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ABSTRACT
Methylation of FKBP5 is involved in the regulation of the stress response and is influenced by early 
stress exposure. Two CpG sites, cg20813374 and cg00130530, have been identified as potential 
reporters of early stress. We examined whether FKBP5 methylation was associated with acceler-
ated DNA methylation ageing and indirectly predicted poorer cardiovascular health among both 
young adult and middle-aged Black Americans. Four hundred and forty-nine young adults, with 
a mean age of 28.67 and N = 469 middle-age parents and their current partners with a mean age 
of 57.21, provided self-reports, biometric assessments, and blood draws. Methylation values were 
obtained using the Illumina Epic Array. Cardiometabolic risk was calculated by summing the 
standardized log-transformed scores for the body mass index, mean arterial blood pressure, and 
HbA1c. We also used a more standard index of risk, the Framingham 10-year cardiometabolic risk 
index, as an alternative measure of cardiometabolic risk. To measure accelerated ageing, four 
widely used indices of accelerated, DNA methylation-based ageing were used controlling sex, age, 
other variation in FKBP5, and cell-type. Exposure to community danger was associated with 
demethylation of FKBP5. FKBP5 methylation was significantly associated with accelerated ageing 
for both young-adult and middle-aged samples, with significant indirect effects from FKBP5 
methylation to cardiometabolic risk through accelerated ageing for both. Early exposure to 
danger may influence FKBP5 methylation. In turn, FKBP5 methylation may help explain intrinsic 
accelerated ageing and elevated cardiometabolic risk in adulthood for Black Americans.

ARTICLE HISTORY
Received 12 March 2021  
Revised 31 August 2021  
Accepted 9 September 2021  

KEYWORDS
Health disparities; minority 
health; risk factors; DNA 
methylation; HPA axis

Black Americans are at considerably elevated risk 
for cardiometabolic illness and have increased risk 
for morbidity and mortality [1]. They also are 
more likely to have elevated scores on several 
cardiometabolic risk factors including elevated 
BMI and diabetes [1,2], and elevated blood pres-
sure [3–6]. These factors account for much of the 
elevated risk for morbidity and mortality due to 
cardiometabolic illness experienced by Black 
Americans relative to white Americans [5–7]. 
However, Black Americans are not elevated on all 
cardiometabolic risk factors. For example, they do 
not have elevated rates of smoking [8], despite 
having elevated health consequences associated 
with smoking [9–11]. In addition, the association 
of blood lipids with CMR for Black Americans is 

complex [12], with Black Americans typically 
demonstrating a healthier lipid profile than whites, 
i.e., lower triglycerides and higher high-density 
lipoprotein [13,14]. These background factors 
have led us to focus on blood pressure, BMI, and 
HbA1c as likely useful indicators of cardiovascular 
risk factors that place Black Americans at 
increased relative risk compared to white 
Americans [15]. However, alternative characteriza-
tions of cardiovascular risk that include additional 
risk factors are common, particular those incor-
porating smoking and correction for blood pres-
sure medication (e.g [16].). In either case, elevated 
cardiometabolic risk is thought to be a biological 
process associated with the whole organism that 
ultimately leads to the onset of chronic illness [17– 
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19]). According to guidance from the WHO, risk 
is thought to be potentially modifiable with a focus 
on factors associated with BMI, HbA1c, and 
hypertension, such as physical inactivity, 
unhealthy diet, unhealthy alcohol consumption, 
and smoking.

Why use indices of accelerated ageing to explain 
cardiometabolic risk?

Despite widespread consensus regarding the 
likely importance of early experiences for later 
health in general [20] and the likely early origins 
of risk for cardiometabolic illnesses in particular, 
identifying and testing pathways to adult illness 
remains challenging due to the need for longitu-
dinal, lifespan data to better map hypothesized 
processes that may begin early in life. Indices of 
healthy ageing, such as recently developed mea-
sures of accelerated ageing that capture early 
warning signs of problematic developmental pro-
cesses, may address this need by allowing for 
examination of relevant biological changes well 
in advance of the emergence of illness pheno-
types. In particular, examination of the extent to 
which DNA methylation-based measures of age-
ing are accelerated relative to an individual’s 
chronological age, resulting in ‘accelerated 
aging’ (AA), provides a useful and flexible tool 
for better examining developmental processes 
unfolding across the lifespan.

Using DNA methylation-based indices of ageing 
to determine ‘accelerated aging’ and examine its 
association with cardiometabolic risk has been 
facilitated by the emergence of several different 
indices of accelerated ageing over the past several 
years, resulting in several largely independent 
indices now being widely available. Because inde-
pendent information is provided by each of the 
indices of AA in widespread use, they sometimes 
show different patterns of effects and correlates 
[21,22]. Accordingly, it is important to briefly con-
sider different types of DNA methylation-based 
indices of ageing that have been developed, the 
way they have been characterized in the broader 
literature, and whether they might be usefully 
combined to examine the general construct of 
‘accelerated aging.’

Indices of accelerated ageing

Briefly, early exemplars of DNA methylation- 
based indices of ageing used chronological age as 
the criterion variable to be predicted. For example, 
pioneering work by Horvath focused on the way in 
which methylation patterns across tissues followed 
a regular pattern of change with chronological age 
[23,24]. Using a similar approach, but focused on 
peripheral blood only, Hannum and colleagues 
devised an additional DNA methylation-based 
index focused on prediction of chronological age, 
resulting in a measure that focused on a largely 
non-overlapping set of CpG sites from those that 
Horvath used [25]. More recently, DNA methyla-
tion-based indices of ageing have been developed 
using disease phenotypes as the criterion. In parti-
cular, the ‘PhenoAge’ DNA methylation index 
developed by Levine et al. [26] provides a useful 
objective marker of elevated risk for early onset 
morbidity and chronic illness. Using a somewhat 
different strategy, Lu et al. (2019) developed 
a DNA methylation-based measure of predicted 
lifespan, focusing on the prediction of time to 
death due to all-cause mortality [27]. The resulting 
index provides a mortality risk estimate called 
‘DNAm GrimAge.’ For each of the four indices, 
the DNA methylation-based ageing index can be 
used to estimate Accelerated Ageing (AA) by using 
the residual from the regression of the index on 
chronological age. It is accelerated ageing, i.e., 
ageing more quickly or slowly than expected, that 
is thought to predict cardiometabolic risk, and so 
in all cases our analyses use ‘accelerated’ ageing as 
the intermediate variable between our proxy for 
environmental exposures (FKBP5) and 
Cardiometabolic Risk outcomes.

Intrinsic DNA methylation based ageing

Associations between accelerated ageing and out-
comes sometimes may be due to variation in the 
cell-type distributions that change with age instead 
of changes in patterns of methylation across tis-
sues. This suggests the value of measures of DNA 
methylation based accelerated ageing (AA) that 
control for cell-type variation. These are referred 
to as ‘intrinsic’ indices of accelerated ageing (i.e., 
cell-type variation controlled). Intrinsic AA 
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indices are anticipated to better capture acceler-
ated ageing patterns that are reflected across 
a variety of tissue types and so may be most 
appropriate as predictors of outcomes that affect 
several tissue types such as cardiometabolic risk.

Why combine these four separate DNA 
methylation based indices into a single 
measure of accelerated ageing?

Jointly, the four widely used indices of DNA 
methylation-based ageing described above provide 
several perspectives from which to estimate degree 
of ‘accelerated aging’ and this is hypothesized to 
predict both later biological problems and chronic 
illness. Levine et al. (2018) [26], for example, 
hypothesized that widespread changes in methyla-
tion across the genome may influence later health 
and be captured by DNA methylation-based mea-
sures of accelerated ageing (AA). Likewise, Beach 
et al. (2016) [28] found that childhood SES-risk 
was associated with widespread changes in methy-
lation in young adulthood. Focusing more specifi-
cally on cardiometabolic health outcomes, it was 
reported recently that better cardiovascular health 
practices were associated with decreases in age 
acceleration on indices developed by Horvath 
[24] and Hannum [25], and effects were robust 
to calculations of intrinsic AA for both clocks [29].

Using the same four indices of accelerated age-
ing used in the current investigation, Ammous 
et al. (2021) [30], found that they were associated 
cross-sectionally with cardiometabolic markers of 
hypertension, insulin resistance, and dyslipidemia 
for Black Americans, and that change in GRIM 
improved prediction of future CVD events over 
clinical risk scores alone. Other authors have also 
reported associations of GRIM with cardiometa-
bolic outcomes. In particular, McCrory et al. 
(2020) [31] examined several indices of accelerated 
ageing (AA) and found that GRIM-AA outper-
formed other indices of AA in predicting ageing 
related outcomes in the Irish Longitudinal Study 
on Ageing (TILDA) sample. Replicating and par-
tially explaining these results, Fohr et al. (2021 [32] 
noted that GRIM-AA was less affected by genetic 
confounds than Horvath-AA, but that controlling 
for smoking, which is known to alter DNAm levels 
and is built into the GRIM-AA algorithm, 

attenuated the association between Grim-AA and 
all-cause mortality risk.

In the current investigation, we examined four 
widely used indices of intrinsic accelerated ageing 
as independent indices of a common underlying 
process, combining them into a single scale to 
better capture the shared underlying dimension 
that each is hypothesized to assess. Psychometric 
theory and simulations [33,34] suggest that using 
several indicators of a construct to create a multi- 
item scale typically results in greater predictive 
validity than using single indicators [33]. This is 
particularly likely when the individual indicators 
are only moderately correlated as is the case for 
indices of accelerated ageing. At the same time, 
given the relative newness of these measures, it 
also will be important to provide information to 
identify areas in which the scales perform differ-
ently. For example, there are differences in sensi-
tivity of DNA methylation-based ageing indices to 
smoking (Lei et al., 2020), with GRIM more 
strongly associated with smoking [22], than other 
indices of accelerated ageing.

Is FKBP5 methylation an epigenetic marker of 
childhood early exposure to danger?

Identifying specific facets of the childhood envir-
onment that may contribute to cardiometabolic 
risk via biological mechanisms is also important 
and has the potential to provide substantial con-
ceptual and practical benefits, potentially identify-
ing areas that may account for health disparities 
and novel targets for preventive intervention, 
informing the development of preventive interven-
tion programmes. Psychosocial processes leading 
to elevated cardiometabolic risk (CMR) are 
thought to begin in childhood in the context of 
elevated exposure to a range of early stressors [35– 
37], and contribute to the development of elevated 
cardiometabolic risk among Black Americans [38]. 
Some researchers have proposed that, beginning in 
childhood, stressors may become biologically 
embedded in young people’s bodies via epigenetic 
memory [39–41]. At the beginning of the biologi-
cal cascade leading to ill-health, there appears to 
be an initial disruption of HPA-axis regulation. 
This has led researchers to focus on specific reg-
ulator genes that are associated with early stress 
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exposures and also with subsequent HPA-axis dys-
regulation [41]. FKBP5 is particularly promising 
because it regulates expression of the FK506- 
binding protein 51 (FKBP51), which has numer-
ous regulatory effects, and has consequences for 
inter-related, stress-responsive biological processes 
[42–46]. Indeed, FKBP5 is a plausible regulator of, 
and contributor to, long-term stress effects [47]. In 
particular, FKBP5 up-regulation has been demon-
strated in response to stress exposure and gluco-
corticoid stimulation, and predicts increased risk 
for future physical illness [45,48,49], as well as risk 
for cardiovascular disease [50,51]. Ortiz et al. 
(2018) [52] suggest that FKBP5 expression may 
be linked to chronic exposure to glucocorticoids 
as well as cardiovascular and metabolic 
dysfunction.

Recent developmental theory suggests that one 
facet of childhood adversity that may be of parti-
cular interest due to its potential to remodel 
a variety of health-related phenotypes, is elevated 
exposure to danger in childhood [53]. Based on 
animal models, elevated exposure to danger in 
childhood is hypothesized to be linked to hyper-
activation of the HPA axis, leading to dysregula-
tion of glucocorticoid and cortisol responses to 
stress [50], which may, in turn, have implications 
for FKBP5 methylation [54], accelerated ageing 
and cardiometabolic risk [55,56]. In particular, 
two CpG sites on FKBP5 (cg20813374 and 
cg00130530) have shown associations with tran-
scription of FKBP51, demethylation with increas-
ing age, demethylation in response to exposure to 
stress, and also show demethylation in response to 
administration of glucocorticoids in vitro [50]. In 
addition, these effects were observed across several 
informative data sets comprising multiple racial 
groups including African Americans [50]. The 
two age-related CpG sites on FKBP5 also lie in 
close proximity to each other, have methylation 
levels that are correlated, and are close to the 
FKBP5 transcription start site. It also appears 
that demethylation of cg20813374 and 
cg00130530 (FKBP5-2) can influence HPA system 
response and the subsequent level of glucocorti-
coids (e.g., cortisol) which then cross the blood– 
brain barrier to affect multiple system throughout 
the body as well as in the brain [57]. Accordingly, 
this mechanism has the potential, over time, to 

result in broad and coordinated epigenetic repro-
gramming across the genome as well as the poten-
tial to affect cells in peripheral blood along with 
other tissues throughout the body.

If methylation of these two FKBP5 loci are 
a reflection of biological embedding of early risk 
[35–38,58,59], and continue to exert an influence 
across the lifespan, we would expect to observe 
associations between their methylation levels and 
DNA methylation-based indices of accelerated 
ageing, which in turn would lead to elevated 
CMR (e.g [30]. Ammous et al., 2021). Such effects 
could also be expected to influence DNA- 
methylation-based indices of accelerated ageing 
using measures derived from whole blood, and to 
exert long-term effects on increased risk for CMR 
observable for both younger and older cohorts. 
EWAS findings also support a possible association 
between level of methylation of these two loci and 
both BMI [60] and overall cardiovascular risk [50].

The hypothesis that differences in methylation 
of two key CpG sites on FKBP5 (i.e., FKBP5-2) 
may initiate broader changes in indices of acceler-
ated ageing (AA) [47], and set the stage for later 
elevated risk for cardiovascular illness can be 
tested in multiple ways. An initial step is see 
whether there is prospective evidence that elevated 
exposure to danger in childhood is associated with 
methylation of these loci. A second step is to 
examine indirect effect models to test expected 
patterns of association between FKBP5-2 methyla-
tion, Accelerated Ageing (AA), and CMR, control-
ling for potential confounders, such as sex, 
chronological age, and cell-type variation as well 
as the influence of overall variation in methylation 
across FKBP5 (i.e., the first principal component 
of variation in methylation across FKBP5; FKBP5- 
PC1) to ensure that effects are attributable to 
FKBP5-2.

In sum, using measures of accelerated ageing 
(AA) allows examination of hypotheses about 
mechanisms affecting cardiometabolic risk across 
the lifespan, enabling examination of associations 
of cardiometabolic risk with AA in young adult-
hood as well as in later middle-age. Accordingly, 
AA measures reduce the follow-up time needed to 
assess the likely impact of early experiences on 
adult health. Likewise, because AA can be exam-
ined at different ages, use of AA measures 
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facilitates comparison of risk factors across the 
lifespan. In addition, DNA methylation-based age-
ing indices have been shown to be useful predic-
tors of a variety of chronic illnesses as well as time 
to death [26,27,51], and have been used success-
fully in the past to examine how social conditions 
and relationships may influence an individual’s 
speed of biological ageing [61–65]. These consid-
erations suggest that examining the association of 
FKBP5-2 with epigenetic indices of AA may pro-
vide useful information about the way that expo-
sure to adverse, stressful events can become 
biologically embedded and influence healthy age-
ing, morbidity, and mortality in early adulthood, 
middle-age, and beyond.

Hypotheses

To examine the hypothesis that FKBP5-2 
demethylation is a marker of early exposure to 
elevated danger, and contributes to accelerated 
ageing (AA) and increased cardiometabolic risk, 
we proposed to examine the following four sets of 
hypotheses in a young adult and a middle-age 
sample.

We hypothesized that: 

H1: Elevated exposure to danger in childhood will 
be related to FKBP5-2 methylation in the young 
adult sample.

H2. a. There will be significant associations among 
FKBP5-2, PC1, DNA-methylation-based indices of 
accelerated ageing (AA), and CMR in a young 
adult sample.

H2. b. For the young adult sample, effects of 
variation in methylation at FKBP5-2 on cardiome-
tabolic risk (CMR; FCMR10) will be indirect 
through associations with the composite index of 
intrinsic AA (i.e., indices of DNA-methylation- 
based ageing controlling for sex, age, cell-type 
variation, and FKBP5-PC1). There will not be sig-
nificant differences in patterns observed for males 
vs. females.

H2. c. There will be similar patterns for each of the 
individual indices of intrinsic AA, replicating the 

pattern observed with the composite index of 
intrinsic accelerated ageing for young adults.

H3. a. There will be significant correlations among 
FKBP5-2, PC1, DNA-methylation-based indices of 
accelerated ageing, and CMR in the middle-aged 
sample.

H3. b. For the middle-aged sample the effect of 
variation in methylation at FKBP5-2 on cardiome-
tabolic risk (CMR; FCMR10) also will be indirect 
through associations with intrinsic AA (i.e., 
indices of DNA-methylation-based ageing control-
ling for sex, age, cell-type variation, and FKBP5- 
PC1). There will not be significant differences in 
patterns observed for males vs. females.

H3. c. For middle-aged participants there will be 
similar patterns for each of the individual indices of 
intrinsic AA, replicating the pattern observed with 
the composite index of intrinsic accelerated ageing.

H4. Because of its association with chronological 
age, FKBP5-2 methylation level will be signifi-
cantly lower in the middle-age sample than in 
the young-adult sample.

Methods

Sample

The current study used data from the Family and 
Community Health Study (FACHS), comprising 
longitudinal assessments of 889 Black American 
families (children and their primary and second-
ary caregivers) in 1997. All the families had 
a fifth grader at study inception. The sampling 
strategy was designed to recruit families repre-
senting a range of socioeconomic statuses and 
neighbourhood settings. Additional details 
regarding recruitment are described by Gibbons 
and colleagues [66] and Simons and colleagues 
[67]. At Wave 1, about half of the sample resided 
in Georgia (n = 422) and the other half in Iowa 
(n = 467). The current investigation examines the 
association of FKBP5-2 methylation with accel-
erated ageing (AA) and cardiometabolic risk for 
both the young adult portion of this sample and 
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the middle-aged portion of the sample (i.e., par-
ents and parents’ partners). Analyses use data 
collected from the young-adult portion of the 
FACHS sample, who were re-interviewed in 
2015–2016, retaining 62.5% of the original sam-
ple, and yielding N = 449 young adults (172 men 
and 277 women), and who provided both self- 
report and a blood sample. Young adults partici-
pating were, on average, aged 28.67 (SD = .792) 
for the 2015–2016 data collection. Average 
annual income of young adults was $23,007 
(SD = 17794.14). Data used for the middle- 
aged, parent/caregiver plus romantic partner 
analyses, were obtained in 2018–2019, providing 
N = 469 (124 men and 345 women) middle-aged 
participants who provided both self-report and 
a blood sample. Middle-aged participants in the 
current study were, on average, age 57.21 
(SD = 6.75). Average per capita annual income 
of middle-aged participants was $19,548 
(SD = 17900.21).

For both the young adult and middle-aged sam-
ples, because the data collections included blood 
draws, only those residing in Georgia, Iowa, or 
a contiguous state were eligible for inclusion due 
to cost and difficulty of out-of-state blood draws. 
After excluding those who were deceased, incar-
cerated, or otherwise unreachable or out-of-state, 
our potential pool of young adults was N = 556 
individuals, 470 (182 men and 288 women) of 
whom provided blood. Of these, 449 (95.5%) 
were successfully assayed and provided interview 
data, and comprise the sample for the current 
analyses of young adults. Likewise, for Middle- 
aged participants, after excluding deceased, incar-
cerated, or otherwise unreachable or out-of-state 
participants, we were able to interview and collect 
blood from N = 480, of whom 469 (97.7%) were 
successfully assayed, and they comprise the sample 
for the current analyses of Middle-aged 
participants.

All study protocols and procedures for Middle- 
aged participants were approved by the 
Institutional Review Board at the University of 
Georgia (Title: FACHS weathering – Protocol 
study number 00006152).

Procedures

For all participants, the phlebotomist drew four 
tubes of blood (30 mL); these were shipped on 
the same day to a laboratory at the University of 
Iowa for preparation. Whole blood DNA was pre-
pared using cold protein precipitation [68], quan-
tified with a NanoDrop photometer 
(Thermofisher, Waltham, MA, USA) and stored 
at −20°C until used [68].

Questionnaires were administered on laptop com-
puters in the respondent’s home and took on average 
about 2 h to complete. In an effort to further enhance 
anonymity, the questionnaires were administered 
using audio-enhanced, computer-assisted, self- 
administered interviews (ACASI). Using this proce-
dure, the respondent sat in front of a computer and 
responded to questions as they were presented both 
visually on the screen and auditorily via earphones.

DNA methylation procedures
DNA methylation-based assessments were con-
ducted with the Illumina Infinium (Sequenom, 
Inc., San Diego, CA, USA) 
HumanMethylationEPIC 850 BeadChip. We ran-
domized samples with respect to slide and position 
on arrays to minimize potential batch effects as 
recommended by the Illumina Infinium Protocol 
Guide. Prior to normalization, DNA methylation 
data were filtered based on these criteria: (a) sam-
ples were examined to identify any ‘poor quality 
samples’ containing 1% or more of CpG sites with 
detection p < 0.05 (but, no samples were found to 
fail this criterion), (b) sites were removed if a bead 
count of <3 was present in 5% of samples.

The beta value at each CpG site was calculated as 
the ratio of the intensity of the methylated probe to 
the sum of intensities of the methylated and 
unmethylated probes. Quantile normalization was 
used, with separate normalization of the Type I and 
Type II probes used in the HumanMethylationEPIC 
array, as this approach has been found to produce 
marked improvement for the Illumina array in 
detection of relationships by correcting distribu-
tional problems inherent in the manufacturers 
default method for calculating beta values [69].
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Measures

Prospective measures of childhood adversity 
(Danger, Family Conflict, Discrimination, and 
Family SES)
Youth were asked about a number of circum-
stances when they were 10 years old. Their 
responses were used to create scales reflecting key 
stressors during childhood. To assess perceived 
exposure to community level danger, youth were 
asked three questions about their perception of 
dangerous activities in their neighbourhood, asses-
sing over the past 6 months how often 1) there was 
a fight in your neighbourhood in which a weapon 
like a gun or knife was used; 2) there was a sexual 
assault or rape; 3) a robbery or mugging. 
Responses were on a scale from 1 = never to 
3 = often. Exposure was gauged by taking the 
mean of the items (mean of 1.40, Sd = .50). 
Alpha = .614. To assess perceived exposure to 
family conflict, youth were asked four questions 
about perceived parental hostility over the past 
12 months including: 1) your parent got angry at 
you, 2) got so mad he/she broke or threw things, 3) 
Criticized your ideas, or 4) Insulted or swore at 
you. Responses were on a scale from 1 = never to 
4 = always. Exposure was gauged by taking the 
mean of the items (mean of 1.52, SD = .43). 
Alpha = .462. To assess perceived exposure to 
Discrimination [70], youth were asked four ques-
tions: Just because you were African American 1) 
someone said something insulting, 2) someone 
ignored you or excluded you, 3) yelled a racial 
slur or racial insult at you, or 4) threatened to 
harm you physically. Responses were on a scale 
from 1 = never, 2 = once or twice, 3 = a few times, 
4 = several times (mean of 1.65, SD = .64). 
Exposure was gauged by taking the mean of the 
items. Alpha = .681. Exposure to different levels of 
SES related risk was assessed using parent report 
of family SES when youth were age 10 was used. 
Caregiver reports across six indicators were used 
to create a measure of socio-economic risk. Risk 
indicators were (a) family poverty, defined as 
being below the poverty level, taking into account 
both family income and number of family mem-
bers; (b) primary caregiver non-completion of 
high school or an equivalent; (c) primary caregiver 
unemployment; (d) single-parent family structure; 

(e) family receipt of Temporary Assistance for 
Needy Families; and (f) income rated by the pri-
mary caregiver as not adequate to meet all needs. 
Each indicator was scored dichotomously (0 if 
absent, 1 if present). SES risk was defined as the 
number of SES-related indicators, summing items 
to form an index with a theoretical range of 0 to 6 
(M = 1.81, SD = 1.52), with larger numbers indi-
cating greater SES risk (i.e., lower SES).

DNA methylation-based Accelerated Ageing (AA)
We assessed DNA methylation-based ageing using 
established procedures to calculate each of the 
previously established and widely used DNA 
methylation-based measures of accelerated ageing 
including the Hannum index [25], the Horvath 
index [23], the PhenoAge index [26], and the 
GrimAge index [27]. All indices were analysed 
using the online ‘New Methylation Age 
Calculator’ (https://dnamage.genetics.ucla.edu/) 
with the Advanced Analysis option and the nor-
malize data option. The Hannum index used 71 
CpG sites. The Horvath method used 353 CpG 
sites. The accelerated phenotypic ageing 
(PhenoAge) used 513 CpG sites that reflect several 
known ageing pathways [24]. Finally, the GrimAge 
index used 1030 sites. The four indicators of accel-
erated ageing were combined into a single index 
(AA) by summing the standardized scores and 
dividing by 4. Positive values indicated accelerated 
ageing relative to the sample as a whole and so 
elevated risk for morbidity and mortality, whereas 
negative values indicated decelerated ageing rela-
tive to the sample as a whole.

Cardiometabolic risk was assessed in two ways, 
first using three indicators known to place Black 
Americans at increased risk (CMR) and second 
using these three indictors as well as smoking status 
and blood pressure medication status (FCMR10).

CMR
First, we created an index of those factors on 
which Black Americans are elevated relative to 
whites by combining three biomarkers. (1) Each 
person’s body mass index (BMI) score was calcu-
lated as weight in kilograms divided by the square 
of height in metres, with mean BMI at age 29 for 
young adults of 31.43 (SD = 8.36), and mean BMI 
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for middle-aged adults of 34.26 (SD = 8.70). (2) 
Resting diastolic and systolic blood pressure (BP) 
was monitored with Dinamap Pro 100 while the 
participants sat reading quietly. Three readings 
were taken, one every 2 minutes, and the average 
of the last two readings was used as the resting 
index. Mean arterial BP (MAP) was calculated 
according to the following formula: [(systolic BP) 
+ (2 × diastolic BP)]/3. For young adults, mean 
MAP in the current sample was 93.49 
(SD = 11.88). For middle-aged adults 
MAP = 103.80 (SD = 14.19). (3) Haemoglobin 
A1c (HbA1c) was assessed at the University of 
Iowa using antecubital serum samples drawn by 
certified phlebotomists. HbA1c provides an indi-
cation of average blood glucose concentrations 
over the preceding 2 to 3 months. For young 
adults, mean HbA1c was 5.35 (SD = .82), with 
2.7% of the sample having HbA1c above 6.5, the 
cut-off for type II diabetes (The International 
Expert Committee). For middle-aged adults, 
mean HbA1c was 6.20 (SD = 1.36), with 21.9% of 
the sample having HbA1c above 6.5. Given that 
these three biomarkers are characterized by 
a skewed distribution, we applied a log transfor-
mation to normalize the distribution for each age 
group separately. CVD risk was calculated by sum-
ming the standardized log-transformed scores of 
BMI, MAP, and HbA1c.

FCMR10
We also examined effects on cardiometabolic risk 
following the gender-specific Framingham algo-
rithm proposed by D’Agostino and colleagues 
(publicly available online tool: https://framingham 
heartstudy.org/fhs-risk-functions/cardiovascular- 
disease-10-year-risk/). To estimate 10-year cardio-
metabolic risk (FCMR10), the Framingham algo-
rithm uses systolic blood pressure (SBP), body 
mass index (BMI), and diabetes (HbA1C > 6 or 
taking diabetes medication), plus it adjusts for an 
individual’s chronological age and gender, and 
whether they currently smoke (young adults: 
1 = yes, 24.3%; middle-age adults: 1 = yes, 
27.1%) and whether they are taking antihyperten-
sive medication (young adults: 1 = yes, 7.8%; mid-
dle-age adults: 1 = yes, 65.5%). This measure has 
been shown to have high validity and reliability 
[16] and has been commonly used by physicians to 

monitor their patient’s health condition [17– 
19,71–73].

FKBP5-2
To provide an index of methylation level for the 
two methylation cites on FKBP5 previously shown 
to be related to childhood exposures, we examined 
level of methylation at cg20813374 and 
cg00130530. The two CpG sites were correlated 
r = .480, p < .001. and r = .577, p < .001, for 
young adults and middle-aged adults respectively, 
supporting previous work indicating that they cov-
ary and could be combined into a meaningful 
index. To create a single index, we took the 
mean of the quantile-normalized beta values at 
each CpG site, resulting in a single methylation 
index of likely early exposure. This approach 
allowed for meaningful comparison of FKBP5-2 
levels for different age groups.

FKBP5-PC1
Due to the correlated nature of CpG sites within 
FKBP5, in addition to examining the two CpG 
sites expected to be implicated in long-term biolo-
gical effects, we also employed a principal compo-
nent data reduction approach to characterize 
broadly the level of methylation across FKBP5, 
excluding the two CpG sites included in FKBP5- 
2 (cg20813374 and cg00130530). The first princi-
pal component was extracted and a standardized 
factor score was computed for each participant, 
allowing us to control for background variation 
in methylation of FKBP5 and so more stringently 
test the role of FKBP5-2. Loadings for CpG sites 
on FKBP5-PC1 are provided in Supplemental 
Table 1 (for young adults) and Supplemental 
Table 2 (for middle-aged adults).

Cell-type variation
We also controlled for cell-type variation to adjust 
for the cellular heterogeneity that can affect 
methylation-based scores. Specifically the 
‘EstimateCellCounts’ function in the minfi 
Bioconductor package was performed to assess 
individual differences in the distribution of cell 
types. This statistical package is based on the refer-
ence-based and regression calibration methods 
developed by Houseman and colleagues (2012). 
The peripheral white blood cell contribution was 
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subclassified into five different cell types. Using 
this approach, we estimated cell-type proportions 
for CD4 + T cells, CD8 + T cells, Natural Killer 
cells, B cells, and monocytes, and controlled these 
in all analyses to examine ‘intrinsic’ indices of 
DNA-methylation-based ageing. That is, because 
controlling cell-type variation yields DNA- 
methylation-based index values that are relatively 
free of influences from age-related or other indi-
vidual differences in cell-type variation, they are 
described as ‘intrinsic’ measures of ageing.

Statistical analyses

After examining zero-order correlations along 
with means and SDs for all primary study vari-
ables, we also examined the association of early 
perceived exposure to dangerous community con-
texts and other potential sources of childhood 
stress to examine whether FKBP5-2 is a plausible 
indicator of childhood exposure. We next exam-
ined hypothesized indirect-effects models from 
FKBP5-2 to CMR and FCMR10 through 
a composite index of intrinsic DNA Methylation- 
Based Accelerated Ageing (AA) that controlled age 
and gender as well as FKBP5-PC1 and cell-type 
variation. We tested for any differences between 
the proposed indirect-effects models from FKBP5- 
2 to CMR through AA for female vs. male parti-
cipants, and for younger vs. older samples, using 
the multiple group analysis option in Mplus. All 
analyses were conducted using Mplus Version 8 
[74]. To characterize goodness-of-fit of each 
model, standardized root-mean-square residual 
(good fit SRMR < .05) and the comparative fit 

index (good fit CFI >.90) along with Chi-square 
and degrees of freedom were reported. Indirect 
effects between FKBP5-2, DNA methylation- 
based epigenetic accelerated ageing (AA), and 
CMR were estimated and reported in the text, 
along with the 95% confidence interval (CI) esti-
mated using bias-corrected and accelerated boot-
strapping with 1,000 resamples.

Models for young adults and their middle-aged 
parents were analysed separately, except in the 
analysis where we compared them to each other 
to test for age-related differences in level of 
FKBP5-2. In addition, to better examine variability 
across different indices of intrinsic accelerated age-
ing (AA), we also examined all indirect effect 
models for each individual index of intrinsic AA 
(Hannum, Horvath, PhenoAge, and GRIM). This 
resulted in two models using the intrinsic compo-
site accelerated ageing indices for both young 
adults and middle-aged adults, and then eight fol-
low-up models each for young adults and middle- 
aged adults. Direct and indirect effects for the 
follow-up models using individual indices of accel-
erated ageing are summarized in tabular form and 
the full models are provided as figures in the 
supplemental material.

Results

Effects for targets

H1: Elevated exposure to danger in childhood will 
be related to demethylation of FKBP5-2 in the 
young adult sample. Table 1 presents correlations 
between youth report of exposure to community 
danger, family conflict, and discrimination at age 

Table 1. Partial correlations for young-adults, along with means and sd’s, showing the level and association of FKBP5-2, cg20813374, 
cg00130530, FKBP5-PC1, exposure to community danger, family conflict, and discrimination at age 10, and parent report of family 
SES when youth were age 10, controlling age and gender. (N = 449).

1 2 3 4 5 6 7 8

1. FKBP5-2 –
2. Cg20813374 .885** –
3. Cg00130530 .831** .477** –
4. PC1 .353** .416** .170** –
5. Danger −.108* −.081† −.108* .019 –
6. Family Conflict −.029 −.052 .006 −.003 .196** –
7. Discrimination −.042 −.047 −.024 −.023 .268** .141** –
8. Family SES −.007 .004 −.018 −.014 .140** .078† .053 –
Mean .505 .418 .590 .000 1.397 1.523 1.654 1.809
SD .031 .039 .03 1.000 .500 .425 .641 1.519

† p < 0.1, * p < 0.05, ** p < 0.01. 
PC1 = FKBP5-PC1; Danger = Exposure to community danger. 

990 S. R. H. BEACH ET AL.



10, parent report of family SES when youth were 
age 10, FKBP5-PC1, FKBP5-2, and the two CpGs 
it comprises (cg20813374; cg00130530), control-
ling sex and age. To test whether childhood envir-
onment reported prospectively at age 10 by the 
young-adult sample was associated with FKBP5-2 
or either of its component CpG sites, we examined 
four facets of the environment that would be 
expected to be associated with some hardship: 
SES, discrimination, family harshness, and expo-
sure to community danger. As can be seen in 
Table 1, we found that perceived exposure to ele-
vated levels of danger in the community was asso-
ciated with FKBP5-2, and the two CpG sites in the 
predicted direction (greater exposure to danger 
was associated decreased methylation of FKBP5- 
2), r = −.108, p = .023; r = −.081, p = .089; 
r = −.108, p = .023, for FKBP5-2, cg20813374 
and cg00130530, respectively. These associations 
were not diminished by controlling for the first 
principal component of FKBP5 (FKBP5-PC1), 
yielding correlations of r = −.123, p = . 010;r = -. 
097, p = . 040;r = -. 113,p = . 017, for FKBP5-2, 
cg20813374 and cg00130530, respectively. 

Conversely, other common measures of childhood 
difficulty such as family SES, family harshness, and 
discrimination were not associated with FKBP5-2 
methylation. Further, when the four facets of pro-
spectively measured childhood difficulty were 
examined jointly, controlling age sex, and FKBP5- 
PC1 only greater exposure to danger was signifi-
cantly associated with FKBP5-2 methylation, 
b = −.632, p = .040; all other b’s NS.

H2. a. There will be significant associations 
among FKBP5-2, PC1, DNA-methylation-based 
indices of accelerated ageing (AA), and CMR in 
a young adult sample. Table 2 presents intercorre-
lations for young adults (N = 449) below the 
diagonal. Means, medians, and standard deviations 
are presented below the correlations. As shown, 
there was a significant correlation for targets 
between FKBP5-2 and the composite index of 
accelerated ageing (AA), r = −.304, p < .001 and 
between AA and cardiometabolic risk (CMR) 
r = .165, p < .001, as well as between AA and the 
Framingham FCMR10, r = .233, p = .001. At the 
same time there were significant associations of 
FKBP5-PC1 with FKBP5-2, AA, and CMR, 

Table 2. Correlations for young adults are presented below the diagonal. Correlations for middle-aged adults are above the 
diagonal. Correlations and level are provided for FKBP5-2, a composite methylation-based index of extrinsic accelerated ageing 
(AA), a three-indicator measure of cardiometabolic risk (CMR), the Framingham cardiometabolic 10-year risk score (FCMR10), BMI, 
Blood Pressure (BP), HbA1C, Smoking, FKBP5-PC1, five cell-types, as well as sex (N = 449 for young adults; N = 469 for middle-aged 
adults). Medians, Means and SDs are shown below the correlations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. FKBP5-2 – −.34** .04 −.23** .08 −.01 −.00 −.11* .12** −.04 .07 −.09† −.23** −.14** −.23**
2. AA −.30** – .12** .25** .09* .04 .11* .28** −.30** −.19** −.31** .05 .00 .24** .28**
3. CMR −.11* .17** – .46** .65** .58** .57** −.13* −.12* −.07 −.13** −.02 −.04 .05 −.05
4. FCMR10 −.13** .23** .55** – .08† .42** .33** .31** −.17** −.01 −.19** .07 −.02 .12* .44**
5. BMI −.02 .11* .71** .25** – .08† .09* −.21** −.08 −.10* −.10* −.02 −.06 .07 −.17**
6. BP −.15** .16** .67** .57** .23** – −.03 .07 −.01 .02 −.10* .05 −.01 .04 .11*
7. HbA1C −.06 .09† .67** .36** .20** .19** – −.05 −.14** −.06 −.05 −.07 −.02 −.04 −.02
8. Smoking −.00 .04 −.12* .39** −.11* −.04 −.09 – −.03 −.01 .02 −.04 .04 −.03 .16**
9. PC1 .34** −.37** −.11** −.07 −.07 −.13** −.03 −.03 – .58** .37** .37** .41** −.36** −.06
10. CD8T −.07 −.23** −.11* .03 −.20** .00 −.02 .00 .62** – −.07 .33** −.08 −.14** .07
11. CD4T .15** −.41** −.01 −.04 .06 −.10* −.01 .15** .44** .15** – −.13** .18** −.50** −.13**
12. NK −.07 .07 −.01 .07 −.10* .06 .02 −.07 .33** .21** −.12* – −.06 −.04 .08
13. Bcell .15** −.25** −.05 −.08 .02 −.14** .00 −.02 .50** .14** .36** −.05 – −.24** .00
14. Mono −.12* −.33** .04 .12* .03 .08 −.01 −.10* −.29** −.17** −.51** .06 −.31** – .21*
15. Sex −.13** −.18** −.02 .45** −.23** .15** .04 .00 .08 .18** −.15** .25** .05 .19** –
Young adults
Median .51 −.04 −.22 .02 29.70 92.50 5.30 .00 −.06 .09 .15 .00 .04 .05 .00
Mean .51 .00 .04 .02 31.44 94.47 5.35 .24 .00 1.00 .15 .01 .04 .06 .38
SD .03 .69 2.06 .01 8.36 11.90 .82 .43 1.00 .05 .05 .02 .03 .02 .49
Middle-aged
Median .42 .00 .01 .21 33.00 102.67 5.80 .00 −.03 .11 .11 .00 .02 .06 .00
Mean .42 .00 −.01 .27 34.26 103.79 6.20 .27 .00 .12 .13 .01 .03 .06 .26
SD .03 .69 1.83 1.95 8.70 14.19 1.36 .45 1.00 .05 .06 .03 .05 .03 .44

AA = The composite methylation-based ageing; CMR = Cardiometabolic Risk; FCMR10 = Framingham Cardiometabolic Risk 10 years; BMI = Body 
Mass Index; BP = High Blood Pressure; PC1 = FKBP5-PC1. 

† p < 0.1, * p < 0.05, ** p < 0.01. 
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suggesting the need to control for FKBP5-PC1 in 
the examination of the hypothesized indirect effect 
models.

Table 3 presents the intercorrelations of PC1, 
cell-type variability, CMR, FCMR10, age, and sex, 
along with each of the individual indices of accel-
erated ageing and each of the individual cardio-
metabolic risk factors (see Table 3). As can be 
seen, there were significant associations between 
each of the individual indices of accelerated ageing 
and CMR, except in the case of GRIM(r = .123; 
p = .009); (r = .137; p = .004); (r = .193; p = .001); 
(r = .003; p = .948) for Hannum, Horvath, 
PhenoAge, and GRIM, respectively. Likewise, 
there were significant associations between each 
of the individual indices of accelerated ageing 
and FCMR10, except in the case of PhenoAge for 
which the association was marginal, with(r = .154; 
p = .001); (r = .135; p = .004); (r = .084; p = .075); 
(r = .269; p = .001) for Hannum, Horvath, 
PhenoAge, and GRIM, respectively. Cell-type 
variability was also associated with indices of AA, 
indicating the utility of examining ‘intrinsic’ AA.

H2. b. For young adults, the effect of variation 
in methylation at FKBP5-2 on cardiometabolic 

risk (CMR; FCMR10) will be primarily indirect 
through associations with DNA-methylation- 
based measures of intrinsic accelerated ageing 
(AA). We examined the model portrayed in 
Figure 1 to characterize direct and indirect effects 
of FKBP5-2 on CMR using the composite mea-
sures of intrinsic AA in young adults. As shown in 
Figure 1 we found good fit for the model 
(CFI = 1.000, and SRMR = 0.010; Chi-square 
= 3.319, df = 6, p = .7679) As can be seen in 
Figure 1, there was no significant direct effect 
from FKBP5-2 to CMR. However, there was 
a significant association of FKBP5-2 with intrinsic 
AA (b = −.239; p = .001), and a significant associa-
tion of intrinsic AA to CMR (b = .178; p = .001), 
setting the stage for a possible significant indirect 
effect of FKBP5-2 on CMR.

Indirect effects were examined using 1,000 bias- 
corrected bootstrapped sampling with 95% confi-
dence intervals (CIs) involving standardized para-
meter estimates given the non-normal distribution 
of the product term comprising the indirect effect 
(Hayes, 2009). We estimated that the indirect 
pathway from FKBP5-2 to CMR through intrinsic 
Accelerated Ageing and it was IE = −.043, and the 

Table 3. Correlations for young adults are presented below the diagonal. Correlations for middle-aged adults are above the 
diagonal. Correlation and level are provided for FKBP5-2, a three-indicator measure of cardiometabolic risk (CMR), the 
Framingham cardiometabolic 10-year risk score (FCMR10), four methylation-based indices of extrinsic accelerated ageing (AA), 
FKBP5-PC1, five cell-types, as well as covariates of sex and age (N = 449 for young adults; N = 469 for middle-aged adults). Medians, 
Means and SDs are shown below the correlations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. FKBP5-2 – .04 −.23** −.34** −.25** −.20** −.17** .12** −.04 .07 −.09† −.23** −.14** −.23** −.29**
2. CMR −.11* – .46** .10* .12* .15** −.04 −.12* −.07 −.13** −.02 −.04 .05 −.05 −.04
3. FCMR10 −.13** .55** – .14** .09† .13* .32** −.17** −.01 −.19** .07 −.02 .12* .44** .48**
4. Hannum-AA −.29** .12** .15** – .42** .46** .24** −.22** −.16** −.40** .15** .04 .26** .29** −.01
5. Horvath-AA −.24** .14** .14** .36** – .35** .02 −.06 .03 −.08 .13* .10* .00 .12* −.02
6. PhenoAge-AA −.17** .19** .08 .52** .36** – .34** −.33** −.27** −.23** −.06 −.02 .20** −.00 −.02
7. Grim-AA −.14** .00 .27** .24** .01 .30** – −.21** −.12** −.14** −.08 −.12** .19** .35** .01
8. PC1 .34** −.11* −.07 −.34** −.15** −.34** −.19** – .58** .37** .37** .42** −.36** −.06 −.14**
9. CD8T −.06 −.11* .03 −.30** .09 −.27** −.17** .62** – −.07 .33** −.08† −.14** .07 −.01
10. CD4T .15** −.01 −.04 −.45** −.11* −.39** −.18** .44** .15** – −.13** .18** −.50** −.13** −.15**
11. NK −.07 −.01 .07 .16** .09 −.01 −.06 .33** .21** −.12* – −.06 −.04 .08 .13**
12. Bcell .15** −.04 −.08 −.23** −.10* −.22** −.14** .50** .14* .36** −.05 – −.24** .00 .01
13. Mono −.12* .03 .12* .36** .12* .28** .17** −.29** −.17** −.51** .06 −.31** – .21** .06
14. Sex −.13** −.02 .45** .18** .17** −.12* .26** .08 .18** −.15** .25** .05 .18** – .07
15. Age −.05 .01 .08 .01 −.00 .03 −.01 −.03 −.04 −.01 −.02 −.01 −.00 −.05 –
Young adults
Median .51 −.22 .02 .28 −.01 −.27 −.18 −.06 .09 .15 .00 .04 .05 .00 29.00
Mean .51 .04 .02 .00 .00 .00 .00 .00 1.00 .15 .01 .04 .06 .38 28.67
SD .03 2.06 .01 3.41 4.03 5.43 4.22 1.00 .05 .05 .02 .03 .02 .49 .79
Middle-aged
Median .42 .01 .21 .03 −.32 −.18 −1.00 −.03 .11 .12 .00 .02 .06 .00 56.17
Mean .42 −.01 .27 −.01 .03 −.06 −.04 .00 .12 .13 .01 .03 .06 .26 57.21
SD .03 1.83 1.95 3.65 4.41 4.82 4.66 1.00 .05 .06 .03 .05 .03 .44 6.75

CMR = Cardiometabolic Risk; FCMR10 = Framingham Cardiometabolic Risk 10 years; PC1 = FKBP5-PC1. 
† p < 0.1, * p < 0.05, ** p < 0.01. 
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95% confidence interval did not include 0, 95% 
CI = [−.082, −.018], rejecting the null hypothesis. 
The total effect from FKBP5-2 to CMR is the sum 
of the standardized direct and indirect effects pre-
sented in Table 4, and so is −.119. Accordingly, the 
indirect effect accounted for 36% of the variance in 
the total effect.

We examined the possibility of different pat-
terns of effects for males and females by constrain-
ing all pathways in model to be equal for males 
and females. This did not result in a significant 
deterioration in model fit, indicating that observed 
effects were not significantly different for males 
and females. (Δ χ2 (2) = 1.833, p = .400).

We also examined the indirect pathway from 
FKBP5-2 to CMR through a composite of extrinsic 

Accelerated Ageing indices (i.e., controlling age, 
but not cell type; see Supplemental Figure S5), 
replicating the pattern observed for the composite 
of intrinsic indices, with good Model fit, 
CFI = 1.000, and SRMR = 0.004; Chi-square 
= 0.263, df = 2, p = .8768, an Indirect pathway 
estimate IE = −.026, with a 95% CI = [−.059, 
−.008] that does not contain zero.

We next examined the model portrayed in 
Figure 2 to characterize direct and indirect effects 
of FKBP5-2 on the Framingham measure of cardio-
metabolic risk (FCMR10) using the composite mea-
sures of intrinsic AA in young adults. As shown in 
Figure 2 we found good fit for the model 
(CFI = 1.000, and SRMR = .003; Chi-square 
= 1.959, df = 2, p = .3756) As can be seen in 

Figure 1. Indirect effect of FKB5-2 on CMR through the composite of the four intrinsic Accelerated Ageing (AA) Indices for young- 
adults. N = 449. Values are standardized parameter estimates and standard errors are in parentheses. Gender, FKBP5-Pc1, 
chronological age, and cell-types are controlled in the analyses. Model fit: CFI = 1.000 and SRMR = 0.010; Chi-square = 3.319, 
df = 6, p = .7679. Indirect pathway: IE = −.043, 95% CI = [−.082, −.018].
*p < .05, **p < .01 (two-tailed tests). 

Table 4. Table of direct effects from FKBP5-2 to cardiometabolic outcomes and indirect effects through composite and individual 
indices of intrinsic accelerated ageing for young adults. Cell-type variation, sex, and age are controlled in all analyses. Effect size of 
IE = ratio of the indirect effect to the total effect.

Paths Direct Effect Indirect Effect 95% CI Effect Size of IE

FKBP5-2 →Accelerated Ageing → CMR
FKBP5-2 → Composite AA → CMR −.076 −.043* [−.082, −.018] 0.361
FKBP5-2 → Hannum-AA → CMR −.091 −.036* [−.071, −.010] 0.283
FKBP5-2 → Horvath-AA → CMR −.092* −.010 [−.031, .000] 0.098
FKBP5-2→ PhenoAge-AA → CMR −.091* −.031* [−.067, −.010] 0.254
FKBP5-2→ Grim-AA → CMR −.119* .001 [−.015, .018] 0.008
FKBP5-2 →Accelerated Ageing → FCMR10
FKBP5-2 → Composite AA → FCMR10 −.021 −.042* [−.078, −.021] 0.667
FKBP5-2 → Hannum-AA → FCMR10 −.053 −.026 [−.058, .002] 0.329
FKBP5-2 → Horvath-AA → FCMR10 −.063 −.004 [−.020, .001] 0.060
FKBP5-2 → PhenoAge-AA → FCMR10 −.050 −.026* [−.057, −.009] 0.342
FKBP5-2 → Grim-AA → FCMR10 −.059 −.024* [−.052, −.007] 0.289

**p ≤ .01; *p ≤ .05 (two-tailed tests), n = 449. 
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Figure 2, there was no significant direct effect from 
FKBP5-2 to FCMR10. However, there was 
a significant association of FKBP5-2 to AA 
(b = −.239; p = .001), and a significant association 
of AA to CMR (b = .176; p = .001), setting the stage 
for a possible indirect effect of FKBP5-2 on 
FCMR10.

Indirect effects were examined using 1,000 bias- 
corrected bootstrapped sampling with 95% confi-
dence intervals (CIs) involving standardized para-
meter estimates given the non-normal distribution 
of the product term comprising the indirect effect 
(Hayes, 2009). We estimated that the indirect pathway 
from FKBP5-2 to FCMR10 through intrinsic 
Accelerated Ageing was IE = −.042, and that the 
95% confidence interval did not include 0, 95% 
CI = [−.078, −.021], rejecting the null hypothesis. 
The total effect from FKBP5-2 to FCMR10 is the 
sum of standardized direct and indirect effects pre-
sented in Table 4, and so is −.063. Accordingly, the 
indirect effect accounted for 67% of the variance in 
the total effect.

We also examined the indirect pathway from 
FKBP5-2 to FCMR10 through a composite of 
extrinsic Accelerated Ageing indices (i.e., control-
ling age, but not cell type; see Supplemental Figure 
S6), replicating the pattern observed for the com-
posite of intrinsic indices, with good Model fit, 
CFI = 1.000, and SRMR = 0.008; Chi-square 
= 1.291, df = 2 p = .524, and an Indirect pathway 

estimate of IE = −.025, and a 95% CI = [−.056, 
−.008] that does not contain zero.

We next examined the possibility of different 
patterns of effects for males and females by con-
straining the pathways in the indirect pathway of 
the model to be equal for males and females. This 
did not result in a significant deterioration in 
model fit, indicating that observed effects were 
not significantly different for males and females. 
(Δ χ2 (2) = .352, p = .837).

H2. c. There will be similar patterns for each 
of the individual indices of intrinsic AA, replicat-
ing the pattern observed with the composite 
index of intrinsic accelerated ageing. The model 
portrayed in Figure 1 was next examined using 
each individual index of accelerated ageing sepa-
rately in place of the composite index. Direct and 
indirect effects for each model are summarized in 
Table 4, and the full models are provided in 
supplemental Figures S1a-d for intrinsic indices 
of Hannum, Horvath, PhenoAge, and Grim 
respectively. In all cases model fit was good 
(CFI = 1.000, 0.965, 1.000, 0.983 using CMR as 
the outcome) and patterns of significant associa-
tions were similar to that obtained for the com-
posite index. In all cases, except for Horvath and 
GRIM, which was not significantly associated 
with CMR, there was a negative indirect effect 
from FKBP5-2 to CRM (IEs = −.036; −.010; 
−.031; .001) for Hannum, Horvath, PhenoAge, 

Figure 2. Indirect effect of FKB5-2 on FCMR10 through the composite of the four intrinsic Accelerated Ageing (AA) Indices for young- 
adults. N = 449. Values are standardized parameter estimates and standard errors are in parentheses. Gender, FKBP5-PC1, 
chronological age, and cell-types are controlled in the analyses. Model fit: CFI = 1.000 and SRMR = 0.003; Chi-square = 1.959, 
df = 2, p = .3756. Indirect pathway: IE = −.042, 95% CI = [−.078, −.021].
*p < .05, **p < .01 (two-tailed tests). 
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and no effect for GRIM, respectively. There were 
significant direct effects from FKBP5-2 to CRM 
for three of the models (Horvath = −.092, 
PhenoAge = −.091, Grim = −.119), indicating 
that some of the association between the 
FKBP5-2 and CMR was not mediated by these 
indices of AA. In Table 4, the effect size for the 
indirect effect in each model is provided, with 
effect sizes uniformly smaller than what was 
observed for the composite index.

Analyses for young adults using individual 
indices of intrinsic accelerated ageing with 
FCMR10 as the outcome also provided a similar 
pattern of results, except that because GRIM was 
significantly associated with FCRM10 there was 
also a negative indirect effect from FKBP5-2 to 
increased cardiometabolic risk through GRIM. 
Direct and indirect effects for each model are 
summarized in Table 4, and the full models are 
provided in supplemental Figures S2a-d. Using 
FCMR10 as the outcome, in all cases there was 
a negative indirect effect from FKBP5-2 to 
FCMR10 (IEs = −.026; −.004; −.026; −.024). 
There was no significant direct effect from 
FKBP5-2 to FCMR10 for any of the individual 
indices of AA. In Table 4, the effect size for the 
indirect effect in each model using FCRM10 as the 
outcome is provided, with effect sizes uniformly 
smaller than what was observed for the composite 
index.

Replication with middle-aged sample

H3. a. There also will be significant correlations 
among FKBP5-2, PC1, DNA methylation-based 
indices of accelerated ageing, and CMR in 
a middle-aged sample. Table 2 presents intercorre-
lations for the middle-aged sample (N = 469) 
above the diagonal, showing associations for 
FKBP5-2, the Framingham the composite index 
of DNA methylation-based ageing (AA), the 
index of cardiometabolic risk (CMR), as well as 
FKBP5-PC1, sex and age. Means, medians, and 
standard deviations are presented below the corre-
lations. As can be seen in Table 2, patterns of 
correlations for middle-aged adults were similar 
to those observed for young adults, including sig-
nificant correlations between FKBP5-2 and each of 
the indices of AA. In addition, there was 

a correlation of FKBP5-2 with the overall index 
of and AA, r = −.344, p < .001 and between AA 
and CMR r = .116, p < .012. There were also 
significant correlations of study variables with 
FKBP5-PC1 and sex, showing the importance of 
controlling these in subsequent analyses.

Table 3 presents the intercorrelations of PC1, 
cell-type variability, CMR, FCMR10, age, and sex, 
along with each of the individual indices of accel-
erated ageing and each of the individual cardio-
metabolic risk factors (see Table 3). As can be 
seen, there were significant associations between 
each of the individual indices of accelerated ageing 
and CMR(r = .096; p = .038); (r = .116; p = .012); 
(r = .151; p = .001); (r = −.042; p = .368) for 
Hannum, Horvath, PhenoAge, and GRIM, respec-
tively. Likewise, there were significant associations 
between each of the individual indices of acceler-
ated ageing and FCMR10, with(r = .142; p = .002); 
(r = .087; p = .060); (r = .133; p = .004); (r = .316; 
p = .001) for Hannum, Horvath, PhenoAge, and 
GRIM, respectively. Cell-type variability was also 
associated with indices of AA, indicating the utility 
of examining ‘intrinsic’ AA.

H3. b. For middle-aged adults, the effect of 
variation in methylation at FKBP5-2 on cardiome-
tabolic risk (CMR) will be indirect through asso-
ciations with DNA methylation-based measures of 
intrinsic accelerated ageing (AA). We found ade-
quate model fit for the model examining the asso-
ciation of FKBP5-2 with CMR, using a composite 
measure of intrinsic AA as the intervening vari-
able. This model is portrayed in Figure 3 
(CFI = 0.902 and SRMR = 0.021; Chi-square 
= 23.789, df = 6, p = .0006), and an IE = −.032, 
with a 95% CI = [−.068, −.005] that did not 
include 0. However, direct and indirect effects 
were of opposite sign, making it impossible to 
compute a meaningful effect size for the indirect 
effect.

Using multiple-group comparison, and con-
straining all pathways in the indirect effects 
model to be equal across sex, did not result in 
a significant deterioration in model fit, indicating 
that patterns of the effect were not significantly 
different for males and females (Δ χ2 (2) = .097 
p = 0.9527.

We also examined the indirect pathway from 
FKBP5-2 to CMR through a composite of extrinsic 
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Accelerated Ageing indices (i.e., controlling age, 
but not cell type; see Supplemental Figure S7), 
replicating the pattern observed for the composite 
of intrinsic indices with middle-aged adults. We 
found adequate to good Model fit, CFI = 0.912 and 
SRMR = 0.027; Chi-square = 13.307, df = 1, 
p = .0003, and an Indirect pathway estimate, 
IE = −.036, with a 95% CI = [−.077, −.011] that 
did not contain zero.

Similar results were obtained for a model exam-
ining direct and indirect effects of FKBP5-2 on the 
Framingham measure of cardiometabolic risk 

(FCMR10) using the composite measures of 
intrinsic AA in middle-aged adults. As shown in 
Figure 4 we found good fit for this model 
(CFI = .952, and SRMR = .021; Chi-square 
= 21.366, df = 1, p = .001). As can be seen in 
Figure 4, there was no significant direct effect 
from FKBP5-2 to FCMR10. However, there was 
a significant association of FKBP5-2 to AA 
(b = −.284; p = .001), and a significant association 
of AA to CMR (b = . 150; p = .001), setting the 
stage for a possible indirect effect of FKBP5-2 on 
FCMR10 among middle-aged adults.

Figure 3. Indirect effect of FKB5-2 on CMR through the composite of the four intrinsic Accelerated Ageing (AA) Indices for young- 
adults. N = 469. Values are standardized parameter estimates and standard errors are in parentheses. Gender, FKBP5-PC1, 
chronological age, and cell types are controlled in the analyses. Model fit: CFI = 0.902, and SRMR = 0.021; Chi-square = 23.789, 
df = 6, p = .0006. Indirect pathway: IE = −.032, 95% CI = [−.068, −.005].
*p < .05, **p < .01 (two-tailed tests). 

Figure 4. Indirect effect of FKB5-2 on FCMR10 through the composite of the four extrinsic Accelerated Ageing (AA) Indices for 
young-adults. N = 469. Values are standardized parameter estimates and standard errors are in parentheses. Gender, FKBP5-PC1, 
chronological age, and cell types are controlled in the analyses. Model fit: CFI = 0.952, and SRMR = 0.021; Chi-square = 21.366, 
df = 1, p = .0001. Indirect pathway: IE = −.043, 95% CI = [−.077, −.020].
*p < .05, **p < .01 (two-tailed tests). 
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Indirect effects were examined using 1,000 bias- 
corrected bootstrapped sampling with 95% confi-
dence intervals (CIs) involving standardized para-
meter estimates given the non-normal distribution 
of the product term comprising the indirect effect 
(Hayes, 2009). We estimated that the indirect 
pathway from FKBP5-2 to FCMR10 through 
intrinsic Accelerated Ageing was IE = −.043, and 
that the 95% confidence interval did not include 0, 
95% CI = [−.077, −.020], rejecting the null hypoth-
esis. Again, direct and indirect effects were of 
opposite sign, making it impossible to compute 
a meaningful effect size for the indirect effect.

We next examined the possibility of different 
patterns of effects for males and females by con-
straining the pathways in the indirect pathway of 
the model to be equal for males and females. This 
did not result in a significant deterioration in 
model fit, indicating that observed effects were 
not significantly different for males and females. 
(Δ χ2 (2) = 2.165, p = .3388).

We also examined the indirect pathway from 
FKBP5-2 to FCMR10 through a composite of 
extrinsic Accelerated Ageing indices (i.e., control-
ling age, but not cell type; see Supplemental Figure 
S8), replicating the pattern observed for the com-
posite of intrinsic indices with middle-aged adults. 
We found good Model fit, CFI = 0.968 and 
SRMR = 0.030; Chi-square = 13.307, df = 1, 
p = .0003, and an Indirect pathway estimate, 
IE = −.040, with a 95% CI = [−.079, −.017].

H3. c. For middle-aged participants there will be 
similar patterns for each of the individual indices 
of intrinsic AA, replicating the pattern observed 
with the composite index of intrinsic accelerated 
ageing. We first examined each individual index of 
intrinsic AA used in the model portrayed in 
Figure 3. Direct and indirect effects for each 
model are summarized in Table 5, and the full 
models are provided in Supplemental Figure 3 
(a-d) show the indirect effects of FKBP5-2 on 
CMR for intrinsic accelerated ageing indices of 
Hannum, Horvath, PhenoAge, and GRIM respec-
tively. In all cases model fit was adequate to good 
(CFI = 0.909, 0.922, 0.953, 1.000 for Hannum, 
Horvath, PhenoAge, and GRIM, respectively) and 
patterns of significant associations were similar to 
that obtained for the composite index. As was the 
case for young adults, in all cases but one, i.e., for 

GRIM, there was a negative indirect effect from 
FKBP5-2 to CMR (IEs = −.024; −.017; −.024; .010). 
There was a significant effect from FKBP5-2 to 
GRIM, but GRIM was not associated with CMR, 
precluding a significant indirect effect. As can be 
seen in Table 5, for all models using individual 
indicators of AA and CMR as the outcome, there 
was no significant direct effect from FKBP5-2 to 
cardiometabolic outcomes among middle-aged 
participants. Again, because direct and indirect 
effects were of opposite signs it was not possible 
to compute an effect size for the indirect effects.

Follow-up analyses using FCMR10 as the out-
come also provided a similar pattern of results, 
except that GRIM was a significant predictor of 
FCMR10, and so resulted in a significant indirect 
effect. Direct and indirect effects for each model 
are summarized in Table 5, and the full models are 
provided in Supplemental Figure 4(a-d). In all 
cases except for the Hannum measure of AA, 
there was a negative indirect effect from FKBP5- 
2 to FCRM 10 through intrinsic AA (IEs = .003; 
−.006; −.026; −.031 for Hannum, Horvath, 
PhenoAge, and GRIM respectively). There a not 
significant direct effect from FKBP5-2 to FCRM10 

Table 5. Table of direct effects from FKBP5-2 to cardiometa-
bolic outcomes, and indirect effects from FKBP5-2 to cardiome-
tabolic outcomes through composite and individual indices of 
accelerated ageing for middle-aged adults.

Paths
Direct 
Effect

Indirect 
Effect

95% CI for 
IE

FKBP5-2 →Accelerated Ageing 
→ CMR

FKBP5-2 →; Composite AA → 
CMR

.070 −.036* [−.072, 
−.011]

FKBP5-2 → Hannum-AA → CMR .060 −.024 [−.060, 
.003]

FKBP5-2 → Horvath-AA → CMR .067 −.017* [−.045, 
−.003]

FKBP5-2→ PhenoAge-AA → 
CMR

.060 −.024* [−.060, 
−.006]

FKBP5-2→ Grim-AA → CMR .029 .010 [−.006, 
.038]

FKBP5-2 →Accelerated Ageing 
→ FCMR10

FKBP5-2 → Composite AA → 
FCMR10

.049 −.043* [−.077, 
−.020]

FKBP5-2 → Hannum-AA → 
FCMR10

−.004 .003 [−.022, 
.033]

FKBP5-2 → Horvath-AA→ 
FCMR10

.007 −.006 [−.025, 
.002]

FKBP5-2 → PhenoAge-AA → 
FCMR10

.030 −.026* [−.054, 
−.009]

FKBP5-2 → Grim-AA → FCMR10 .033 −.031* [−.060, 
−.012]

**p ≤ .01; *p ≤ .05 (two-tailed tests), (N = 469). 
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for any of the individual indices of AA. Again, 
because direct and indirect effects were of opposite 
signs it was not possible to compute an effect size 
for the indirect effects.

H4: FKBP5-2 methylation level will be lower in 
the middle-age sample than in the young-adult 
sample. As can be seen in Table 2, the mean level 
of FKBP5-2 was substantially lower in the middle- 
age sample than in the young adult sample, as 
would be expected from prior research. We com-
pared the full middle-age sample to the full young- 
adult sample using robust standard errors to cor-
rect for relatedness between some members of the 
sample. We found a significant difference t 
(916) = −2.22, p = 0.0265.

Discussion

Early adverse childhood events exert long lasting 
effects on health, and black youth and adults may 
be particularly susceptible to these effects because 
they are more likely to be chronically exposed to 
a range of contextual stressors [35–37], including 
elevated levels of neighbourhood violence and 
other threats. In addition, elevated stressful expo-
sures for Black youth and adults continue across 
the lifespan. Prior work has shown that chronic 
exposures that stimulate prolonged HPA axis 
response may become biologically embedded via 
long-lasting epigenetic changes [26,39–41], and 
may be reflected in changes in methylation of 
two CpG sites on FKBP5. In the current investiga-
tion we examined reports of exposure to commu-
nity danger, parental harshness, and experiences of 
discrimination provided by our young-adult sam-
ple when they were age 10, as well as family SES 
reported by a parent at that time. Consistent with 
hypotheses, we found that exposure to community 
danger was uniquely associated with demethyla-
tion of two CpG sites on FKBP5 previously 
shown to be demethylated in response to stress 
and ageing.

Building on prior theorizing [41], we tested 
a model in which demethylation of the two CpG 
sites on FKBP5 previously shown to be demethy-
lated in response to stress and ageing, set in 
motion a broader set of biological changes cap-
tured by indices of accelerated ageing and ulti-
mately lead to elevated risk for cardiometabolic 

illness [47]. In keeping with Levine et al. (2018) 
[26], and more recently Ammous et al. (2021) [30], 
we proposed that currently available DNA methy-
lation-based indices of intrinsic accelerated ageing 
would potentially capture the impact of FKBP5-2 
demethylation on a range of biological systems, 
and so constitute an intermediate step in the pro-
gression to elevated cardiometabolic risk (i.e., ele-
vated blood pressure, elevated HbA1c, blood 
sugar, inflammation, BMI). These considerations 
led to our expectation that there would be 
a significant association of FKBP5-2 with acceler-
ated ageing (AA), significant indirect effects from 
FKBP5-2 to two measures of cardiometabolic risk 
(CMR and FCMR10), and that similar patterns of 
association would be observed across the lifespan 
for both outcomes, using intrinsic measures of AA.

In keeping with the proposed model, we focused 
on FKBP5-2, i.e., two CPG sites of FKBP5 that are 
responsive to stress, cortisol exposure, and age, as 
the starting point of the risk process, and exam-
ined accelerated ageing (AA) across multiple DNA 
methylation-based indices of ageing as the inter-
mediate stage leading to elevated cardiometabolic 
risk. We found that FKBP5-2 was associated with 
AA even after controlling global variation in 
methylation across FKBP5 (i.e., FKBP5-PC1), as 
well as age, sex, and cell-type variation, supporting 
hypotheses that these two CpG sites may be parti-
cularly important in forecasting longer-term out-
comes. In addition, at the zero-order level each 
index of AA considered separately was also asso-
ciated with FKBP5-2. Likewise, in analyses using 
the Framingham 10-year risk measure as the out-
come similar patterns of effects were observed 
between FKBP5-2 and AA, and between AA and 
CMR. Adding weight to these findings, the pre-
dicted patterns of association were first shown for 
a young adult sample and then replicated in 
a middle-aged sample. In both young adult and 
middle-aged adult samples, the patterns were non- 
significantly different for males and females. As 
predicted, the older sample was more demethy-
lated at FKBP5-2 than was the younger sample.

At a minimum, the current results provide sup-
port for the hypothesis that demethylation of 
FKBP5-2 is associated with broad indices of accel-
erated ageing [50], and that it has likely implica-
tions for multiple interrelated health outcomes, 
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particularly cardiometabolic health. Accordingly, 
the current findings support the value of addi-
tional work to further characterize the longitudinal 
antecedents of variation in methylation of FKBP5, 
and the longer-term sequelae of that variation. It is 
particularly important to examine this association 
among Black youth as well as younger and older 
adults and to better capture environmental vari-
ables that may vary with race or be unique to some 
social contexts. Results also suggest the need for 
identification of protective factors in childhood as 
well as potential ameliorative processes in adult-
hood. It is possible, that early exposures associated 
with demethylation of FKBP5-2 may lead to some 
changes that are not readily reversible, potentially 
creating vulnerabilities for future stressors or leav-
ing a long legacy of health-related consequences. 
Future research examining this possibility also is 
required.

Interestingly, although the four indices of AA 
used in the current investigation (Hannum, 
Horvath, PhenoAge, and DNAm GrimAge) were 
intercorrelated for the most part as expected, Grim 
was not significantly associated with Horvath’s 
index of AA or with CMR for either age group. 
In contrast, Grim was associated with the 
Framingham measure FCMR10. This suggests 
that observed associations between AA and CMR 
would have been more robust in the current study 
if DNAm GrimAge were not included in the over-
all index of AA for models predicting CMR. 
Conversely, GRIM did add to the robustness of 
the prediction of FCMR10. This also serves as 
a cautionary note that different indices of AA 
may not always be associated with exposures and 
illness in the same manner [22]. Understanding 
the different pattern shown by GRIM for CRM 
vs FCMR10 may be explained, in part, by an 
important difference between the CRM measure 
and the FCRM10 measures. Specifically, FCRM10 
includes an additional important predictor of car-
diovascular events: smoking. As has been shown 
previously GRIM preforms better than other DNA 
methylation-based indices of ageing in capturing 
the effect of smoking (Lei et al., 2020). 
Accordingly, it is not surprising that it would per-
form better when predicting a cardiometabolic risk 
index that included smoking status than when 
predicting an index that did not include smoking.

It is also interesting to note that use of 
a composite index of accelerated ageing provided 
a useful simplification of the association between 
FKBP5-2, AA, and cardiometabolic outcomes. It 
would have been harder to discern the overall 
pattern in these relationships using only individual 
indicators of AA one-by-one. The utility of com-
posite indicators is due to its ability to define an 
underlying common dimension across multiple 
indicators, in this case, the dimension of acceler-
ated ageing. That is, in line with standard psycho-
metric practice, increasing the number of 
independent indicators will typically increase relia-
bility of measurement and so its validity. By exam-
ining the composite index of accelerated ageing 
prior to looking at individual indices, we were 
able to provide an initial omnibus test of the over-
all hypothesis, increasing confidence that patterns 
observed across the individual clocks were not 
spurious or due to factors specific to each parti-
cular clock. At the same time, it is important to 
note the interesting and interpretable differences 
between GRIM and other indices of AA, highlight-
ing the value of retaining examination of indivi-
dual indices to compliment examination of 
composite indices.

Limitations should also be noted. Because indi-
cators of FKBP5-2, AA, and CMR were all exam-
ined within a single time period for each age 
group, additional research examining relationships 
over time, and predictors of change over time, will 
be helpful in further clarifying and testing the 
proposed relationships. Currently it is not known 
whether there are optimal lag times for observing 
changes in these constructs or whether there are 
critical periods during which change is mostly 
likely to occur. Accordingly, future research on 
likely time lags for observing changes is needed. 
Because disruption of HPA-axis regulation could 
result in psychological and behavioural sequelae, 
future research should also examine whether 
FKBP5-2 predicts behavioural or emotional diffi-
culties in response to stress [22], or serves to 
modulate substance use or exercise in response to 
stress. In addition, the current investigation did 
not include measures of lipid levels, and these 
might also be informative in future research. 
Likewise, it will be important for future research 
to map the role of health behaviours in mediating 
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the effects of early stress on variation in methyla-
tion of FKBP5.

Taken together, the results suggest a biologically 
plausible pathway from various stressful experi-
ences to later health problems, and suggest that 
DNA methylation-based accelerated ageing can 
provide a window on biological changes that lead 
to adverse health outcomes. If supported in future 
research, this would suggest that DNA methyla-
tion-based accelerated ageing measures may pro-
vide a particularly useful tool for research on the 
delayed effects of childhood adversity on ageing 
and health in later life.
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