer45 segmentation of a baseline MRI at t = 0 , we define and mesh a subregion � of 
the white matter. Intrathecal contrast enhanced MRI at later times t = 7, 24, 46 h are used to estimate the 
concentration of the tracer in the subregion. We then use both a finite element based approach and physics-
informed neural networks to determine the scalar diffusion coefficient that describes best the concentration 
dynamics in �.

Figure 2.   Geometries and data considered in this work. (a) Axial and coronal slices through the subregion � 
of the white matter we consider in this work. The green region depicts the gray matter and is drawn to illustrate 
the geometrical complexity of the grey matter. (b) Axial view of the tracer concentration after 24 h in the right 
hemisphere for the three data sets under consideration. Note how the tracer enters the brain from CSF spaces 
(black).
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Results
Synthetic data.  We first validate the implementation of both approaches by recovering the known diffu-
sion coefficient D0 from synthetic data without noise. We find that both approaches can be tuned to recover the 
diffusion coefficient to within a few percent accuracy from three images. Further details can be found in Sup-
plementary Section S4 online.

Synthetic data with noise.  We next discuss how to address challenges that arise for our PINN approach 
when trained on noisy data as specified by Supplementary Equation (S2). We find (see Supplementary Table S2 
online for the details) that smaller batch sizes of ∼ 104 points per loss term result in more accurate recovery of 
the diffusion coefficient (for fixed number of epochs). We hence divide data and PDE points into 20 batches with 
1.5× 104 and 5× 104 samples per batch, respectively, for the following results. In all the results with synthetic 
data reported in this work, we trained the PINN for 20,000 epochs.

In Fig. 3a,b we compare the data to output of the PINN after training with the ADAM optimizer48 and expo-
nential learning rate decay from 10−3 to 10−4 for 2× 104 epochs. In detail, after training we use the PINN as a 
forward surrogate model with the optimized weights and biases θopt to compute the output c(x, t; θopt) at time 
t and voxel coordinates x.

The figures indicate that the network is overfitting the noise that was added to the synthetic data. This in turn 
leads to the diffusion coefficient converging to the lower bound Dmin = 0.1 mm2 h−1 during optimization as 
shown in Fig. 3e. Here we discuss two remedies: (i) increasing the regularizing effect of the PDE loss via increas-
ing the PDE weight wr and (ii) varying the norm in the PDE loss. We observe from Fig. 3e that for wr � 64 the 
recovered D converges towards the true value to within ≈ 10% error. It can also be seen that increasing the 
weight further does not significantly increase the accuracy. Figure 3b,c show the predicted solution after 46 h of 
the trained PINN. It can be seen that the overfitting occurring for wr = 1 is prevented by choosing a wr ≥ 64 . 
These results are in line with the frequent observation that the weights of the different loss terms in PINNs are 

Figure 3.   Influence of PINN hyperparameters on the diffusion coefficient estimated from noisy synthetic data. 
(a) Coronal slice of synthetic data with noise after 46 h, compared to predictions c(x, t = 46 h, θopt) of trained 
PINN models with different hyperparameters in the loss function (4). The overfitting seen in the PINN with 
p = 2,wr = 1 (b) can be prevented by using either increased PDE weight wr (c) or the ℓ1-norm for the PDE 
loss (d). (e) The diffusion coefficient recovered by the PINN trained on noisy synthetic data converges to Dmin 
for PDE weight wr ≤ 2 in the loss function (4). (f) Relative error in recovered D from noisy synthetic data as 
a function of the residual after training for the results presented in (e) and Table 1. Color encodes the PDE 
weight 1 ≤ wr ≤ 256 for the results with p = 2 (dotted). Black markers indicate results with either switching 
p = 2 → 1 during training or p = 1 . Different hyperparameter settings in the PINN loss (4) yield models which 
fulfill the PDE to different accuracy, and low values for the residual coincide with more accurate recovery of the 
diffusion coefficient.
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critical hyperparameters. Since we assume that the data is governed by a diffusion equation (with unknown 
diffusion coefficient), we want the PDE residual to become small. As demonstrated above, this can be achieved 
by increasing the PDE weight. The correlation between a large weight, a low PDE residual and a more accurate 
recovery of the diffusion coefficient is visualized in Fig. 3f.

Figure 3f also demonstrates the effectiveness the strategy (ii) to successfully lower the PDE residual, which is 
based on using the ℓ1-norm for the PDE loss. Using this norm makes the cost function less sensitive to outliers 
in the data where the observed tracer distribution cd deviates from the diffusion model (1).

Exemplarily, we demonstrate the effectiveness of this approach in Fig. 3d. There, we plot the PINN prediction 
after training with p = 1 . It can be seen that the prediction is visually identical to the prediction obtained with 
p = 2 and wr = 64 (The relative difference between the predictions in Fig. 3c,d is about 2 %).

The results in Fig. 3f are obtained in a systematic study with fixed wr = 1 . In detail, we test the combinations 
of the following hyperparameters:

•	 Parameterizations D(δ) (10) vs. D = δ (11) of the diffusion coefficient in terms of a trainable parameter δ , 
c.f. section “Parameterization of the diffusion coefficient”

•	 p = 1 , switching p = 2 → 1 after half the epochs, p = 2
•	 fixed learning rate 10−3 , exponential learning rate decay 10−3 → 10−4 , fixed learning rate 10−4 and expo-

nential learning rate decay 10−4 → 10−5.

Table 1 reports the relative error in the recovered diffusion coefficient after 2× 104 epochs of training with 
ADAM and the minibatch sampling described in Supplementary Algorithm 1 online. From the table it can be 
observed that for D = δ and p = 1 instabilities occur with the default learning rate 10−3 and, due to exploding 
gradients, the algorithm fails. This problem does not occur when using the parameterization D = D(δ) (10). It 
can further be observed that both parameterizations can be fine tuned to achieve errors � 10% in the recovered 
D. However, the table shows that it is a priori not possible to assess which hyperparameter performs best since, 
for example, settings that fail for the parameterization D = δ (11) work well with D(δ) (10).

We hence investigate the effect of the different hyperparameters on the trained PINN and compute the ℓ1
-norm of the residual after training defined as

Here, Pτ = τ ×�p , where τ = {0, . . . ,T} are 200 linearly spaced time points between first and final image at 
T = 46 h and �r denotes the set of center coordinates of all the voxels inside the PDE domain. Note that we 
evaluate (2) with the recovered diffusion coefficient, not with the true D0 . Table 1 also reports this norm for the 
different hyperparameter settings. It can be seen that different hyperparameters lead to different norms of the 
PDE residual. Table 1 reveals that low values of the residual correspond to more accurate recovery of the diffusion 
coefficient. These results are plotted together with the results from Fig. 3e in Fig. 3f where it can be seen that low 
PDE residual after training correlates with more accurate recovery of the diffusion coefficient. This underlines our 
observation that it is important in our setting to train the PINN such that the norm of the PDE residual is small.

Finally, for the FEM approach, Supplementary Table S4 online tabulates the relative error in the recovered 
diffusion coefficient for solving (7) with regularization parameters spanning several orders of magnitude. Similar 
to the PINN results, the parameterization D = D(δ) (10) can avoid numerical instabilities. As with the PINN 
approach, the FEM approach yield estimates of the diffusion coefficient accurate to � 10% for proper choice 
of regularization parameters. The results are in line with the well-established observation that a sophisticated 
decrease of the noise level and regularization parameters ensures convergence towards a solution49.

MRI data.  We proceed to estimate the apparent diffusion coefficient governing the spread of tracer as seen in 
MRI images. It is worth emphasizing here that our modeling assumption of tracer transport via diffusion with 

(2)
1

|Pτ |

∑

(x,t)∈Pτ

|∂t c(x, t; θ)− D�c(x, t; θ)|.

Table 1.   Rel. error |D − D0|/D0 in % in the diffusion coefficient and PDE residual norm after training (in 
brackets) for different optimization strategies averaged over 4 trainings on synthetic data with noise. It can 
be seen that the accuracy correlates with the PDE residual after training, i.e. the lower the PDE residual, the 
more accurate the recovered diffusion coefficient. This relation is further illustrated in Fig. 3f. Failure of the 
algorithm is indicated by the symbol “ ×”.

 Parameterization p

lr

10
−3

10
−3 → 10

−4
10

−4
10

−4 → 10
−5

 D = δ

1 × × 18 (1.6e−02) 43 (3.4e−02)

2 → 1 × 7 (9.7e−03) 3 (1.4e−02 ) 13 (3.4e−02)

2 70 (1.5e+00) 83 (6.1e−01) 16 (2.4e−01) 17 (3.0e−01 )

 D = D(δ)

1 7 (1.1e−02) 2 (5.7e−03) 24 (2.1e−02) 39 (3.9e−02)

2 → 1 11 (2.1e−02) 11 (1.0e−02 ) 9 (2.9e−02) 18 (6.1e−02)

2 72 (7.3e−01) 72 (7.7e−01) 13 (2.7e−01 ) 19 (4.7e−01)
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a constant diffusion coefficient D ∈ R is a simplification, and that we can not expect perfect agreement between 
model predictions and the MRI data. Furthermore, closer inspection of the tracer distribution on the bound-
ary in Fig. 2b reveals that, unlike in the synthetic data, the concentration varies along the boundary in the MRI 
measurements. Based on these two considerations it is to be expected that challenges with the PINN approach 
arise that were not present in the previous, synthetic testcases. However, our previous observation that smaller 
PDE residual correlates with more accurate recovery of the diffusion coefficient serves as a guiding principle on 
how to formulate and minimize the PINN loss function such that the PDE residual becomes small.

Based on the observation that the parameterization D = D(δ) avoids instabilities during the optimization, 
we only use this setting in this subsection. The white matter domain � is the same as in the previous section, and 
we again divide both data and PDE loss into 20 minibatches. We train for 105 epochs using the ADAM optimizer 
with exponentially decaying learning rate 10−4 to 10−5 . The reason we have to train the PINN for more epochs 
on MRI data compared to the synthetic test case (where we used 20,000 epochs) is the need for using lower 
learning rate together with learning rate decay to avoid convergence into a bad local minimum (where typically 
c(x, t; θ) = const and D → 0).

We first test for p = 2 with PDE weight wr ∈ {1, 32, 64, 128, 256, 512, 1024} and display the results in Fig. 4a. 
It can be seen that, similar to the noisy synthetic data, the diffusion coefficient converges to the lower bound 
for low PDE weights. For these settings, we plot the residual norm (2) of the trained networks in Fig. 4b. It can 
be seen that increased PDE weight leads to lower residual after training, and in turn to an estimate for D which 
becomes closer to FEM.

Further, in Fig. 5a we also plot the ℓ1-norm of the residual after training as a function of time t ∈ [0,T] , 
defined as

The continuous blue lines in Fig. 5a exemplarily show r(t) for some PDE weights. It can be seen that higher 
PDE weights lead to lower residuals. However, for wr = 256 the PDE residual is significantly higher at the 
times where data is available than in between. We did not observe this behavior in the synthetic testcase. Since 
we want the modeling assumption (1) to be fulfilled equally in �× [0,T] , we use residual based adaptive 
refinement (RAR)50. Using the RAR procedure, we add 105 space-time points to the set P of PDE points after 
1× 104, 2× 104, . . . , 9× 104 epochs. Details on our implementation of RAR and an exemplary loss plot during 
PINN training are given in Supplementary Section S5.2 online. The effectiveness of RAR to reduce this overfitting 
is indicated by the dashed blue lines in Fig. 5a.

Next, we test for p = 1 with an exponentially decaying learning rate from 10−3 to 10−4 as well as 10−4 to 10−5 . 
With this setting, the PINNs approach yields an estimate D = 0.75 mm2 h−1 which is close to the FEM solution28 
D = 0.72 mm2 h−1 . However, a closer inspecting of the PINN prediction at 22 and 24 (where data is available) 
shown in Fig. 6a reveals that the PINN is overfitting the data. This is further illustrated by the continuous red 
line in Fig. 5 where it can be seen that the PDE residual is one order of magnitude higher at the times where data 
is available. The dashed red line in Fig. 5 and slices of the predicted c(x, t; θopt) shown in Fig. 6a show that this 
behavior can be prevented by using RAR. The FEM approach also shown in Fig. 6a resolves the boundary data 
in more detail than the PINN solution obtained with RAR. This can be explained by the fact that the boundary 
condition g explicitly enters the FEM approach as a control variable.

Since the RAR procedure increases the number of PDE points, the computing time increases (by about 25 
% in our setting). We hence test a modification of the RAR procedure. Instead of only adding points, we also 
remove the points from P where the PDE residual is already low. We here call this procedure residual based 

(3)r(t) =
1

|�r |

∑

x∈�r

|∂t c(x, t; θ)− D�c(x, t; θ)|.

Figure 4.   Influence of PINN hyperparameters on the diffusion coefficient estimated from clinical data. (a) 
Diffusion coefficient during training for different PDE weights wr and exponentially decaying learning rate 
from 10−4 to 10−5 . Dashed lines indicate result with residual based adaptive refinement (RAR). (b) Estimated 
diffusion coefficient with p = 2 for different PDE weights wr as a function of the ℓ1-norm of the residual after 
training. The values for FEM and the green horizontal bars indicating an error estimate are taken from Valnes 
et al.28.
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adaptive exchange (RAE) and give the details in Supplementary Section S5.2 online. We note that similar refine-
ment techniques have recently also been proposed and studied extensively in51 and52.

The dotted red line in Fig. 5 demonstrates that in our setting both methods yield similarly low residuals r(t) 
without overfitting the data. Since in RAE the number of PDE points stays the same during training, the com-
puting time is the same as without RAR. In Fig. 5b it can be seen how both RAR and RAE add more PDE points 
around the timepoints where data is available.

We estimate the apparent diffusion coefficient D by averaging over 5 trainings with either RAR or RAE and 
learning rate decay from 10−3 to 10−4 or 10−4 to 10−5 . The results are displayed in Fig. 6b together with the ℓ1
-norm (2) after training. It can be seen that for the same learning rate, both RAR and RAE yield similar results. 

Figure 5.   Adaptive training point refinement is needed to fulfill the PDE in all timepoints. (a) Average PDE 
residual in �P over time for different optimization schemes. Vertical lines (dashed) indicate the times where 
data is available. In all cases, the learning rate decays exponentially from 10−3 to 10−4 . (b,c) Distribution of PDE 
points during training with RAR (b) and RAE (c). Starting from a uniform distribution of points (in time), more 
points are added at 7, 24 and 46 h where data is available.

Figure 6.   Adaptive refinement yields PINN solutions that are consistent with a diffusion model. (a) Upper 
row: Output c(x, t = 22 h, θopt) of PINNs models trained with p = 1 and p = 1 & RAR and FEM solution for 
(α,β , γ ) = (10−6, 0.1, 0.01) . Lower row: Zoom into a sagittal slice of data at 24 h compared PINN and FEM 
solutions. The PINN prediction after training without RAR overfits the data. Compare also to Fig. 5. (b) Green: 
PINN estimates for the diffusion coefficient with RAR or RAE and different initial learning rates ( p = 1 in 
all cases). Blue: ℓ1-norm of the residual after training. It can be seen that lower learning rate leads to a lower 
residual norm and an estimate for the diffusion coefficient closer to the FEM approach.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15475  | https://doi.org/10.1038/s41598-022-19157-w

www.nature.com/scientificreports/

A lower learning rate, however, leads to lower PDE residual and an estimated diffusion coefficient which is closer 
to the value 0.72 mm2 h−1 from Valnes et al.28.

Testing different patients.  In Valnes et al.28, the same methodology was applied to two more patients, 
named ’REF’ and ’NPH2’. We here test how well the optimal hyperparameter settings found in section “MRI 
data” generalize to these patients. A similar subregion of the white matter is used but the voxels on the boundary 
of the domain were removed.

A PINN is trained with the following hyperparameters from section “MRI data” that yielded the lowest 
PDE residual after training: The number of minibatches is set to 20, training for 105 epochs with ADAM and 
exponential learning rate decay from 10−4 to 10−5 , and p = 1 with RAR at 1× 104, 2× 104, . . . , 9× 104 epochs. 
The network architecture remains the same. For patient ’NPH2’ we find D = 0.48 mm2 h−1 while the FEM 
approach28 yields D = 0.50 mm2 h−1 . We find D = 0.41 mm2 h−1 for patient ’REF’ while the FEM approach28 
yields D = 0.50 mm2 h−1.

Discussion
We have tested both PINNs and FEM for assessing the apparent diffusion coefficient in a geometrically complex 
domain, a subregion of the white matter of the human brain, based on a few snapshots of T1-weighted contrast 
enhanced MR images over the course of 2 days. Both methodologies yield similar estimates when properly set 
up, that is; we find that the ADC is in the range (0.6–0.7) mm2 h−1 , depending on the method, whereas the DTI 
estimate is 0.4 mm2 h−1 . As such the conclusion is similar to that of Valnes et al.28. With a proper hyperparameter 
set-up, PINNs are as accurate as FEM and, given our implementation with GPU acceleration, roughly twice as 
fast as our current FEM implementation on MRI data as shown in Supplementary Section S4.1 online.

However, choosing such a set-up, i.e., hyperparameter setting, loss function formulation and training pro-
cedure, is still a priory not known and challenging. An automated way to find a suitable setting is needed. To 
this end automated approaches such as AutoML53 or Meta learning54, could be applied in the future. Moreover, 
theoretical guarantees are required, especially in sensitive human-health related applications.

Our results are in line with the frequent observation that the PDE loss weight is an important hyperparameter. 
Several works have put forth methodologies to choose the weights adaptively during training8–11, but in practice 
they have also been chosen via trial-and-error43,55,56. However, in settings with noisy data, it can not be expected 
that both data loss and PDE loss become zero. The ratio between PDE loss weight and data loss weight reflects 
to some degree the amount of trust one has in the data and the physical modeling assumptions, i.e., the PDE. In 
this work, we have made the modeling assumption that the data is governed by a diffusion equation, and hence 
require the PDE to be fulfilled. This provides a criterion for choosing a Pareto-optimal solution if the PINN loss 
is considered from a multi-objective perspective57.

From the mathematical point of view, we have sought the solution of a challenging nonlinear ill-posed inverse 
problem with limited and noisy data in both space and time. There can thus be more than one local minimum 
and the estimated solutions depend on the regularization and/or hyperparameters. Here, our main observation 
is that the diffusion coefficient recovered by PINNs approaches the FEM result when the hyperparameters are 
chosen to ensure that the PDE residual after training is sufficiently small.

In general, we think that the current problem serves as a challenging test case and is well suited for comparing 
PINNs and FEM based methods. Further, since the finite element approach is well-established and theoretically 
founded it can serve to benchmark PINNs. Our numerical results indicate that the norm of the PDE residual of 
the trained PINN correlates with the quality of the recovered parameter. This relates back to the finite element 
approach where the PDE residual is small since the PDE is explicitly solved. In our example, we have found that 
in particular two methodological choices help to significantly lower the PDE-residual in the PINNs approach: 
ℓ1-penalization of the PDE and adaptive refinement of residual points.

From the physiological point of view, there are several ways to improve upon our modeling assumption of a 
diffusion equation with spatially constant, scalar diffusion coefficient. The microscopic bulk flow proposed by 
the glymphatic theory may, on the macroscopic scale, be mathematically modelled in the form of convection40, 
dispersion58, clearance59.

For instance, an estimate of the local CSF velocity can be obtained by the optimal mass transport technique60. 
From an implementational point of view, such methods fit well within our current framework since the PINN 
formulation is comparably easy to implement and the PDE does not have to be solved explicitly.

Methods
Approvals and MRI acquisition.  The approval for MRI observations was retrieved by the Regional Com-
mittee for Medical and Health Research Ethics (REK) of Health Region South-East, Norway (2015/96) and 
the Institutional Review Board of Oslo University Hospital (2015/1868) and the National Medicines Agency 
(15/04932-7). The study participants were included after written and oral informed consent. All methods were 
performed in accordance with the relevant guidelines and regulations. Details on MRI data acquisition and gen-
eration of synthetic data can be found in the Supplementary Section S1 online.

The PINN approach.  In PINNs, our parameter identification problem can be formulated as an uncon-
strained non-convex optimization problem over the network parameters θ and the diffusion coefficient D as

(4)min
θ ,D

J + wrLr ,
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where wr > 0 is a weighting factor. We model the concentration measurements by a fully connected neural 
network c(x, t; θ) where x ∈ R

3 are spatial inputs and t ∈ R is the time input. The data loss J  is defined as

where �d is a discrete finite subset of � , T = {0, 7, 24, 46} h, and Nd denotes the number of space-time points in 
T ×� where we have observations. The PDE loss term Lr is defined as

where p ∈ [1,∞) , the set P consists of Nr points in τ ×�r , τ ⊂ [0,T] , and �r ⊂ � is a set of Np = |P| coordi-
nates x ∈ R

3 that lie in the interior of the domain � . The sampling strategy to generate P is explained in detail 
in Supplementary Section S3 online. In this work we test training with both p = 2 and p = 1 . It is worth noting 
that boundary conditions are not included (in fact, they are often not required for inverse problems3) in the 
PINN loss function (4), allowing us to sidestep making additional assumptions on the unknown boundary 
condition. The initial condition is taken to be the first image at t = 0 and simply enters via the data loss term 
(5). A detailed description of the network architecture and other hyperparameter settings can be found in Sup-
plementary Section S3 online.

The finite element approach.  Our parameter identification problem describes a nonlinear ill-posed 
inverse problem61–63. As a comparison baseline for the PINN approach, we build on the numerical realization of 
Valnes et al.28 and define the PDE constrained optimization problem64 as

where, similar to28, the second term is Tikhonov regularization with regularization parameters α,β , γ > 0 and 
c = c(x, t,D, g) solves (1) with boundary and initial conditions

To determine c for given (D, g), the partial differential equation is considered in a weak variational form and 
discretized in time, by using a finite difference method, and in space, by using finite elements. This leads to 
a sequence of linear systems of equations, which needs to be solved to obtain the state c. Hence, in the finite 
element approach, the state, that is used to evaluate the objective function, fulfills the weak form of the partial 
differential equation in a discretized sense. In order to compute the derivative of the functional (7) with respect 
to the controls (D, g), automated differentiation techniques are applied in a similar fashion as backpropagation 
is applied for neural networks. A detailed description of the mathematical and implementation details can be 
found in Supplementary Section S3 online.

Parameterization of the diffusion coefficient.  Previous findings35,40,59,60 indicate that diffusion con-
tributes at least to some degree to the distribution of tracers in the brain. It can thus be assumed that a vanishing 
diffusion coefficient is unphysical. This assumption can be incorporated into the model by parameterizing D in 
terms of a trainable parameter δ as

where σ(x) = (1+ exp(−x))−1 denotes the logistic sigmoid function. In all results reported here, we initialize 
with δ = 0 and set Dmin = 0.1mm2 h−1 and Dmax = 1.2mm2 h−1 . This parameterization with a sigmoid function 
effectively leads to vanishing gradients | ∂D

∂δ
| for |δ| ≫ 1 . In section “Synthetic data with noise” we demonstrate 

that this choice of parameterization can help to avoid instabilities that occur during PINN training without 
parameterization, i.e.

The reason to introduce a Dmin > 0 is to avoid convergence into a bad local minimum. For the finite element 
approach, we did not observe convergence into a local minimum where D = 0 , and hence used the parameteri-
zation (11).

Data availability
The datasets analyzed in the current study are available from the corresponding author upon request.
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(5)J =
1

Nd

∑

ti∈T

∑

x∈�d

(c(x, ti; θ)− cd(x, ti))
2,

(6)Lr =
1

|P|

∑

(x,t)∈P

|∂t c(x, t; θ)− D�c(x, t; θ)|p,

(7)min
D,g

∑

ti∈T

∫

�

(c(x, ti;D, g)− cd(x, ti))
2 dx +

1

2

∫ T

0

∫

∂�

(

α|g|2 + β|
∂

∂t
g |2 + γ |∇g |2

)

dSdt,

(8)c(x, t) = g(x, t) on ∂�× (0,T),

(9)c(x, 0) = 0 in�.

(10)D(δ) = Dmin + σ(δ)Dmax,

(11)D = δ.
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