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Abstract

The popularity of fluorescence microscopy arises from the inherent mode of action, where

the fluorescence emission from probes is used to visualize selected features on a presumed

dark background. However, the background is rarely truly dark, and image processing and

analysis is needed to enhance the fluorescent signal that is ascribed to the selected feature.

The image acquisition is facilitated by using considerable illumination, bright probes at a rel-

atively high concentration in order to make the fluorescent signal significantly more intense

than the background signal. Here, we present two methods for completely removing the

background signal in spectrally resolved fluorescence microscopy. The methodology is

applicable for all probes with narrow and well-defined emission bands (Full width half-maxi-

mum < 20 nm). Here, we use two lanthanide based probes exploiting the narrow emission

lines of europium(III) and terbium(III) ions. We used a model system with zeolites doped

with lanthanides immobilized in a polymer stained with several fluorescent dyes regularly

used in bioimaging. After smoothing the spectral data recorded in each pixel, they are differ-

entiated. Method I is based on the direct sum of the gradient, while method II resolves the

fluorescent signal by subtracting a background calculated via the gradient. Both methods

improve signal-to-background ratio significantly and we suggest that spectral imaging of lan-

thanide-centered emission can be used as a tool to obtain absolute contrast in bioimaging.

Introduction

Fluorescence microscopy relies on the ability to detect the difference between a signal emitted

from a probe and the background [1–6]. This can be done by using a probe emitting a strong

signal or a method that exploits probes emitting a unique signal [7–13]. The methods we dem-

onstrate here are able to fully remove the background, thereby allowing for unique identifica-

tion of fluorescent signals.

We recently introduced a model system that we suggest as a benchmark for developing new

microscopy methods [14]. In our model system we use lanthanide ions as the signal that is to

be discriminated from a background simulated by emission from bright organic fluorophores,
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see Methods and Materials for details. While lanthanide centered emission has been studied

extensively in time-gated imaging as well as in near infra-red (NIR) imaging [13, 15–20], lan-

thanide based probes have mainly found use in time-resolved Förster Resonance Energy

Transfer (FRET) based high-content screening and in the DELFIA assay [21–34]. This may be

due to the fact that microscopes capable of time-gated measurement of emission in the milli-

second range are rare. Here, we propose a method of exploiting the unique properties of lan-

thanide centered emission in spectral imaging without time-gating [35].

We demonstrate two different data treatment methods that analyze spectrally resolved

imaging data by exploiting the narrow emission bands arising in the f-f transitions of euro-

pium(III) and terbium(III) ions. The most successful of the methods exclusively identifies the

sharp emission lines arising from lanthanide centered emission, and automatically subtracts

the background signal while maintaining the fluorescent signal originating from the lumines-

cent probes resulting in infinite contrast. Previously, background subtraction methods have

been used in Raman imaging [36], and for specific and general image analysis [37, 38]. How-

ever, we chose to develop our own dedicated spectral imaging tool based on gradient analysis

and thresholding designed for lanthanide based imaging. As a result, we can construct fluores-

cent images where the origin of the photons used to generate an image can be assigned with

absolute certainty. In general terms, image contrast is defined as the brightest recorded signal

in the image divided by the dimmest recorded signal. Basic image processing without the algo-

rithm we present could maximize the image contrast by setting the dimmest signal to zero

and thus achieve infinite contrast. However, this contrast would not be lanthanide specific as

it would include the contribution from the background signal and from other fluorescent

probes. The algorithm presented here provides lanthanide luminescence specific images with

infinite contrast.

Methods and materials

The methods here described are reiterated and adapted from ref. [14]. Fluorescein F18 was

from (Sigma-Aldrich, St. Louis, MO, US), MitoTracker Red (MT, CMXRos) from Molecular

Probes (ThermoFisher Scientific, Waltham, MA) and ATTO647N from ATTO-TEC GmbH

(Siegen, Germany). Tb(III) acetate hydrate (99.9%), and Eu(III) acetate hydrate (99.9%) were

purchased from Sigma-Aldrich (St. Louis, MO). Linde Type 5A (LTA) zeolites were a gift from

UOP Antwerpen. Poly(vinyl alcohol) (PVA, 98% hydrolyzed, average Mw 13 000–23 000) was

from Sigma-Aldrich.

Model system

Our model system consisted of lanthanide(III) ions doped in zeolites and a polymer thin film

dyed with fluorophores. The Ca2+ cations inside the pores and cavities of Linde Type A (LTA)

zeolite were first exchanged with Eu(III) or Tb(III) cations by mixing 200 mg of zeolite in

800 μl of 0.25 M Ln(III) acetate hydrate in milliQ-water over night at room temperature (Vor-

tex 3, IKA, Staufen, Germany). The Ln(III) exchanged zeolites were recovered and washed

with 1 ml of milliQ-water thrice by centrifugation (1000 rpm, 2 min, Force 12, Denver Instru-

ment, Bohemia, NY) and finally dispersed into 1 ml of MQ-water. The polymer thin film was

formed by mixing 2 mg of Eu(III)@LTA and 2 mg of Tb(III)@LTA with 3% (w/v) PVA dyed

with 150 μM of F18 (5-octadecanoyl amino-fluorescein), 0.1 μM of MitoTracker Red (MT),

and 0.1 μM ATTO647N (only for the sample with Eu(III)@LTA), and 50 μl of this mixture was

spin-coated (SCI-10, Novocontrol, Montabaur, Germany) using dynamic dispense for ~1 min

at�4000 rpm on a 22 × 22 mm microscope cover slip (Menzel-Gläser #1.5). Prior to use, the
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microscope slides were cleaned by pyrolysis at 450˚C for a minimum of 1 hour. The samples

used in this manuscript are the same as in ref [14].

Confocal fluorescence microscope

A SuperK EXTREME EXB-6 supercontinuum white light laser with a SuperK SELECT wave-

length selector (NKT Photonics, Birkerød, Denmark) was used as the excitation source. Two

excitation wavelengths were selected: 465 nm for Eu(III), and 488 nm for Tb(III) and F18. The

laser powers with 77.88 MHz repetition rate for each wavelength were 2 μW and 7.2 μW,

respectively. A shortpass filter (540AESP, Omega optical) was added to the excitation light

path and long pass filters (2x 532LP, BLP-01-532R-25, Semrock) to the emission light path to

ensure clean excitation lines and to exclude scattered excitation radiation from the emission

window, respectively.

The home-built scanning fluorescence confocal microscopy setup was based on an Olym-

pus IX71 inverted microscope with a piezo-driven scanning stage (P5173CL, Physik Intru-

mente, Karlsruhe, Germany), controlled by a home-written software program (LabView,

National Instruments), allowing for point-by-point imaging of the sample in a raster scanning

fashion in a range up to 100 μm × 100 μm. Upon laser illumination, the emission signal from

the sample was collected by the same 100× oil immersion objective (Olympus UPLFLN 100×,

1.3 NA). A 70/30 beamsplitter (XF122, Omega Filters) was used in the microscope instead of a

dichroic mirror.

The emission light was focused through a 50 μm pinhole, directed through optical long pass

filters (see above) and detected in a CCD-based spectrometer (Princeton Instruments SPEC-

10:100B/LN_eXcelon CCD camera, SP 2356 spectrometer with 1-030-500 grating 300 g/mm @

500 nm, all controlled by the same LabView program that controls the scanner). The X axis of

the emission spectra was calibrated using emission lines of a neon lamp (6032 neon lamp,

Newport Corporation, Irvine, CA). The Y axis (Intensity) was not corrected for differences in

optical transmission and detection efficiency.

Data collection and analysis

From the dyed polymer thin film a single zeolite was located for imaging. The zeolite and the

dyed PVA-film surrounding were imaged so that each excitation wavelength applied to the

same sample was used in separate corners of the zeolite by placing the center of the zeolite in

one corner of the image. This minimized the bleaching of the dyes. An area of 5 μm×5 μm

with 10 × 10 pixels was imaged with 1 s integration time per pixel, and the emission spectrum

following the excitation at a given excitation wavelength was recorded for each pixel. The

images were created and analyzed with a home-written MATLAB1 (MathWorks, Natick, MA)

routine. The signal from the lanthanides is located at the edges of the zeolite, where it overlaps

with the signal from the organic dyes. The background subtraction was performed using a

home-written MATLAB1 routine described in the following section. The results were com-

pared with those obtained with the built-in function msbackadj from MATLAB1 software,

which estimates the baseline in multiple shifted windows. Total intensity images were formed

by integrating the spectra over the whole spectral range.

Description of gradient based background subtraction algorithms

Method I reports the sum of the absolute value of the gradient as a probe of fluorescent signals

arising from sharp emission lines, while Method II completely resolves the fluorescent signal

arising from the sharp emission lines.
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Method I. This method is used to detect sharp emission in a faster and simpler manner,

by using the absolute value of the gradient of the smoothed data. It can offer a quick assess-

ment of the location of sharp features in an image.

1. The raw spectrum S’ is smoothed giving the spectrum S

a. Savitzky-Golay smoothing is performed to ensure that the gradient arises from the spe-

cific signal

b. The vector with the raw data (S) has 1340 entries, from 1340 pixels in the CCD.

2. The gradient is calculated with Δy/Δx in Δcounts/Δpixel.

a. The pixel increment is proportional to wavelength increment (as a very good approxi-

mation), and Δpixel = 1 (The gradient can be also calculated in wavenumber; however

the performance is very similar using the data presented here).

3. The Δcounts/Δpixel gradient is calculated for each position in the vector

a. Each gradient matches a pixel number.

4. The gradient is smoothed (Savitzky-Golay), giving the gradient signal Δ.

a. Example of a gradient corresponding to a peak followed by a positive slope: gradient = [1

2 4 6 8 6 2–4–6–8–7–3–1 3 6 8 10 . . .]

5. The absolute value of the gradient is calculated, giving the signal L(I)

6. The signal can be integrated in the regions of interest to form the images based on gradient.

7. Optionally, cosmic rays can be discarded by using an upper limit on the gradient, since they

are usually extremely sharp and bright

Method II. This method finds anchor points placed at the onset of high absolute value

gradient regions (beginning and end of slopes of the signal S), defined by T1. The anchor

points can mark the beginning of the slope (“onset anchor”) or the end of the slope (“end

anchor”). If two end–onset anchors are too close to each other (threshold T2), these anchor

points are discarded. In this way only the onset and end of a sharp band are pinned and conse-

cutive fine structure features are ignored. Afterwards, the anchor points are used to define a

baseline B—the contribution of the F18 dye background- that is used to extract the lanthanide

contribution L(II). The points in between consecutive onset–end anchor points are linearly

interpolated to have B with the same number of points as the original spectra S. For the points

in between consecutive end–onset anchor points, B = S is made. At the end of the process, the

lanthanide spectra L is found as L = max(S–B, 0). Steps 1–4 are the same as in method I, the

new steps start from 5 in resolving the signal of a given spectrum:

a. The sharp features are discriminated using a gradient threshold T1.

Too low threshold converts noise into false features, while too high threshold would not

capture the band features. For the integration time of 1 s used here, adequate for the brightness

of the probes, a value of T1 = 5 is a good compromise and robust value. For very bright signals

the threshold needs to increase following the increased photon noise that scales as the square

root of the signal.

5. A vector d1 is defined where the points of the gradient with a value greater than T1 are

assigned a value of 1 and the points with a value lower than -T1 are assigned a value of -1.

All the other values are made 0.
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a. Following the example: d1 = [0 0 0 1 1 1 0 0–1–1–1 0 0 0 1 1 1. . .]

6. A vector d2 is defined where the 0s next to a 1 or -1 are assigned a value of 2.

a. Following the example: d2 = [0 0 2 1 1 1 2 2–1–1–1 2 0 2 1 1 1. . .]

7. A vector d3 is defined as d3 = d2(i+1)-d2(i) and an entry with value 0 is added at the

beginning.

a. Following the example: d3 = [0 0 2–1 0 0 1 0–3 0 0 3–2 2–1 0 0. . .].

8. The values of d3 that are different from 2 or -2 are deleted, leaving only the beginning

and end of feature (slope) information.

a. In the example d3 = [0 0 2 0 0 0 0 0 0 0 0 0–2 2 0 0 0. . .].

9. The value 2 represents a start of feature and the -2 represents an end of feature. Thus, the

positive or negative sign means onset or end, respectively.

a. The vector d3 contains the information on the position of all the preliminary anchor

points.

10. An error finding algorithm is run to remove consecutive equal non-zero elements in the

vector. From consecutive -2 values only the rightmost is kept, and from consecutive 2 val-

ues only the leftmost is kept.

a. Consecutive start/end of features may appear in some instances.

11. The distance in wavenumber between the end of feature and the next beginning of feature

is calculated.

12. If the distance is below a threshold T2 the two anchors are eliminated. For the vibrational

sub-bands of the lanthanide probes used, a value of T2 = 200 cm-1 is adequate.

a. This is done to remove anchors at the peak maxima and in between vibrational sub-

bands.

b. The only feature left in this example is at the position 3 of the vector d3, d3 = [0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0. . .].

13. A vector “Anchor” containing all the actual anchor positions in the vector d3 is created.

The positions of the first (1) and last (1340) CCD pixels are added as “end” and “onset”

anchors respectively.

a. From the example, Anchor = [1 3 . . .1340]. The number 3 comes from d3(3) = 2.

b. The information of the sign (onset or end) of an anchor position is kept in d3

c. The anchors stored in the vector Anchor have alternating sign, i.e. are ordered as [end0

onset1 end1 onset2 end2 . . .onset0]. The zero label indicates the added anchors at the

first and last positions and the non-zero labels indicate features such as bands or the fil-

ter feature.

14. The second and third anchor points of the Anchor vector are checked to distinguish

emission onset from the filter onset where emission occurs close to the filter onset. A filter

feature is defined with a threshold T3. This threshold is a specific requirement due to our

combination of filters, but is not needed in general, if a band does not overlap with the fil-

ter onset. In our case the value T3 = 40 identifies properly the filter onset.
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a. If the start and end of feature are closer than T3, the feature is the filter onset and is dis-

carded. That is if Anchor(3)-Anchor(2)<T3, then the two anchors are removed from the

Anchor vector. This will ensure L = 0 until the first lanthanide band.

b. In the case of an early onset of signal L, the filter onset is the start of feature and the end

of the first emission band is the end of feature. Then the program moves Anchor(2) to

the estimated onset of the band. That is the point before the maximum of such band,

where the signal S is closer to S(Anchor(3)) located at the end of the band. In other

words, for the sake of simplicity the baseline for this specific band is made a line as close

to horizontal as possible.

c. The latter is practically implemented by creating a new vector P = S-S(Anchor(3)) and

finding the minimum pixel value pmin greater than zero. Then Anchor(2) = pmin

15. The baseline or background B is defined by linearly interpolating the values between con-

secutive onset–end anchors, and by making equal to S the points between consecutive

end–onset anchors. More precisely,

B ¼
S; Anchorð2n � 1Þ � pixel � Anchorð2nÞ

LinðAnchorðnÞ;Anchorð2nÞÞ; Anchorð2nÞ < pixel < Anchorð2nþ 1Þ

(

Where n = 1,2. . . and Lin indicates linear interpolation between the two values indicated.

16. The baseline is subtracted from the raw data: L = S–B

17. Values of L below zero are set to zero after subtraction of the baseline: L = max(S–B, 0)

a. The spectra L are set to zero if the total counts are below a threshold T4 = 2000.

(Optional). This removes part of the cosmic rays. Another optional threshold cos-
micthres = 500 removes cosmic rays using a gradient threshold higher than T1.

(Optional)

18. The resolved spectrum L and the background B are plotted.

The MATLAB1 software scripts are available as supporting information. The script Spec-
tralImaging_SharpBands_InfiniteContrast.m is a function called from the main program

that contains the main program displaying the images and spectra, the script AutoBack-
groundRemove_2p3.m contains the code to generate the spectrally resolved signals L(II), L

(I), S and X. The Printer_subplot_Mig.m is a function called from the main program that

contains some auxiliary code for plotting figures. All these files should be stored in the same

folder.

Results

Data treatment methods I and II

To demonstrate our data treatment methods, we used data recorded on a scanning confocal

fluorescence microscopy set-up that is capable of detecting the fluorescence of single molecules

[39]. The microscope was used to record spectrally resolved images of a model system com-

prised of zeolites doped with lanthanide(III) ions in a polyvinyl alcohol (PVA) film on a glass

cover slip. The model system is described in detail elsewhere [14]. In each image, the data

recorded in each pixel were treated according to the scheme outlined in Fig 1. The effect of the

data treatment is illustrated in Fig 2. The raw data (S’) constitutes the full emission spectrum

recorded in each pixel, from which smoothed data (S) is created by using a Savitzky-Golay
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filter as implemented in the MATLAB1 software. In method I, the gradient (Δ) of the data S can

be directly used to provide a sharp-feature-sensitive signal (L(I)), simply by resolving areas of

the spectrum with high gradients. In method II such gradient is evaluated against a set of

thresholds (T1, T2, and T3) and used to create the background signal (B) which serves as a

baseline that is different for every pixel. This baseline is then used to resolve sharp features in

the spectrum, creating a resolved signal (L(II)). In some cases, the background signal (B) may

be compared to an experimentally determined background signal (Bexp). The effect of the data

treatment with method II is illustrated in Fig 2. A detailed walk-through of the data treatment

methods I and II can be found in the methods section. Fig 1 includes a general standard back-

ground subtraction commonly found in any image treatment software, where the fluorescent

signal in each pixel is reduced by a given threshold value (T), producing a background sub-

tracted image (X). In order to construct the spectrally resolved images, a signal L is integrated

in a part of the spectral window or over the whole spectral window.

Fig 2 shows spectra, images and intensity profiles of all the terms used in the data treatment.

Note that the signals plotted in Fig 2 arise from treating the image pixel-by-pixel. Each signal is

then extracted from spectrally resolved images of a PVA film homogeneously stained with

150 μM fluorescein-C18 (F18), 0.1 μM MitoTracker Red, and 0.1 μM ATTO647N together

with zeolites containing an estimated amount of 50 mM europium(III) ions. The fluorophore

emission emulates a very significant background signal (B) (mostly fluorescein when exciting

at 465 nm or 488 nm), while the europium centered emission is the specific fluorescent signal.

The raw data (S’) and the smoothed raw data (S) include detector noise, background and the

specific fluorescent signal. Fig 2 includes a signal following a direct threshold-based back-

ground subtraction (X); a method commonly part of any imaging software and is included for

comparison. Due to the complexity of the signal S’, this type of subtraction does not remove all

Fig 1. Definition of terms and description of data treatment methods I and II. Top: Definitions of symbols describing data arrays, content of arrays, and

the method of determination. Bottom: schematic description of data processing leading to the resolved signals.

https://doi.org/10.1371/journal.pone.0189529.g001
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the non-specific features of the background. This becomes obvious by comparing the experi-

mentally determined background (Bexp), the raw data (S’), and X (Fig 2).

Since we seek to fully resolve the fluorescent signal obtained from lanthanide centered

emission we developed two different approaches presented as methods I and II. Fig 2 shows

the result of the data treatment methods where the resolved data (L) recovers the sharp features

of europium(III) centered emission.

Method I (L(I)) generates the contrast in the image directly from the gradient of the spec-

trum, while method II (L(II)), via the gradient, recovers the fluorescent signal originating in

the europium(III) centered emission with a zero background. The fluorescent signal from

method II can be quantified directly, and the calculated signal-to-background is infinite. Thus,

the image has perfect contrast as shown in Fig 2.

Details of the data treatment

We present two methods for automatically resolving the sharp emission features of lanthanides

from the broad background fluorescence. Method I gives rise to an improved contrast, while

method II goes a step further and resolves the fluorescent signal, see Fig 3, that shows data

from a single pixel. Both methods follow the same initial steps: First, the narrow emission fea-

tures are located using a simple Δy/Δx gradient, which uniquely identifies the onset points of

each sharp peak. Method I sacrifices direct quantification of the fluorescent signal for speed,

by generating the contrast directly by summing the absolute value of the gradient (Δ), see Fig

3. Method I reports this sum of gradient directly as contrast in the image, while method II

resolves the fluorescent signal (L) by generating a baseline/background (B) from the gradient

and subtracting it from the raw data while setting potentially appearing (in rare instances) neg-

ative values to zero (L = max(S–B, 0)). Fig 3 shows that method II resolves both the fluorescent

signal (L) and the background signal (B) using anchor points that are detected next to features

in gradient (Δ) that are greater than a threshold (T1) in absolute value. Method II treats the

data further in order to evaluate the distance of each feature by employing a second threshold

(T2), here we use T2 = 200 cm-1 as the minimum distance of the detected features to count all

of the vibrational levels of one electronic transition of a lanthanide to one feature. A third

threshold (T3) removes sharp features resulting from optical elements, such as optical filters.

Finally, two anchor points are added so the baseline takes the limits of the spectrally resolved

data into account (i.e., the beginning and end of spectrum). The background B is calculated

using a simple definition: the values between consecutive onset-end anchors are linearly inter-

polated, while the values between consecutive end-onset anchors are equal to the data S. A

walk-through and a graphical representation of this concept are provided in Fig 3.

Using our image analysis method, only photons emitted by molecular probes based on lan-

thanide luminescence with very narrow features will provide contrast. This method provides

automatic background subtraction without previous knowledge on the lanthanide. A simplifi-

cation by using predefined anchor points would be problematic in case of multi-labeling with

different lanthanides. MATLAB1 scripts for automated data treatment according to methods I

and II are included as supplementary information.

Fig 2. Description of the different signals used in the presented data treatment methods. Spectra created from the sum

of the pixel-by-pixel treated spectra, total intensity images, and intensity profile plots corresponding to the blue dashed line in

the total intensity images. The plotted signals arise from treatment of data recorded following excitation of a PVA thin film

stained with F18, MitoTracker Red, ATTO647N, and LTA zeolites doped with europium(III) ions. Assignment of signals: S’,

raw data. S, smoothed raw data; X, channel-by-channel background subtracted data with a built-in function; L, resolved data;

Bexp, experimentally determined background signal from another area of the sample.

https://doi.org/10.1371/journal.pone.0189529.g002
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Fig 4 shows the spectra recorded from individual pixels and demonstrates that the method

works on a pixel-by-pixel basis. Moreover, Fig 4 illustrates that our data treatment method can

resolve fluorescent signals of both europium(III) and terbium(III) ions with varying intensi-

ties. The variation in intensity can arise from differences in probe concentration or probe

brightness. Fig 4 shows that all pixels where the lanthanide centered emission intensity rises

above the background noise level are resolved. Thus, only the photons arising from the probes

are used to form the image. Therefore, the resulting images are unique in two ways. Firstly,

they have zero background. Secondly, the image is formed with full knowledge of the origin of

the photons used to create the image. All photons represented as fluorescent signal in the

image originate from the lanthanide based molecular probe.

Features from the lanthanide ions where the absolute value of the gradient is below the

threshold T1 are not resolved (Fig 4). This can occur if the signal from the lanthanide is too

dim that it is comparable in intensity to the noise of the background. The onset from which

the sharp features in the spectrum are resolved corresponds to a non-linear input-output rela-

tionship. Thus, the signal intensity does not scale linearly with probe concentration at low sig-

nal intensity. When the contribution of the lanthanide emission is sufficiently high for a band

Fig 3. Walkthrough of methods I and II for resolving sharp emission bands in spectrally resolved data. In method I, the smoothed raw data (S) is

differentiated, and the smoothed gradient (Δ) is used to calculate the signal L(I) as the absolute value of the gradient. In method II, the smoothed gradient (Δ)

is compared with the threshold T1 to provide the first set of feature onset and end anchors. Using the thresholds T2, and T3 the final anchor points are

determined and the baseline (B) is defined. Subtracting the baseline (B) from the raw data resolves the fluorescent signal L(II) as the sharp emission bands.

This baseline is identical to the background signal. The integration time of the spectrum shown is 1 second. All signals are extracted from a single bright pixel

in the image shown in Fig 2.

https://doi.org/10.1371/journal.pone.0189529.g003
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to be resolved as a sharp feature, the output L becomes linear in intensity and probe concentra-

tion. As the onset where a sharp feature is resolved varies, quantitative measurements should

be performed using only a single sharp feature in the spectrum. The non-linear effects can be

corrected by using specific anchor points in the software keyed to a specific band. One type of

spectral filtering is described below.

Multicolour images

The obtained signals (L, B) can be keyed to a specific lanthanide by spectral gating. The emis-

sion lines of the individual lanthanide(III) ions can be compared to a barcode, and they will

always be at a specific absolute and relative energies: a fact that can be included in the method

when signals from multiple lanthanide based molecular probes are to be separated. In Figs 2

and 4, the method only operates by identifying sharp features, and the fluorescent signal

included all the photons recorded in the features. However, Fig 5 shows how individual fea-

tures can be selected by spectral gating in order to specifically differentiate between multiple

lanthanides, here europium(III) and terbium(III) centered emissions are used.

Fig 4. Smoothed spectra S and resolved spectra L(II) from individual pixels. Each spectrum corresponds to an individual pixel in

an image of PVA thin film stained with F18, Mito Tracker Red, ATTO647N and LTA zeolites doped with europium(III) ions following

465 nm excitation and PVA thin film stained with F18, Mito Tracker Red and LTA zeolites doped with terbium(III) ions following 488

nm excitation.

https://doi.org/10.1371/journal.pone.0189529.g004
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Fig 5. Images of multilabeled samples where method II is used to resolve the fluorescent signal from

sharp emission bands and the background. Smoothed raw data S (integrated for all the pixels in the

image) and RGB images where green color indicates the background signal B from F18, MitoTracker Red,

and ATTO647N and red or blue color indicate the fluorescence L(II) from Eu(III) or Tb(III), respectively. The

signal of the lanthanides L(II) is integrated inside the spectrally filtered band indicated for each image,

whereas the signal B is integrated over the whole spectral region. In the case of Eu(III) the spectral region in

gray color was not integrated, since the Eu(III) band in that region was not sharp enough to be resolved by

method II. The R, G, and B images that form the merged RGB image are individually normalized in order to

resolve the features detected in the background signal and from the lanthanide centered emission. In the

bottom row, the resolved spectra L show that several lanthanide(III) ions can be imaged simultaneously if the

fluorescent signals are integrated within a specific lanthanide band as illustrated by the dashed lines.

https://doi.org/10.1371/journal.pone.0189529.g005
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Discussion

While methods I and II can resolve any sharp features in spectrally resolved fluorescence

microscopy, the emission lines arising from excitation of lanthanide(III) ions are ideal. Lantha-

nide based dyes can be used alone or in combination with organic dyes. In the latter case, the

proposed methods can resolve the signal from both the organic and the lanthanide-based dyes,

as illustrated in Fig 5. Thus, additional channels can be exploited in a multicolour experiment.

In contrast to fluorescence lifetime microscopy (FLIM) and time-gating,[12, 13] where the

assumption is that only one probe emits photons with a given time constant or after a gate

time, methods I and II use a unique signature of the probe to verify the origin of the emitted

photons. The cost is that the intensity (number of photons) recorded in each pixel has to be

large enough to resolve the signature(s) of the lanthanide based probes. FLIM has the same

issues as a large number (>1.000) of photons has to be detected in order to resolve the fluores-

cence lifetime. If accurate lifetimes are to be recovered, more counts (>>10.000) are required

and even then, lifetime distributions rather than distinct probe specific lifetimes are deter-

mined. Time-gating, while faster, cannot distinguish between long lived emitters of similar col-

our. Photon arrival time imaging (PArTI) can distinguish between emitters with emission

lifetimes that differ by an order of magnitude, but do not do so with absolute contrast [13].

While the spectral features may vary in shape and lifetime the position is constant, which the

presented data treatment methods use as a unique signature.

It can be argued that due to the long emission lifetime of the europium(III) and terbium

(III), high contrast can also be achieved using time-gating or circular polarized light [13, 15,

20]. The main difference is that the latter techniques require specialized equipment, while

spectral imaging is already implemented in high-end commercial fluorescence microscopes,

assuming the spectral resolution is sufficiently high in order to apply our method. Thus imag-

ing using lanthanide based probes can readily benefit from absolute certainty as to whether an

object in an image is due to the presence of the molecular probe or a strong background signal.

While the total fluorescent signal is decreased, the signal-to-background level is drastically

increased, see Fig 6. Using europium(III) as an example, the signal-to-background ratios for

the signals S, X, L(I), L(II) are 2.98�105:1.65�105, 4.95�104:1.13�104, 2.72�103:6.7�102 and

2.37�104:0, respectively. In method I, the contrast can be improved by integrating the spectra at

longer wavelengths than the filter onset, to avoid the contribution of the filter to the signal

based on the gradient. This correction improves the method I contrast slightly, but absolute

signal-to-background is achieved with method II.

Even though the spectral imaging technique as presented here is not capable of rapid image

acquisition (integration times are up to 1 second per pixel), the two methods enable accurate

discrimination of the lanthanide signal from the background signal and offer the possibility for

more complex lanthanide multilabeling. The latter would cause difficulties in time gating using

different lanthanides with similar decay times. We have used a home-build microscopy set-up,

but other high-end modern microscopes with sufficient spectral imaging resolution should also

be able to implement the data treatment methods outlined here. Furthermore, the better of the

two methods allows the origin of the detected fluorescent signal to be assigned with full confi-

dence; the detected photons arise only from emission of a specific molecular probe. Further-

more, as we use direct excitation of lanthanide(III) ions, no photobleaching occurs.

In summary, we have demonstrated the use of spectrally resolved fluorescence microscopy

to identify features stained with lanthanide based molecular probes. We have presented two

methods to resolve narrow emission lines resulting from lanthanide centered emission by

using either the gradient (method I) or the photons within the narrow bands (method II) to

provide contrast. While demonstrated using the very sharp features of lanthanide centered
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emission, the methods will resolve all features that are significantly sharper than the back-

ground fluorescence. We believe that method II is an excellent image analysis method that

with absolute certainty can assign the origin of the photons used to generate an image of lan-

thanide(III) based luminescent probes.

Supporting information

S1 File. This file contains the Matlab1 software main script for displaying images and

spectra generated by the AutoBackgroundRemove_2p3.m function. To run the MATLAB1

program the SpectralImaging_SharpBands_Inf initeContrast.m, AutoBackgroundRemove_2p3.m
and Printer_subplot_Mig.m files should be in the same local folder.

(M)

S2 File. This file contains the Matlab1 function called in the main script to generate the

spectrally resolved signal L(II).

(M)

Fig 6. Comparison of signal and background of raw data and different background subtraction methods. Total fluorescent

signal along the diagonal lines (Fig 2 for Eu, data for Tb not shown) and signal vs. background in images of PVA thin film stained with

F18, Mito Tracker Red, ATTO647N and LTA zeolites doped with europium(III) ions following 465 nm excitation and Tb@LTA with F18

and MT following 488 nm excitation. The signal or background level corresponds to the maximum or minimum of the intensity profile,

respectively.

https://doi.org/10.1371/journal.pone.0189529.g006
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S3 File. This file contains the Matlab1 function called in the main script for plotting fig-

ures.

(M)

S4 File. This file describes the file format requirements of to run the Matlab1 program.

(DOCX)

S5 File. This document describes the full lists of files included in S6 File and S7 File as well

as the experimental details.

(DOCX)

S6 File. Image files.

(ZIP)

S7 File. Spectral data files.

(ZIP)
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25. Hemmilä I, Dakubu S, Mukkala V-M, Siitari H, Lövgren T. Europium as a label in time-resolved immuno-

fluorometric assays. Analytical Biochemistry. 1984; 137(2):335–43. https://doi.org/10.1016/0003-2697

(84)90095-2 PMID: 6375455
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