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Beyond platelets function in hemostasis, there is emerging evidence to suggest that
platelets contribute crucially to inflammation and immune responses. Therefore,
considering the detrimental role of inflammatory conditions in severe neurological
disorders such as multiple sclerosis or stroke, this review outlines platelets involvement
in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and
inflammation are portrayed, focusing on the interaction of platelet receptors with other
immune cells as well as brain endothelial cells. Furthermore, we draw attention to the
intimate interplay between platelets and the complement system as well as between
platelets and plasmatic coagulation factors in the course of neuroinflammation. Following
the thorough exposition of preclinical approaches which aim at ameliorating disease
severity after inducing experimental autoimmune encephalomyelitis (a counterpart of
multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of
platelet-mediated neuroinflammation is addressed. Thus, current as well as future
propitious translational and clinical strategies for the treatment of neuro-inflammatory
diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-
mediated neuroinflammation could become an efficient adjunct therapy to mitigate
disease severity of multiple sclerosis or stroke associated brain injury.
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INTRODUCTION

Platelets, also called thrombocytes, are produced by megakaryocytes as tiny anucleate cells that,
however, contain mRNA and a translational machinery; hence, they are capable of synthesizing
proteins (1). After leaving the bone marrow, platelets circulate for about 7 to 10 days (2),
subsequently they are eliminated by macrophages mainly in the spleen and liver (3). Platelets are
org October 2020 | Volume 11 | Article 5486311

https://www.frontiersin.org/articles/10.3389/fimmu.2020.548631/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.548631/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:harald.langer@uksh.de
https://doi.org/10.3389/fimmu.2020.548631
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.548631
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.548631&domain=pdf&date_stamp=2020-10-06


Rawish et al. Platelets in Neuroinflammation and Thrombosis
classically regarded as the major actor of primary hemostasis.
Thus, their main function is stopping hemorrhage following
vascular injury by rapidly binding to damaged blood vessels and
forming thrombi (4). However, activated platelets also aggregate
during atherosclerotic plaque erosion or rupture, stimulating
thrombus formation and promoting severe atherothrombotic
diseases such as acute limb ischemia or myocardial infarction
(5, 6).

Beyond their importance in hemostasis and thrombosis, an
increasing body of evidence points to a crucial role of platelets for
inflammatory and immune responses (7, 8). For instance, platelets
have been demonstrated to mediate inflammatory response in
arthritis (9) or sepsis (10). Furthermore, thrombosis itself is
pathophysiologically linked with inflammation in most diseases
associated with ischemia-driven organ damage (11, 12).
Accordingly, platelets have been shown to be of decisive
importance for thrombo-inflammatory diseases such as stroke
(13). Emerging evidence indicates a detrimental role of platelets
not only in the context of neurovascular thrombosis but also in
other neuro-inflammatory conditions, e.g., multiple sclerosis (MS)
(14). Considering the severity of these diseases and the diminished
patients’ quality of life, there is an urgent need for novel
therapeutic options.

Therefore, this review summarizes recent insights into the
pathophysiological role of platelet receptors and related
downstream signaling as well as platelet-mediated cell-cell
interactions in neurovascular inflammation. Furthermore,
translational and clinical applications are portrayed in order to
delineate future therapeutic strategies for neuro-inflammatory
diseases such as stroke or MS by targeting platelet function.
Abbreviations: 5-HT, serotonin; ADAMTS13, a disintegrin and metalloprotease
with thrombospondin type 1 repeats 13; ADP, adenosine diphosphate; ALS,
amyotrophic lateral sclerosis; AP, activated platelet; ApoE, apolipoprotein E;
BBB, blood-brain barrier; BK, bradykinin; C3aR, complement receptor for C3a;
C5aR, complement receptor for C5aR; cAMP, cyclic adenosine monophosphate;
CCL, CC-chemokine ligand; CD40L, CD40 ligand; CLEC-2, C-type lectin-like
receptor-2; CNS, central nervous system; CSF, cerebrospinal fluid; CX3CL1,
chemokine (C-X3-C motif) ligand 1, fractalkine; CXCL, chemokine (C-X-C
motif) ligand; DC, dendritic cell ; EAE, experimental autoimmune
encephalomyelitis; F, coagulation factor; FasL, Fas ligand; FasR, Fas receptor;
FOXP3, Forkhead box P3; GP, glycoprotein; HIV, human immunodeficiency
virus; HUVEC, human umbilical vein endothelial cell; ICAM, intercellular
adhesion molecule; IL, interleukin; JAM-C, junctional adhesion molecules-C;
KKS, kallikrein–kinin system; LFA-1, lymphocyte function-associated antigen 1;
LPS, lipopolysaccharide; Mac-1, macrophage-1 antigen; MBL, mannan-binding
lectin; MCP1, monocyte chemotactic protein 1; MRI, magnetic resonance
imaging; MS, multiple sclerosis; MF, macrophage; Ne, neutrophil; NF-kB,
nuclear factor kappa-light-chain-enhancer of activated B cells; PAF, platelet
activating factor; PAMP, pathogen-associated molecular pattern; PAR, protease-
activated receptor; PCI, percutaneous coronary intervention; PDE,
phosphodiesterase; PECAM-1, platelet endothelial adhesion molecule-1; PF4,
platelet factor 4; PLA, forming platelet-leukocyte-aggregates; PMP, platelet-
derived microparticle; polyP, polyphosphates; PPX, recombinant Escherichia coli
exopolyphosphatase; PSGL-1, P-selectin glycoprotein ligand-1; RANTES,
regulated and normal T cell expressed and secreted; ROS, reactive oxygen
species; sCD40L, soluble CD40L; TF, tissue factor; TIA, transient ischemic
attack; TJs, tight junctions; TLR, toll-like receptor; tMCAO, transient middle
cerebral artery occlusion; TNF, tumor-necrosis factor; Treg, regulatory T cell;
TTP, thrombotic thrombocytopenic purpura; VCAM, vascular cell adhesion
protein; vWF, von Willebrand factor; WT, wild-type.

Frontiers in Immunology | www.frontiersin.org 2
MECHANISMS OF PLATELET-MEDIATED
THROMBOSIS AND INFLAMMATION

As injuries require both an efficient hemostasis and an
inflammatory immune response against entering pathogens, the
close linkage between inflammatory and thrombotic processes is
assumed to have an evolutionary origin (15, 16). Following
vasoconstriction, platelets are the first immunomodulatory cells
at the side of injury sealing damaged blood vessels by aggregation
and forming a thrombus. Thereby, platelets promote
inflammatory activity by an intimate crosstalk with leukocytes
(17): In case of vascular injury, neutrophils or monocytes are
suggested to interact either with endothelium-adherent platelets
or, prior to endothelial contact, directly with platelets forming
platelet-leukocyte-aggregates (PLA) which are recruited to the
inflamed vessel wall (18). Thus, platelets orchestrate the
inflammatory response by regulating the further adhesion of
innate immune cells to the inflamed endothelium, which is
regarded to be critical for the atherosclerotic disease process
(19). For instance, macrophage pro-inflammatory cytokine
secretion is enhanced following interaction with activated
platelets in vitro, suggesting that the presence of activated
platelets at sites of inflammation exacerbates pro-inflammatory
macrophage activation (20). Further molecular mechanisms and
receptors participating in the crosstalk between innate immune
cells and platelets are outlined below.

Interaction of Platelets With Cells of
Acquired Immunity
In addition to the interaction with the innate immune system, a
crosstalk between platelets and B cells as well as T cells has been
reported (21). Platelets have been demonstrated to induce B cell
isotype switching (22). When platelets are co-incubated with B-cells
in vitro, B-cells increase their production of IgG1, IgG2, and IgG3,
indicating that platelet content can contribute to B-cell function and
alter adaptive immunity (23). T-cell activation increases platelet
aggregation via both T cytolytic and T helper cells mediated by
platelet GPIIb/IIIa, CD40L, and lymphocyte integrin alpha M (24).
Experimental approaches indicate that platelets may facilitate the
recruitment of lymphocytes to an injured vessel at a site of vascular
inflammation, constituting a central step in T-cell trafficking (25).
Furthermore, activated platelets can modulate T-cell functions by
releasing platelet factor 4 (PF4, chemokine [C-X-C motif] ligand 4,
CXCL4), RANTES (CC-chemokine ligand 5, CCL5), or serotonin
(26–28). For instance, PF4 is necessary for the limitation of Th17
expansion and differentiation (29). Serotonin, which is largely stored
in platelet d-granules, can activate naïve T-cells to stimulate their
proliferation (26, 27). Hence, the interaction between platelets and
lymphocytes should be considered as a relevant intersection in
thrombo-inflammatory processes; therefore, receptors in
platelet-immune cell interaction are further delineated in the
following chapters.

Platelets and the Humoral Immunity
Platelets have been identified as a major source of chemokines
and cytokines at the site of inflammation (30). For instance,
activated platelets mediate inflammatory signaling and cell
October 2020 | Volume 11 | Article 548631
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recruitment by secreting RANTES, PF4, and IL-1b (31, 32).
Emphasizing the role of platelets at the intersection between
thrombosis and inflammation, their IL-1 activity yielded an
exacerbation of atherosclerotic lesions as well as an
upregulation of adhesion molecules and chemokine expression
by human umbilical vein endothelial cells (HUVECs) (33, 34).
Remarkably, platelet activation of brain endothelium via IL-1 has
been recognized to promote the release of CXCL1, which plays
an essential role in the subsequent leukocyte recruitment during
neuroinflammation (35, 36). Furthermore, platelets contain
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) family members (37) that are critically involved in both
inflammatory and thrombotic responses, which has recently
been reviewed elsewhere (38). Moreover, a crosstalk between
platelets and the complement system conduces to platelet-
mediated inflammation (39, 40). Thus, the interaction of
platelets with the complement system will be discussed here in
the context of neurovascular inflammation, whereas further
aspects have been comprehensively portrayed elsewhere (11).

Overall, a broad range of mechanisms contribute to platelet-
mediated inflammation, revealing several fields for future
research on diseases associated with thromboinflammation.
PLATELET RECEPTORS AND
INTERACTIONS IN THE CONTEXT OF
THROMBOINFLAMMATION

Both mechanisms of hemostasis respectively thrombosis and
mechanisms of platelet-mediated inflammation require a close
interaction of platelets with endothelial and immune cells but
also with the extracellular matrix. Platelet adhesion receptors
constitute the major determinants of these interactions.
Commonly, four types of platelet receptors are considered as
being crucial for hemostasis, thrombosis and inflammation:
integrins, leucine-rich glycoproteins (GPs), selectins as well as
receptors of the immunoglobulin type.

Under flow conditions, especially at high shear stress
(>500 s−1) as in small arteries and arterioles, the initial
adhesion of platelets to the injured blood vessel wall requires
the interaction between immobilized von Willebrand factor
(vWF) on the surface of the endothelium or in the
subendothelial matrix with its platelet receptor GPIba, which
is part of the GPIb-IX-V complex (41, 42). In addition, exposed
subendothelial collagen binds reversibly to platelet GPIa/IIa
recptor (also known as integrin a2b1) and GPVI receptor, a
member of the immunoglobulin superfamily (43). The firm
binding of collagen to platelet GPVI receptor allows resistance
towards high shear rates, and furthermore, induces platelet
activation by a rise in the cytosolic Ca2+ concentration. Thus,
platelet shape changes and P-selectin, platelet endothelial
adhesion molecule-1 (PECAM-1), vWF, and fibrinogen from
a-granules as well as ADP, calcium and serotonin from dense
granules are released, which in turn fuels further platelet
activation via autocrine and paracrine signaling by G-protein
Frontiers in Immunology | www.frontiersin.org 3
coupled receptors (44, 45). The final common pathway of platelet
activation is the conformational change in platelet GPIIb/IIIa
(also named integrin aIIbb3) receptor which results in the cross-
link of fibrinogen or vWF between GPIIb/IIIa receptors, leading
to platelet aggregation (46). Thereby, platelet integrin receptors
a2b1, a5b1, and a6b1 stabilize thrombus formation by binding to
components of the extracellular matrix (47–49).

Importantly, platelet-mediated leukocyte recruitment is
initiated by binding of platelet P-selectin to leukocyte P-
selectin glycoprotein ligand-1 (PSGL-1) (50), inducing
activation of b1 and b2 integrins and increasing adhesion of
leukocytes to activated endothelium (51). Contrariwise, PSGL-1
on platelets can interact with P-selectin on endothelial cells as
well (52). Interestingly, fractalkine (CX3CL1) expressed by
inflamed endothelial cells can bind to the fractalkine receptor
CX3CR1 on platelets triggering an increased P-selectin
expression on platelets, thereby initiating local accumulation of
leukocytes (53). Besides, another member of platelet selectin
family, C-type lectin-like receptor-2 (CLEC-2), is thought to be a
major player in thrombo-inflammatory disorders (54): Using a
murine model of systemic Salmonella Typhimurium infection, it
has been demonstrated that inflammation in several tissues
triggers thrombosis within vessels via activation of CLEC-2 on
platelets by its ligand podoplanin exposed to the vasculature
following breaching of the vessel wall (55). Thus, targeting
CLEC-2 could be a potential therapeutic approach in order to
control infection-driven thrombosis. Interestingly, mice with
general inducible deletion of CLEC-2 or platelet-specific
deficiency in CLEC-2 were protected against deep vein
thrombosis (56). With respect to neuroinflammation, it has
recently been demonstrated that inhibition of spleen tyrosine
kinase (Syk), which is part of the CLEC-2 downstream pathway,
reduces neuroinflammation and infarct volume after ischemic
stroke in mice (57). On the other hand, platelet CLEC‐2 has been
shown to diminish trauma‐induced neuroinflammation and
restore blood–brain barrier integrity following controlled
cortical impact injury (58). Thus, the potential of CLEC-2 as a
target in the context of neuroinflammation remains uncertain.

GPIb interacts with the leukocyte integrin macrophage-1
antigen (Mac-1, also known as aMb2 or CD11b/CD18);
thereby promoting a firm leukocyte/platelet adhesion (59).
Accordingly, GPIb inactivation leads to reduced leukocyte
adhesion to the vessel wall as well as to diminished development
of atherosclerotic lesions in atherosclerosis-prone apolipoprotein E-
deficient (ApoE−/−) mice (60). Underlining the importance of GPIb
for cerebral inflammation, it has recently been reported that platelet-
mediated neutrophil infiltration to the brain can be reduced by 44%
when platelet receptor GPIb is blocked in an in vivo model of
lipopolysaccharide (LPS)-induced neuroinflammation (61).

In addition to GPIb, fibrinogen bound to platelet GPIIb/IIIa
receptor can also interact with leukocyte Mac-1 in a platelet
activating factor (PAF) regulated manner (62). Mac-1 on
monocytes and neutrophils were identified as critical molecular
links between inflammation and thrombosis, e.g., in myocardial
infarction (62) or else in thrombotic glomerular injury (63).
Strikingly, recent experimental approaches have demonstrated
October 2020 | Volume 11 | Article 548631
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that both Mac-1 deficiency and mutation of the Mac-1-binding
site for GPIb delay thrombosis after carotid artery injury without
affecting parameters of hemostasis (64). Thus, targeting Mac-1-
mediated leukocyte/platelet interaction is suggested to have an
anti-thrombotic therapeutic potential with reduced bleeding
risk (64).

Fascinatingly, platelet-derived microparticles (PMPs), that are
generated from the plasma membrane upon platelet activation,
harbor functional GPIIb/IIIa receptors which can be acquired by
neutrophils and cooperate in neutrophil-induced inflammation
via NF-kB activation (65). Accordingly, GPIIb/IIIa receptor
antagonists reduced thrombo-inflammatory processes, as the
formation of PLA, in patients with acute coronary syndromes
undergoing percutaneous coronary intervention (PCI) (66). In the
course of neurovascular inflammation, magnetic resonance
imaging (MRI) studies demonstrated the presence of activated
platelet GPIIb/IIIa receptor in the inflamed brain of malaria-
infected mice using a specific antibody conjugated to iron oxide
microparticles (67). Elevated PMP levels have also been detected
in stroke patients (68, 69). However, a prognostic value of plasma
PMP on recurrence of stroke, neurological outcome or survival is
not established (70). Therefore, the pathophysiological
significance of PMPs in stroke remains elusive.

In addition, a contribution of platelet GPVI receptor to
thrombo-inflammatory disorders has been repeatedly shown
(54). For instance, inhibition of GPVI causes a reduction in
inflammatory cell recruitment and infarct size following
myocardial ischemia-reperfusion injury by improving
microperfusion (71). Further receptors of the immunoglobulin
superfamily are also of importance for platelet interactions:
Under low shear stress platelets interact with leukocytes by
binding of intercellular adhesion molecule 2 (ICAM-2, also
known as CD54) on platelets to lymphocyte function-
associated antigen 1 (LFA-1) on leukocytes (72). Moreover,
junctional adhesion molecules-C (JAM-C) expressed on
platelets are critical for the recruitment of DCs to the vascular
wall via an interaction with Mac-1 on DCs (73).

Intriguingly, platelets express functional toll-like receptors
(TLRs) (74), which are a major family of receptors that recognize
pathogen-associated molecular patterns (PAMPs). In the context
of thrombosis and inflammation, it has lately been revealed that
platelet TLR2 can accelerate thrombosis in hyperlipidemic
ApoE−/− mice (75). Further interactions of platelet TLRs in
thrombo-inflammatory responses have been extensively
reviewed elsewhere (76). In addition, complement receptors for
C3a (C3aR) and C5a (C5aR) have been detected on platelets (77,
78); whereby platelet C5aR has been correlated to markers of
platelet activation (79). Interestingly, a strong positive
correlation of platelet C3aR expression with activated GPIIb/
IIIa has been reported in thrombi obtained from patients with
myocardial infarction (77). Besides, C3 on platelets has been
shown to be elevated in ischemic stroke (80), further indicating
an intimate relation between the complement system and
platelets in cardiovascular diseases.

CD40 and CD40L (a member of the tumor-necrosis factor
[TNF] superfamily, also named as CD154) are a receptor and its
Frontiers in Immunology | www.frontiersin.org 4
corresponding ligand which are decisive mediators of
interactions between lymphocytes and antigen-presenting cells
(81). Remarkably, CD40L has been implicated in numerous
inflammatory conditions, such as atherothrombotic diseases
(82) or else neuro-inflammatory disorders including cerebral
malaria (83), Alzheimer’s disease (AD) (84, 85) as well as HIV-
associated CNS-inflammation (86). CD40L is present in the
granules of resting platelets (87) and is rapidly translocated to
the platelet surface upon activation (88). Platelet-expressed
CD40L has been indicated to affect DCs, B cells as well as T
cells, providing a crosslink between innate and adaptive
immunity (89). Moreover, platelet CD40L interacts with CD40
on endothelial cells, promoting secretion of chemokines, such as
IL-8 and monocyte chemotactic protein 1 (MCP1) as well as
expression of adhesion molecules such as E-selectin, vascular cell
adhesion molecule 1 (VCAM-1), and ICAM-1 (88). Platelet
CD40L also contributes to neuroinflammation by inducing
activation of astrocytes and microglia (90). Furthermore,
activated platelets express soluble CD40L (sCD40L) which in
turn induces endothelial secretion of IL-6 and surface expression
of P-selectin. Thus, CD40L-mediated interactions promote
migration of leukocytes to the site of vascular injury and
subsequent adhesion (46).

The potential role of platelets in (neuro-) inflammation can
be underlined by findings from neurologic complications of
malaria. In Patients with Malaria, platelets were observed
binding directly with and killing intraerythrocytic parasites of
each of the Plasmodium species studied, a process which seems to
be dependent on PF4 (91). In fact, thrombocytopenia is a
hallmark of blood-stage plasmodium infection, and malaria is
characterized by a procoagulant state that is most pronounced in
Plasmodium falciparum (Pf) infections, the most virulent of the
5 species of Plasmodium infecting humans (92, 93). Other
studies do not favor the hypothesis of direct killing of bacteria
by platelets, but rather suggest an indirect inflammation-
activating effect. Recently, it was demonstrated that platelets
elicit the pathogenesis of malaria and that platelet CD40 is a key
molecule in this process using an adoptive transfer model of WT
platelets into CD40-KO mice, which are resistant to
experimental cerebral malaria, whereby experimental cerebral
malaria mortality and symptoms in CD40-KO recipients was
partially restored (94). Platelet depletion experiments
demonstrated that platelets contribute to the inflammatory
response of experimental cerebral malaria, particularly in the
early phase (95, 96).

Summarized, the diversity of platelet receptors participating
in platelet interactions reveals various interesting targets within
the context of platelet-mediated inflammation. Thus, the most
promising targets during neurovascular inflammation are
illuminated below.

Platelets, the Coagulation Cascade and
Thrombosis
The classical plasmatic coagulation cascade of secondary
hemostasis consists of the contact activation (intrinsic)
pathway, the tissue factor (TF; extrinsic) pathway as wells as
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the final common pathway (97). This traditional theory of blood
coagulation is suitable for describing coagulation in vitro but it
has flaws as a model of the hemostatic process in vivo (98). For
instance, the model cannot explain why hemophilia A patients
bleed although they have an intact “extrinsic” pathway (99).
Thus, a current cell biological model of coagulation divides
coagulation into three overlapping phases: Firstly, the initiation
phase, in which low amounts of active coagulant factors are
generated. At this stage, TF in damaged vessel binds “extrinsic”
factor (F)VIIa to activate “intrinsic” FIX as well as FX. In the
second stage, the amplification phase, levels of active coagulation
factors, such as thrombin are boosted, leading to platelet-
activation by cleaving protease-activated receptor 1 (PAR1).
Finally, in the propagation phase, coagulation factors bind to
procoagulant membranes of activated platelets driving formation
of fibrin clots (100). Hence, according to the cellular model of
coagulation, the “intrinsic” pathway mainly serves as an
amplification loop initiated by the TF pathway (100).

Nevertheless, one should not undervalue the role of the
“intrinsic” pathway. For instance, platelets are able to activate
FXII as they contain negatively charged polyphosphates (polyP)
which can be externalized onto the cell membrane upon platelet
activation (101). Thereby, platelets promote subsequent activation
of plasma kallikrein, FIX and further downstream coagulation
factors of the ‘intrinsic’ pathway (102). Interestingly, polyP-
dependent FXII activation does not yield a faster clot formation,
but rather an increased fibrin clot stability (100). Accordingly, high
levels of FXII were associated with thrombosis, whereas FXII
inhibition reduces thrombus formation in mice (103) as wells as
in primate thrombosis model (104). However, FXII deficiency is
not associated with bleeding (105). Thus, targeting FXII might be a
pharmacological option in order to reduce arterial thrombosis risk
without influencing hemostasis (106). In line with this, deficiency
or inhibition of FXII protected mice from ischemic brain injury
(107, 108): Using a transient middle cerebral artery occlusion
(tMCAO) modell (109), Kleinschnitz et al. found that the
volume of infarcted brain in FXII-deficient (FXII−/−) and FXII
inhibitor–treated mice are substantially less than in wild-type (WT)
controls, without an increase in infarct-associated hemorrhage
(107). Furthermore, treating FXII−/− mice with human FXII
“rescued” the WT phenotype regarding infarct volume as well as
intravascular fibrin and platelet deposits leading to vessel occlusion
(107). The importance of FXII in neurovascular thrombo-
inflammatory diseases is underlined by the notion that a lack of
its downstream coagulation factor XI has protective effects against
stroke in humans (110) as well as in tMCAO mice model (107).
Besides, activation of the kallikrein–kinin system (KKS) by FXII
stimulates the production of the potent proinflammatory peptide
bradykinin (111). Strikingly, bradykinin receptor B1 knockout
mice have been shown to develop reduced brain infarct volumes
after tMCAO compared with WT controls (112); thereby,
crosslinking FXII-mediated thrombotic activity to inflammation.

Further strengthening the hypothesis that an interaction of
platelets with the intrinsic pathway of coagulation could contribute
to neurovascular inflammation and stroke, Choi et al. have
demonstrated that polyP secreted by activated human platelets
Frontiers in Immunology | www.frontiersin.org 5
also accelerates factor XI activation mediated by thrombin (113).
However, a potential direct crosslink between synthesis of polyP in
platelets and the involvement of the coagulation cascade in stroke
has not yet been investigated, as the protein(s) responsible for the
polyP synthesis in higher eukaryotic species have not been
identified so far (114). Nevertheless, neutralizing polyP using
recombinant Escherichia coli exopolyphosphatase (PPX) (115)
in tMCAO mice model could be an absorbing alternative
experimental approach.

Beside interacting with the “intrinsic” pathway of the
coagulation system, activated platelets may release TF after de
novo synthesis (116). However, this assumption is the subject of a
controversial discussion, as other, flow cytometric based,
investigations indicated that no TF would be expressed on
activated platelets (117). Only recently has the debate whether
platelets can release TF by themselves been portrayed elsewhere in
detail (118, 119). Regardless of this debate, platelet CD40L
expression has been reported to induce monocyte expression of
tissue factor, which in turn activates the extrinsic coagulation
cascade (120); thus, emphasizing the intimate interaction between
platelets, immune cells and the plasmatic coagulation system.
CONTRIBUTION OF PLATELETS TO
NEUROVASCULAR THROMBOSIS AND
THROMBOINFLAMMATION

Stroke is the second leading cause of death and third most
common cause of disability worldwide. Approximately 80% of
all strokes are caused by cerebral ischemia, whereas hemorrhagic
events account for the remainder (121). Most nonlacunar ischemic
strokes are of thromboembolic origin, with common sources of
embolism being cardiac diseases, particularly atrial fibrillation, as
well as symptomatic extracranial large artery atherosclerosis (122).
Immediately after intracranial vessel occlusion by an embolus the
lack of oxygen and glucose in the affected brain tissue leads to focal
neurological deficits such as hemiparesis or aphasia. The mainstay
of treatment for ischemic stroke is prompt recanalization by
thrombolysis or mechanical thrombectomy (123). Unfortunately,
many patients display secondary infarct growth despite successful
vessel recanalization. As indicated above, reperfusion injury has
been attributed to the thrombo‐inflammatory activity of platelets
and immune system cells (124). In particular, evidence suggests
that T cells crucially contribute to reperfusion injury in stroke as
immunodeficient Rag1−/− mice, which are lacking of T cells and B
cells, developed smaller infarcts after tMCAO compared with WT
mice (125, 126). Additionally, the critical contribution of T cells to
brain injury in stroke had been further highlighted, as adoptive
transfer of T cells, to Rag1−/− mice restored susceptibility to
reperfusion injury after tMCAO (125, 126). Later on,
particularly Forkhead box P3 (FOXP3)positive regulatory T
(Treg) cells have been identified as the detrimental type of T cells
in ischemia–reperfusion injury (127). Strikingly, the removal of
platelets from the circulation of Rag1−/− mice that received
adoptive transfer of Treg cells has led to infarcts that were as
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small as in naive Rag1−/− mice after tMCAO (127). Thus, this
investigation of Kleinschnitz et al. first discovered that the harmful
effects of T cells in ischemia–reperfusion depend on platelets;
thereby, underlining the determining role of platelets in stroke-
associated thromboinflammation in a compelling fashion.

However, blockade of platelet GPIIb/IIIa receptor has led to
intracranial hemorrhage and has not reduced cerebral infarct
sizes following tMCAO in mice (128). In line with this, anti-
GPIIb/IIIa treatment of patients with acute ischemic stroke is
associated with a significant risk of intracranial hemorrhage with
no evidence of any reduction in death or disability in survivors
(129). Thus, final platelet aggregation via GPIIb/IIIa is not the
critical mechanism underlying thromboinflammation and
reperfusion injury in stroke.

In view of the delineated GPIb-mediated interaction between
platelets and leukocytes, the vWF/GPIb axis could, however, be a
potential pathomechanism of thromboinflammation in stroke.
Indeed, blockade of vWF binding site on GPIb using p0p/B has
reduced infarct size and improved reperfusion as well as
neurological status after tMCAO (128). These effects were
detected both in prophylactic (1 h before tMCAO) and
therapeutic (1 h after tMCAO) setting. Furthermore, it has
recently been revealed that inhibition of GPIb not only reduces
infarct size but also limits the local inflammatory response in the
ischemic brain, since levels of inflammatory cytokines and
infiltration of T cells as well as macrophages were reduced
after GPIb inhibition (130). Notably, GPIb blockade has not
been accompanied by an increase in intracerebral bleeding
complications (128). In line with these findings, both GPIb-
deficient (131) and vWF-deficient mice (130) displayed smaller
infarcts and a better neurological outcome than WT mice after
tMCAO. Accordingly, apoptosis in the brain tissue was reduced
in GPIb-deficient mice (132). Thereby, Schleicher et al. revealed
that platelets induce neuronal apoptosis via expression of
membrane bound Fas ligand (FasL) (132).

Exemplifying the suggested importance of the interaction
between leukocyte Mac-1 and platelet GPIb in neurovascular
thromboinflammation, mice deficient in Mac-1 have been found
to be less susceptible to cerebral ischemia (133). Further
supporting the role of the vWF-GPIb axis, mice lacking A
disintegrin and metalloprotease with thrombospondin type 1
repeats 13 (ADAMTS13), an enzyme that cleaves highly
thrombogenic large vWF to smaller and less active vWF, are
more vulnerable to brain damage following tMCAO (134). The
reperfusion injury in ADAMTS13-deficient mice has further
been accompanied by an increased accumulation of immune
cells in the ischemic brain (134), underscoring the role of
inflammation in neurovascular thrombosis. In accordance with
experimental findings, high serum levels of vWF in patients as
well as autoantibodies against ADAMTS13 have been identified
as risk factors for stroke (135, 136).

As outlined above, further platelet activation following vWF-
GPIb interaction is mainly driven by GPVI. Displaying GPVI as
another key player in the neuronal damage during stroke, its
inactivation by GPVI antibody (JAQ1) caused reduced brain
infarct volumes after tMCAO without increasing the risk for
Frontiers in Immunology | www.frontiersin.org 6
cerebral hemorrhage (128). In addition, Kraft et al. have
demonstrated that both GPVI and GPIb blockade protect from
stroke in aged mice, mice with diabetes mellitus as well as
hypertensive mice, suggesting that targeting GPVI or GPIb may
be a future therapeutic option for patients with accompanying
common metabolic diseases (137). Accordingly, inhibition of
phospholipases D1 and D2, which are downstream signals of the
vWF‐GPIb axis in platelets (138), has yielded reduced susceptibility
to stroke progression following tMCAO again without increasing
bleeding risk (139). Likewise, the blockade of GPVI dependent
downstream pathways has been reported to protected from stroke
progression after tMCAO by reducing Ca2+ responsiveness in
platelets (140). Platelet granule secretion depends on intracellular
Ca2+ mobilization (141) and has been demonstrated to be crucial in
ischemic-reperfusion injury (142). For instance, mice showing
deficiency in both platelet dense granule secretion (143) and a-
granule secretion (144) were protected from cerebral ischemia after
tMCAO without observation of intracranial hemorrhage.

A role in cerebral ischemia-reperfusion injury has also been
described for CD40L. According to Ishikawa et al., both CD40 and
CD40L-deficient mice showed reduced infarct volume after
tMCAO compared with WT mice (145). This notion was
accompanied by diminished platelet/leukocyte adhesion, blood
cell recruitment and neurovascular permeability in CD40(L)-
deficient mice. Supporting the role of CD40/CD40L in
thromboinflammation, plasma levels of sCD40L were significantly
higher in patients with acute cerebral ischemia compared with
controls. Furthermore, CD40 expression on monocytes was higher
in stroke group, accompanied by significantly increased amount of
prothrombotic platelet-monocyte aggregates (146).

The insinuated contribution of the complement system to
platelet-mediated thromboinflammation has recently been
depicted in a gripping fashion: Using C3aR-/- mice, Sauter et al.
demonstrated not only that complement activation fragment C3a
regulates bleeding time but also that C3aR-/- mice are less prone to
experimental stroke and myocardial infarction (77). Notably,
reconstitution of C3aR-/- mice with C3aR+/+ platelets has restored
bleeding time and susceptibility to reperfusion injury after tMCAO
(77). In this context, it is worthwhile to mention the association of
high serum levels of complement lectin pathway activator mannan-
binding lectin (MBL) with cardiovascular diseases such as stroke
(147). In accordance, infarct volumes and neurological deficits after
tMCAO were smaller in MBL-/- mice than in WT controls.
Remarkably, Orsini et al. have recently demonstrated that
protection of MBL-/- mice against cerebral ischemia-reperfusion
injury is accompanied by a less inflammatory phenotype of
platelets as indicated by reduced IL-1a content in platelets (148).
Furthermore, cultured human brain endothelial cells subjected to a
lack in oxygen/glucose and exposed to platelets from MBL-/- mice
displayed less cell death and lower CXCL1 release than those
exposed to WT platelets (148). These observations distinctly
underscore the importance of the pathophysiological crosstalk
between platelets, brain endothelial cells, and mediators of the
immune system in reperfusion injury of the brain.

Taken together, particularly GPIb, GPVI, C3aR, and MBL are
crucial for platelets orchestration of thromboinflammation in
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stroke (Figure 1). Therefore, corresponding translational
approaches that may provide novel therapeutic strategies in
stroke treatment and prevention are depicted further below.
CONTRIBUTION OF PLATELETS TO
NEUROVASCULAR INFLAMMATION IN
NEURODEGENERATIVE DISEASES

Neuroinflammation has been associated with a variety of further
diseases including amyotrophic lateral sclerosis (ALS), epilepsy,
traumatic brain injury, Parkinson’s disease, and Huntington’s
chorea (149) but also with non-neurological chronic conditions
such as rheumatoid arthritis, obesity and diabetes (150, 151).
While the contribution of platelets to central nervous system
(CNS)-inflammation in some of these diseases has recently been
Frontiers in Immunology | www.frontiersin.org 7
reviewed elsewhere (152), this review focuses on MS and
Alzheimer’s disease (AD).

Platelets in Experimental Autoimmune
Encephalomyelitis and Multiple Sclerosis
MS is a chronic demyelinating and neurodegenerative disease.
Although, the pathogenesis of MS is still not completely
understood, it is commonly accepted as a heterogeneous,
immune-mediated condition which is caused by gene–
environment interactions (153). Focal areas of demyelination
(plaques) constitute a pathological hallmark of MS. These areas
are typically characterized by breakdown of the blood-brain
barrier (BBB), whereby antigenpresenting cells (APCs) such as
B cells and myeloid cells (macrophages, dendritic cells and
microglia) pass through the BBB and initiate the differentiation
of memory T cells into pro-inflammatory T helper (Th)
lymphocytes (Th1 and Th17). Subsequent recruitment of
FIGURE 1 | Mechanisms of thromboinflammation in stroke; partially adopted and modified from (206, 207): Initial tethering of platelets to the extracellular matrix or
endothelium at the site of ischemic vascular injury is mediated by GPIb binding to exposed vWF (1). The interaction between platelet GPVI receptor and
subendothelial collagen triggers platelet activation (2). Activated platelets release paracrine factors including ADP and polyP (3), promoting functional upregulation of
GPIIb/IIIa (4). Negatively charged polyP activate coagulation FXII (5). FXIIa stimulates the activation of the KKS, thereby promoting the release of the proinflammatory
peptide bradykinin. In company with further cytokines such as IL-1ß, bradykinin causes endothelial cell damage leading to vascular edema and neuronal damage (6).
On the other hand, FXIIa initiates the intrinsic coagulation pathway, triggering thrombus formation by fibrin engenderment (7). Activated platelets mediate
thromboinflammation also by recruitment of leukocytes via binding of platelet P-selectin to leukocyte PSGL-1 as well as via GPIb/Mac-1 interaction (8). Stable
tethering of leukocytes to the vessel wall is achieved by the interaction between platelet CD40L with CD40 on endothelial cells, promoting the expression of adhesion
molecules such as ICAM-1 and VCAM-1 on endothelial cells (9). Thereby, platelets orchestrate the infiltration of immune cells into the brain parenchyma leading to
further neuronal damage. Besides, platelets can initiate apoptosis via the expression of death receptor FasL on their surface (10). ADP, adenosine diphosphate; AP,
activated platelet; BK, bradykinin; FasL, Fas ligand; FasR, Fas receptor; FXII, factor XII; GP, glycoprotein; ICAM-1, intercellular adhesion molecule 1; IL, interleukin;
KKS, kallikrein–kinin system; Mac-1, macrophage-1 antigen; polyP, polyphosphates; PSGL-1, P-selectin glycoprotein ligand-1; TJs, tight junctions; VCAM-1,
vascular cell adhesion protein 1; vWF, von Willebrand factor. Figures created with BioRender.com.
October 2020 | Volume 11 | Article 548631

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rawish et al. Platelets in Neuroinflammation and Thrombosis
inflammatory effector cells into the CNS parenchyma is
mediated by leukocyte or endothelial adhesion molecules and
accompanied by pro-inflammatory stimulation of microglial
cells which promotes destruction of axonal myelin sheath (153).

Platelet abnormalities in MS patients were already reported
decades ago (154, 155). These observations are supported by
more recent reports that have detected platelet specific GPIIb
(CD41) in MS plaque of patients as well as in brain tissue of mice
with experimental induced autoimmune encephalomyelitis
(EAE, a counterpart of MS in mice) (14, 156). Accordingly,
cerebrospinal fluid (CSF) levels of PAF have been correlated with
both EAE (157) and MS disease activity (158). Interestingly, PAF
receptor knockout have yielded a diminished severity of
inflammation and demyelination in EAE mice (157). Recently,
it was demonstrated that brain-abundant gangliosides GT1b and
GQ1b were specifically recognized by platelets and platelets
recognize brain-specific glycolipids in area of perivascular
space thereby, triggering immune response cascades (159).

Unequivocally demonstrating a crucial contribution of platelets
to EAE disease pathogenesis, platelet depletion has attenuated
EAE in mice, particularly in the effector phase of the disease;
thereby, reducing CNS mRNA levels of CCL-2, CCL-5, CCL-19,
CXCR-4, and IL-1b as well as the expression of adhesion molecule
Frontiers in Immunology | www.frontiersin.org 8
ICAM-1 (14) (Figure 2). Consistently, recruitment of leukocytes
to the inflamed CNS has been diminished by platelet depletion
(14, 160). Furthermore, administration of blocking antibodies
against GPIIb/IIIa as well as platelet GPIb and its interaction
with leukocyte counterreceptor Mac-1 has ameliorated EAE; thus,
the involvement of platelets in EAE is regarded to be multi-faceted
(14). By contrast, P-selectin is not required for the development of
EAE (161).

Besides, serotonin from platelets dense granules may also
induce neuroinflammation in EAE, since platelet serotonin has
been reported to promote neutrophil recruitment to sites of acute
CNS inflammation in mice (162). Remarkably in this context,
serotonin transporter depleted mice were less susceptible to EAE
(163), and in addition, treatment with selective serotonin-reuptake
inhibitor fluoxetine reduced disease activity of relapsing MS
patients (164). Interestingly, the secretion of serotonin by
platelets has been demonstrated to stimulate differentiation of T
cells toward pathogenic Th1, Th17, and interferon-g/interleukin-
17–producing CD4 T cells in a stage-depended manner: Early in
MS and EAE, high levels of platelet-derived serotonin stimulate
differentiation of pathogenic T cell subsets, promoting
proinflammatory responses (165). At the later stages of MS and
experimental autoimmune encephalitis, platelets became
FIGURE 2 | Platelet mediated inflammation in multiple sclerosis (MS) and corresponding mice model of experimental autoimmune encephalomyelitis (EAE):
Autoimmune T cells induce the breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Consequently, inflammatory cells such as lymphocytes,
macrophages (MF) and neutrophils (Ne) penetrate the BBB, promoting reactive activation of astrocytes and microglial cells and finally leading to myelin sheath
destruction and axonal damage. Platelets can mediate neuroinflammation in MS/EAE by adhering to the endothelium and interacting with inflammatory and
endothelial cells in various ways as depicted here. Furthermore, platelets release serotonin (5-HT), interleukin (IL)-1b and platelet activating factor (PAF), which in turn
have been associated with disease progress in MS. AP, activated platelet; GP, glycoprotein; ICAM-1, intercellular adhesion molecule 1; Mac-1, macrophage-1
antigen; PSGL-1, P-selectin glycoprotein ligand-1; ROS, reactive oxygen species; VCAM-1, vascular cell adhesion protein 1; vWF, von Willebrand factor.
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exhausted in their ability to produce proinflammatory factors and
stimulate CD4 T cells but increase their ability to form aggregates
with CD4 T cells, thereby decreasing T-cell activation and
downmodulating EAE (165).

Furthermore, Sotnikov et al. demonstrated a new role of
platelets in in the pathogenesis of EAE as P-selectin on platelets
can interact with sialated glycosphingolipids (gangliosides) that are
integrated in astroglial and neuronal lipid rafts which may
constitute a new type of the neuronal damage danger signal
(159). During neuroinflammation, platelets recognize these
specific cerebral glycolipid structures and accumulate in the
central nervous system parenchyma triggering further immune
response cascades. Fascinatingly, preventing the interaction
between platelets and brain-derived lipid rafts in the CNS
substantially ameliorated EAE development (159).

Addressing neuropsychiatric symptoms of MS, such as
anxiety and depression, it has recently been shown that GPIb
antibody-mediated platelet depletion prevented the EAE-
induced increase in anxiety-like behavior which was associated
with reduction of the pro-inflammatory environment to control
levels in the hippocampus of mice (166).

However, it is suggested that platelets are only one player in
the interaction of coagulatory and thrombo-inflammatory
systems with neuroinflammation in MS. For instance, tissue
factor as well as thrombin were highly expressed in chronic
active lesions of MS patients (167). Interestingly, thrombin
inhibition by hirudin has ameliorated EAE (167). Furthermore,
Göbel et al. have reported that deposition of FXII is detectable in
CNS tissue of MS patients (168). Grippingly, deficiency, or
pharmacologic blockade of FXII have rendered mice less
susceptible to EAE (168). Considering the above depicted
interaction of platelets and FXII, a FXII-mediated contribution
of platelets to EAE might be feasible.

To recapitulate, both platelet GPIIb/IIIa and GPIb receptor
embody promising targets for future MS therapy. Furthermore,
the P2Y12 receptor antagonists clopidogrel and ticagrelor have
recently been shown to alleviate disease severity of EAE in mice
(169). However, neither glycoprotein inhibitors nor ADP receptor
antagonists have yet been investigated in clinical trials for treatment
of MS patients. But interestingly, glatiramer acetate (Copaxone), an
FDA and EMA approved drug for the treatment of MS, has been
demonstrated to inhibit thrombin-induced calcium influx in human
and mouse platelets. Furthermore, glatiramer acetate also decreased
thrombin-induced PECAM-1, P-selectin, and active form of GPIIb/
IIIa surface expression and formation of platelet aggregates for both
mouse and human platelets, suggesting that glatiramer acetate
inhibit neuroinflammation by affecting not only immune cells but
also platelets (170).
Implications of Platelet Activation for
Alzheimer’s Disease
AD is a neurodegenerative brain disorder that slowly leads to severe
cognitive impairment. The neuropathological hallmarks of AD
constitute the formation of intracellular neurofibrillary tangles and
the deposition of amyloid-ß (Ab) in brain tissue and cerebral vessels
(so-called cerebral amyloid angiopathy, CAA), accompanied by
Frontiers in Immunology | www.frontiersin.org 9
neuroinflammation as well as neuronal and synaptic loss.
Interestingly, platelets constitute the primary source of amyloid-ß
peptide (Aß) and its precursor protein, amyloid precursor protein
(APP), in the blood (171, 172), as they are secreted following platelet
activation (173, 174). Evidence suggests that both and APP play a
role in regulating thrombosis and hemostasis (175, 176).

Two decades ago enhanced platelet activation was demonstrated
in AD patients (177). Later, this was referred to an increased lipid
peroxidation (178). In accordance, platelets have shown enhanced
activity and increased adhesion to subendothelial matrix
components in transgenic mice model of AD (179, 180). Further
pointing to a pathophysiological relevance of platelets in AD
progression, activity of ß-secretase, an enzyme which is required
for the cleavage of APP, has been shown to be elevated in peripheral
blood platelets of patients suffering AD compared to controls (181).

Interestingly, prior to Aß plaque formation, aggregated
platelets were shown as a first pathological sign in AD mouse
model, suggesting platelets as therapeutic target in early AD (182).
Indeed, Donner et al. found that synthetic monomeric Ab40 can
bind through its RHDS (Arg-His-Asp-Ser) sequence to GPIIb/IIIa,
stimulating the secretion of ADP and the chaperone protein
clusterin from platelets (183). This was accompanied by the
formation of fibrillar Ab aggregates and further Ab40 binding to
platelets in a feed-forward loop (183). Strikingly, clopidogrel
inhibited Ab aggregation in platelet cultures; and further,
platelet inhibition diminished the amount of clusterin in the
circulation as well as the incidence of CAA in transgenic AD
model mice (183). Underscoring anti-platelet drugs potential as
useful therapeutic targets in counteracting CAA and AD, it has
been demonstrated that platelets isolated from AD mice promote
severe vessel damage, matrix metalloproteinases activation and
neuroinflammation in wildtype mice brain, in an organotypic ex
vivo brain slice model, thereby inducing Aß-like immunoreactivity
at the damaged vessel sites (184).

Beyond the illustrated potential therapeutic relevance of
platelets, recent metabolomic analysis revealed that platelet
phosphatidylcholines constitute promising biomarkers to
diagnose AD (185) and CAA (186).
PLATELETS IN THE MODULATION OF
NEURONAL ELECTRIC ACTIVITY,
SYNAPTIC FUNCTIONS, AND PLASTICITY

As already discussed, brain-enriched glycosphingolipids within
neuronal lipid rafts were shown to induce platelet degranulation
and secretion pro-inflammatory factors (159). In traumatic brain
injury (TBI) - induced inflammation model the interaction of
platelets with neuronal lipid rafts has been displayed to stimulate
neurite growth, increase the number of postsynaptic Sontikov
Idensity protein 95-positive dendritic spines, and intensify
neuronal activity (187). Using adoptive transfer and blocking
experiments the authors demonstrated that platelet-derived
serotonin and platelet activating factor play a key role in
regulation of neuroinflammation and neuronal plasticity after
TBI (187).
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With respect to the modulation of neuronal electric activity, a
more recent study demonstrated that platelets substantially enhance
epileptic seizures in a mouse model of pentylenetetrazole (PTZ)
-induced seizures (188). Thereby, platelets ecreted serotonin,
contributed to increased BBB permeability. In addition, platelets
directly stimulated neuronal electric activity and induced the
expression of genes related to early neuronal response and
neuroinflammation. Grippingly, intracranial injection of platelets
was sufficient to induce severe seizures, demonstrating to a novel
role of platelets in the development of epileptic seizures, and
pointing to potential new therapeutic approaches by targeting
platelets to prevent and treat epilepsy (188).
POTENTIAL TRANSLATIONAL AND
CLINICAL APPLICATIONS

To date, patients with non-cardioembolic ischemic stroke or
transient ischemic attack (TIA) receive antiplatelet therapy with
acetylsalicylic acid (aspirin) or clopidogrel for secondary
prevention (189). However, experimental in vivo studies in mice
have revealed that treatment with ticagrelor reduces infarct size
and recovers neurological function after tMCAO to a greater
extent than aspirin (190). Nevertheless, the SOCRATES clinical
trial demonstrated that ticagrelor is not superior to aspirin in
reducing the rate of stroke, myocardial infarction, or death at 90
days after acute ischemic stroke or TIA (191). However, current
results of the THALES trial have demonstrated that the risk of the
composite of stroke or death within 30 days in patients with a
mild-to-moderate acute noncardioembolic ischemic stroke or TIA
was lower with ticagrelor and aspirin than with aspirin alone,
while severe bleeding was more frequent with ticagrelor (192).

Emphasizing the portrayed role of GPVI, the novel GPVI-Fc
fusion protein Revacept, which blocks the collagen target for
GPVI binding, has been shown to improve cerebral infarct
volume and functional outcome in murine stroke model (193).
Furthermore, Revacept has enhanced the efficacy of thrombolysis
treatment after tMCAO in mice (194). Therefore, a clinical phase
II trial aims to examine whether patients suffering from
symptomatic carotid artery stenosis, TIA or stroke take
advantage of Revacept plus antiplatelet therapy compared to
antiplatelet therapy alone (NCT01645306). A further phase II
trial will assess the efficacy and safety of Revacept in patients
undergoing elective PCI (195). In addition, a complete blockade
of platelet GPVI using a monoclonal anti-GPVI antibody
(ACT017) constitutes an alternative therapeutic approach,
although bleeding risk might be higher than in therapy with
Revacept (196). Therefore, a clinical phase II trial assessing the
safety of ACT017 application in patients with an acute ischemic
stroke has recently begun (NCT03803007).

With respect to GPIb, Caplacizumab is an anti-vWF
humanized single-variable-domain immunoglobulin (so called
nanobody) that inhibits the interaction between ultra large vWF
multimers and GPIb on platelets (197). Considering the
portrayed significance of the vWF-GPIb axis in preclinical
ischemic-reperfusion injury models, caplacizumabs platelet-
protective effect in thrombotic thrombocytopenic purpura
Frontiers in Immunology | www.frontiersin.org 10
(TTP) (197) raises hope that this novel vWF-inhibitor might
be protective in patients with ischemic stroke as well.

Furthermore, vorapaxar, a PAR-1 inhibitor, has been
beneficial in the secondary prevention of atherothrombotic
events in a phase III clinical trial (198). However, the PAR-1
inhibitor increased the risk of moderate or severe bleeding,
including intracranial hemorrhage; thus, vorapaxar should not
be used in persons with history of stroke, transient ischemic
attack or intracranial hemorrhage (199). In addition, the PAR-4
inhibitor BMS-986141 is currently being investigated in a phase
II trial, examining whether it is effective in reducing the
recurrence of stroke in patients that have recently suffered an
acute stroke or TIA and receive aspirin (NCT02671461).

Intriguingly, the phosphodiesterase (PDE)-3 inhibitor
Cilostazol, which diminishes platelet aggregation by decreasing
levels of cyclic adenosine monophosphate (cAMP), has been
suggested to reduce stroke recurrence in patients with a prior
ischemic stroke (200). In accordance, Bieber et al. have only
recently concluded that another novel PDE-3 inhibitor (substance
V) protects mice from infarct injury after tMCAO (201).
Surprisingly, substance V did not affect platelet function (201).

In respect of MS, the treatment with PDE-4 inhibitor ibudilast
(MN-166), that has been reported to inhibit platelet aggregation
as well (202), was associated with slower progression of brain
atrophy in patients with progressive MS (203). Furthermore,
aspirin has latterly been demonstrated to ameliorate EAE in mice
(204). As the effect of aspirin on general disease activity is
inconclusive (205), further studies are needed to determine the
benefits and risks of aspirin but also GPIIb/IIIa, GPIb and P2Y12

receptor antagonists in patients with MS.
CONCLUSION

In conclusion, growing evidence suggests a crucial involvement of
platelets in orchestration of neuroinflammation. Therefore,
platelets could be considered as immune cells. A broad range of
recent experimental approaches indicate that platelets participate in
pathogenesis of AD,MS, and stroke associated neuroinflammation.
Expanding our knowledge about these novel concepts will help to
further understand mechanisms of neuro-inflammatory diseases
and could reveal feasible therapeutic strategies with the aim of
improving patient’s quality of life.
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