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Abstract: The involvement of the gut microbiota in Parkinson’s disease (PD), investigated in several
studies, identified some common alterations of the microbial community, such as a decrease in
Lachnospiraceae and an increase in Verrucomicrobiaceae families in PD patients. However, the results of
other bacterial families are often contradictory. Machine learning is a promising tool for building
predictive models for the classification of biological data, such as those produced in metagenomic
studies. We tested three different machine learning algorithms (random forest, neural networks and
support vector machines), analyzing 846 metagenomic samples (472 from PD patients and 374 from
healthy controls), including our published data and those downloaded from public databases.
Prediction performance was evaluated by the area under curve, accuracy, precision, recall and F-score
metrics. The random forest algorithm provided the best results. Bacterial families were sorted
according to their importance in the classification, and a subset of 22 families has been identified
for the prediction of patient status. Although the results are promising, it is necessary to train the
algorithm with a larger number of samples in order to increase the accuracy of the procedure.
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1. Introduction

Neurodegenerative diseases represent a heterogeneous class of neurological disorders, with a
high social, sanitary and economic impact. Parkinson’s disease (PD) is one of the most common
neurodegenerative diseases, with a worldwide prevalence of 0.4% that is likely to double in the
next 20 years [1]. The PD phenotype is characterized by movement disorders as a result of the
loss of dopaminergic neurons in the substantia nigra caused by α-synuclein (α-syn) aggregates [2].
Only 10% of PD cases are due to genetic causes [3], indicating that environmental factors like dietary
habits, head injury and nicotine consumption could trigger or influence the progression of PD [4].
Among environmental factors, the role of gut microbiota and its interactions with the gut–brain axis
aroused the interest of researchers worldwide [5]. Gut microbiota can interact with the vagus nerve
using neuroimmune and neuroendocrine mechanisms and, at the same time, the nervous system can
modulate the gut physiology and environment, affecting the gut microbiota composition [6]. PD is
influenced by this bidirectional communication, and PD patients show significant comorbidity with
small-intestine bacterial overgrowth, constipation and Irritable Bowel Disease (IBD) like symptoms [7].
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Furthermore, α-syn aggregates are found in the enteric nervous system and can spread to the central
nervous system through the vagus nerve, and gut microbiota can affect the aggregation of α-syn [8].

The role of gut microbiota was evaluated in PD patients in several studies, mainly using targeted
metagenomics and sequencing the 16S rRNA gene from fecal samples [2,9–17]. Some common
features have been found, such as the reduction of bacteria producing short-chain fatty acids from
the Lachnospiraceae family [5]. Regarding other bacterial families, the results are contradictory;
for example, the Bifidobacteriaceae family was reported to have a lower abundance in PD patients
in some studies [2,18] and higher abundances in others [11,19]. So, although all studies indicate a
correlation between microbiota and Parkinson’s disease, there is no convergence as of yet on the
bacterial families identifiable as specific biomarkers. To overcome this problem, we analyzed all
published data with a computational procedure that can identify taxa involved in the pathology.
Machine learning (ML) algorithms are appropriate tools to create predictive models that can distinguish
the pathological status of a patient using the frequencies of bacteria in the feces.

ML algorithms are currently used for building predictive models for the classification of biological
data, and identify biomarkers through a training procedure [20,21]. This technology was applied to
identify marker genes in breast cancer [22], and to analyze clinical data for predicting cardiovascular
and diabetes risk [23,24]. Recently, ML algorithms have been used to identify biomarkers analyzing
shotgun and 16S rRNA data [25].

In this study, we use three different supervised ML algorithms to analyze 16S rRNA gene
sequencing data derived from six different studies [2,9–13] downloaded from the Sequence Read
Archive database. From this analysis, we obtain a classifier that can predict the pathological status of
PD patients against healthy controls (HCs), and we identify a subset of 22 bacterial families that are
discriminative for the prediction.

2. Materials and Methods

2.1. Datasets Downloadand Bioinformatic and Statistical Data Analysis

Datasets were downloaded from the Sequencing Read Archive (SRA) database [26] using the
SRA Toolkit (http://ncbi.github.io/sra-tools/). Raw reads from the following BioProject IDs were
selected: PRJNA510730 [9], PRJNA268515 [2], PRJEB14674 [13], PRJEB14928 [11], PRJNA381395 [12]
and PRJEB27564 [10]. Non-fecal samples from PRJNA268515 and PRJNA381395 studies were
removed before the analysis. The quality of raw sequencing reads was assessed with FastqC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and the bioinformatic data analysis
was performed using the QIIME 2 pipeline [27]. Reads were quality filtered, chimera-checked
and clustered in amplicon sequencing variants (ASVs) using DADA2 in the QIIME 2 pipeline [28].
The taxonomy of representative sequences was assessed using the q2-feature-classifier and the
GreenGenes database [29,30]. Data normalization and filtering were performed using R 3.5.3.
The dataset was loaded in R using the phyloseq package (version 1.26.1) [31]. Clusters (ASVs) with
a number of reads lower than 0.05% of the total read number were removed from the analysis [32].
The read number count was normalized using DESeq2 [33]. The normalized table was summed up at
the Family level using the tax_glom function in phyloseq.

2.2. Machine Learning Data Analysis

ML data analysis was performed using custom scripts in Python 3.6.7 language, using the sci-kit
learn package (https://scikit-learn.org/stable/). Bacterial families were normalized across all samples
using the StandardScaler method, which scales the distribution by subtracting the mean from each
value and dividing the difference by the standard deviation. We used this type of standardization
since, in the microbiota, some bacterial families are more abundant than others and their abundances
can widely vary across samples.

http://ncbi.github.io/sra-tools/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://scikit-learn.org/stable/
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The performance was evaluated using a stratified cross-validation (CV) with a K value equal to 5.
The dataset was divided into training and test sets 5 times, allowing the training and the testing of the
algorithms in 5 different iterations (folds). Each time, a different portion of the dataset was used in
the training or the test set, in order to predict all the samples. In this way, we reduced the bias of the
random division of samples in the training or test set.

We compared the performances of three different machine learning algorithms: (1) a random
forest classifier (RF) [34], with 2000 estimators (trees) and a depth of 66 nodes (leaves); (2) a neural
network (NN) classifier [35], with 3 hidden layers and respectively 180, 90 and 45 neurons for each
layer; and (3) a support vector machine (SVM) classifier [36], with a polynomial kernel and cost
parameter equal to 1.

The performance was evaluated using true positive cases (TP), false positive cases (FP),
true negative cases (TN) and false negative cases (FN). A TP is a PD patient correctly classified
as PD patient, while an FP is a PD patient incorrectly classified as HC. Conversely, a TN is an HC
correctly classified as HC and an FP is an HC incorrectly classified as PD patient.

For each algorithm, at each fold, the number of TP, FP, TN and FN cases was computed and used
to summarize the following metrics: accuracy, precision, recall, F-score and area under the curve (AUC).
The accuracy is defined as the ratio of correctly predicted observations; the recall (or true positive rate,
TPR) is the proportion of actual positives that are correctly identified as positive; the precision is the
ratio of positive classifications identified correctly; and the F-score is the harmonic mean between
precision and recall. The AUC was computed using the receiver operating characteristic (ROC) curve.
The ROC curve summarizes the true positive rate and the false positive rate, and the AUC indicates
the ability of the classifier to distinguish between two classes (i.e., PD or HC).

The importance of each bacterial family in the RF algorithm was evaluated using the “embedded
feature selection strategy” analyzing the “Gini impurity decrease” [21]. The bacterial families were
sorted from the most to the least relevant. The RF algorithm was then re-trained systematically using
the first ‘’n” bacterial families, starting from the first n = 5 families and increasing this number until
the AUC, the precision, the recall and the F-score values were comparable to those obtained with the
whole family set (n = 52).

3. Results

3.1. Datasets Description and Supervised Machine Learning Approach

A total of 873 16S rRNA gene sequencing data of fecal samples from PD patients and HCs
were downloaded from the Sequence Read Archive (SRA) database to study the association between
the microbiota dysbiosis and diagnosis of PD. The distribution of PD and HC samples and the
methodological approaches are reported in Table 1.

Table 1. List of references, number of samples, methodological approaches and nationality of studies
considered in this analysis.

Reference
PD

Samples
HC

Samples
Sample Transport

DNA Extraction 16S
Region

Nationality
Method

[2] 34 31 BD Gaspak FastDNA Spin Kit for Soil V4 United States
[10] 65 68 NR PSP Spin Stool Kit V3-V4 Finland
[9] 116 82 Stabilizer PSP PSP Spin Stool Kit V3-V4 Italy

[13] 206 133 Ambient temp Earth microbiome project protocol V4 United States
[12] 22 34 Stabilizer PSP PSP Spin Stool Kit V3-V4 Germany
[11] 29 26 Immediate freezing Custom Protocol Hopfner V4 Russia

After the bioinformatic analysis, 846 samples were retained. PD patients (472 samples)
represent 56% of the whole dataset. We uniformly processed the metagenomic data of all samples,
using supervised ML algorithms. In detail, random forest (RF), neural network (NN) and support
vector machine (SVM) were used for this evaluation since they are state-of-the-art approaches
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and are appropriate for this type of data [37]. The dataset was analyzed using cross-validation,
randomly selecting 80% of the samples to create the training set, and the remaining 20% to create the
test set and evaluate the prediction. The model was evaluated by resampling the test and training set
5 times, using a stratified cross-validation (K-fold = 5).

For each approach, the algorithm parameters were tuned through a grid search and were
selected to optimize the training phase. Prediction performance was evaluated by the AUC metrics,
which summarize true-positive and false-positive rates. The comparison of the three methods is
reported in Figure 1A,B. The AUC is significantly higher for RF (0.80 ± 0.01) than for NN (0.67 ± 0.03)
and SVM (0.54 ± 0.08) (Figure 1), indicating that RF is the most effective algorithm in distinguishing
between status (PD or HC), according to the bacterial families’ frequencies in the feces. In line with
this, Figure 1B indicates that the accuracy, precision, recall and F-score are higher for RF than for NN
and SVM.
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3.2. Feature Selection

Overall, the RF algorithm showed the best performance and has been selected to rank the
importance of the bacterial families for the prediction. This process, defined as “feature selection”,
identifies the most informative and relevant features in the classification of the PD status. The ranking
of the bacterial families in discriminating between HC and PD patients is reported in Table 2.

In order to identify the minimal number of bacterial families that can reliably predict the
pathological status, an embedded feature selection strategy was performed by re-training the RF
algorithm with a subset of families and comparing the corresponding metrics. Initially, the subset
included only the first 5 families in the ranking, shown in Table 2. The number of families was
systematically increased to re-train the algorithm until the AUC, the precision, the recall and the F-score
values were close enough to those obtained using the 52 total number of families for the training.
This process allowed for the removal of bacterial families not strictly involved in the gut dysbiosis of
Parkinson’s disease. The results indicate that by training the model with the first 22 bacterial families,
the AUC, precision, recall the F-score values were almost identical to those obtained using the total
number of families (Table S1), suggesting that this is the minimal subset that can be considered to
correctly predict the pathological status.
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Table 2. Ranking of the importance of the bacterial families in discriminating between healthy controls
and Parkinson’s disease (PD) patients.

Bacterial Family Ranking of
Importance

Higher (−) or Lower
(+) Abundance in
PD Patients from

RF Algorithm

References in the
Literature Reporting
Overabundance in

PD Patients

References in the
Literature Reporting
Lower Abundance in

PD Patients

Lachnospiraceae 1 − [14] [2,9–11,13,15–17]

Ruminococcaceae 2 − [2,14] [13,15]

Bacteroidaceae 3 − [2] [16]

Verrucomicrobiaceae 4 + [2,12,13,17]

Rikenellaceae 5 + [19]

Bifidobacteriaceae 6 + [13,16,17,19] [2,18]

Porphyromonadaceae 7 + [17]

Veillonellaceae 8 +

Enterobacteriaceae 9 + [9,15,17]

Alcaligenaceae 10 −

Streptococcaceae 11 + [19]

Christensenellaceae 12 + [13,16,17]

Erysipelotrichaceae 13 + [19]

[Odoribacteraceae] 14 +

Prevotellaceae 15 − [10,16,17]

Desulfovibrionaceae 16 + [14,19]

Coriobacteriaceae 17 − [17]

Clostridiaceae 18 − [2,10,16] [19]

[Barnesiellaceae] 19 +

Lactobacillaceae 20 + [9–11,16]

[Tissierellaceae] 21 +

Peptostreptococcaceae 22 − [16,17] [14,15]

Methanobacteriaceae 23 + [19]

[Mogibacteriaceae] 24 −

[Paraprevotellaceae] 25 +

Turicibacteraceae 26 −

Pseudomonadaceae 27 +

Victivallaceae 28 −

Campylobacteraceae 29 +

Synergistaceae 30 +

Pasteurellaceae 31 − [14] [10,13,19]

Corynebacteriaceae 32 +

S24-7 33 −

Enterococcaceae 34 + [9,11,15,17]

Actinomycetaceae 35 +

Moraxellaceae 36 −

Burkholderiaceae 37 −

Comamonadaceae 38 +

Alcanivoracaceae 39 −
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Table 2. Cont.

Bacterial Family Ranking of
Importance

Higher (−) or Lower
(+) Abundance in
PD Patients from

RF Algorithm

References in the
Literature Reporting
Overabundance in

PD Patients

References in the
Literature Reporting
Lower Abundance in

PD Patients

Oxalobacteraceae 40 −

Propionibacteriaceae 41 −

Xanthomonadaceae 42 −

Rhodobacteraceae 43 −

Fusobacteriaceae 44 +

Staphylococcaceae 45 −

Caulobacteraceae 46 +

Caldicoprobacteraceae 47 −

Succinivibrionaceae 48 +

Peptococcaceae 49 −

Flavobacteriaceae 50 +

[Weeksellaceae] 51 +

Aeromonadaceae 52 +

The importance of the first 22 families in discriminating between patients and controls is plotted
in Figure 2, together with their relative abundance. Interestingly, the plot shows that the importance of
each family is not directly correlated with the relative family abundance in the samples. In some cases,
we detected relevant species with low prevalence but high discriminative potential between “healthy”
and “diseased” subjects. For example, Verrucomicrobiaceae/Akkermansiaceae and Bifidobacteriaceae were
highly discriminative, although with a low average relative abundance.
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Figure 2. List of the 22 bacterial families required for discriminating between HC and PD patients.
For each family, the average percentage of abundance is represented by a bar, orange for HC and blue
for PD patients (left scale). The importance of the family in discriminating the status is represented by
a red dot (right scale).
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It is also worth noting that not all of the 22 families identified in this analysis are cited in the
previous studies investigating the role of gut microbiota in PD dysbiosis. In fact, among the first ten
families identified as the most important ones in the PD diagnosis, eight were already identified in
the literature, but two families—namely, Veillonellaceae and Alcaligenaceae—have never been reported
before (Table 2).

4. Discussion

In this study we present, for the first time, an ML data analysis on microbiota dysbiosis in PD
patients. We considered six available datasets from the SRA database, obtained from experiments
carried out in different laboratories (Table 1). We downloaded and re-analyzed the datasets,
uniformly processing the data using the most up-to-date bioinformatic procedures.

We initially evaluated the efficiency of three ML algorithms (RF, SVM and NN) in identifying
samples belonging to HC or PD patients comparing different metrics (AUC, accuracy, precision,
recall and F-score). The RF algorithm exhibited the best results providing an AUC of 80% and accuracy
of 71%. This result is satisfying since we are analyzing data from studies that differ for participants’
nationality and for several methodological aspects, such as DNA extraction kit, sample transport and
conservation (Table 1).

It is worth noting that, by analyzing the microbiota of diseases directly located in the gut,
higher AUC values have been reported [23]. On the other hand, AUC values around 80% are in line
with studies on the prediction of pathologies not directly related to the gut, such as obesity using 16S
rRNA metagenomic data [25], or type-2 diabetes using shotgun metagenomic data [23]. This might
indicate that the AUC value has reached the limit for Parkinson’s disease, although we cannot exclude
that this value could be improved by increasing the sample size.

The relatively low accuracy (71%) could be due to various methodological approaches used
in different laboratories in collecting, storing and processing data. As critically pointed out in a
recent review [5], methodological inconsistencies between gut microbiome case–control studies in PD
might contribute to the heterogeneity of the results. A lack of unique experimental and bioinformatic
protocols prevents a direct and straightforward comparison of the data. We emphasize the importance
of defining unique standards to permit a reliable comparison.

We found a subset of 22 bacterial families that provide prediction metrics almost identical to those
obtained when the RF algorithm was trained with the whole microbiota (52 families). Subsets made by
a lower number of relevant bacterial families (i.e., 5, 10) did not provide similar results, indicating that
the combination of fewer species is insufficient to characterize the microbiota associated with this
disease (Supplementary Table S1). This finding indicates the presence of a complex interplay of
numerous bacterial families involved in gut dysbiosis in Parkinson’s disease. Interestingly, the rank of
importance of each bacterial family is not directly correlated to its relative abundance.

Not all families identified by the RF algorithm were reported in the literature
(Table 2). Indeed, eight of the first ten families in the rank (Lachnospiraceae, Ruminococcaceae,
Bacteroidaceae, Verrucomicrobiaceae/Akkermansiaceae, Rikenellaceae, Bifidobacteriaceae, Porphyromonadaceae,
Enterobacteriaceae) are cited, whilst two families, Veillonellaceae and Alcaligenaceae—both higher in PD
patients—have never been reported before. The identification of new bacterial families that may play
an important role in predicting the PD status highlights the power of a prediction analysis based on
ML algorithms.

Finally, we want to point out that the values of the predictive metrics are probably too low
for an immediate application of the procedure for the purpose of Parkinson’s disease’s diagnostics;
however, the ranking of importance of bacterial families involved in the disease may help in its diagnosis.
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5. Conclusions

In this work, we processed 846 16S rRNA microbiota data coming from six different studies,
applying an ML approach. The RF algorithm provided an AUC of 80% and accuracy of 71% and
identified a subset of 22 families that can be used to discriminate between PD and HC.

Unfortunately, the data deposited in the public databases are only a small fraction of the data that
has been published up to now. This has prevented us from analyzing a larger number of data and
increasing the population of the training and test sets. It is necessary to train the RF algorithm with a
higher number of samples in order to increase the accuracy of the model and provide more robust results
on the association between the gut microbiota and PD. We propose that the scientific community should
build a network to share all the data produced by different laboratories, permitting the development of
a fully reliable tool for the diagnosis and prognosis of this disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/4/242/s1.
Table S1: Random forest performance with a reduced number of bacterial families.
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