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Abstract

Background: Magnetic resonance imaging (MRI) studies have found thalamic abnormalities in major depressive
disorder (MDD). Although there are significant differences in the structure and function of the thalamus between
MDD patients and healthy controls (HCs) at the group level, it is not clear whether the structural and functional
features of the thalamus are suitable for use as diagnostic prediction aids at the individual level. Here, we were to
test the predictive value of gray matter density (GMD), gray matter volume (GMV), amplitude of low-frequency
fluctuations (ALFF), and fractional amplitude of low-frequency fluctuations (fALFF) in the thalamus using multivariate
pattern analysis (MVPA).

Methods: Seventy-four MDD patients and 44 HC subjects were recruited. The Gaussian process classifier (GPC) was
trained to separate MDD patients from HCs, Gaussian process regression (GPR) was trained to predict depression
scores, and Multiple Kernel Learning (MKL) was applied to explore the contribution of each subregion of the
thalamus.

Results: The primary findings were as follows: [1] The balanced accuracy of the GPC trained with thalamic GMD
was 96.59% (P < 0.007). The accuracy of the GPC trained with thalamic GMV was 93.18% (P < 0.007). The correlation
between Hamilton Depression Scale (HAMD) score targets and predictions in the GPR trained with GMD was 0.90
(P <0001, =082), and in the GPR trained with GMV, the correlation between HAMD score targets and predictions
was 0.89 (P < 0.001, = 0.79). [2] The models trained with ALFF and fALFF in the thalamus failed to discriminate
MDD patients from HC participants. [3] The MKL model showed that the left lateral prefrontal thalamus, the right
caudal temporal thalamus, and the right sensory thalamus contribute more to the diagnostic classification.

Conclusions: The results suggested that GMD and GMYV, but not functional indicators of the thalamus, have good
potential for the individualized diagnosis of MDD. Furthermore, the thalamus shows the heterogeneity in the
structural features of thalamic subregions for predicting MDD. To our knowledge, this is the first study to focus on
the thalamus for the prediction of MDD using machine learning methods at the individual level.
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Background

Major depressive disorder (MDD) is a common disorder
that is associated with a series of clinical symptoms, such
as depressed mood, loss of energy, difficulty with con-
centration and short-term memory and decision making,
etc. [1]. As a mental disorder, MDD may create an enor-
mous burden and harm for patients and society. Current
clinical diagnostic approaches for MDD are based
mainly on the subjective assessment of symptoms
through clinician interviews with patients. Psychiatric
diagnosis depends largely on statements by the patients
and their relatives, psychometrists’ use of many rating
scales, and psychiatrists’ personal experiences. These
diagnostic methods, however, do not involve any bio-
logical or physiological markers and therefore are not
objective enough, which may lead to misdiagnosis [2].
To avoid misdiagnosis and achieve better treatment out-
comes, objective and individualized diagnostic ap-
proaches are urgently needed.

In searching for biomarkers useful for objective diag-
nosis of MDD, many studies have contributed a lot to
the identification of biological correlates of MDD pa-
tients in recent years [3—5]. From a special perspective,
our recent study demonstrated abnormalities in thal-
amus in MDD patients [6]. Also, results from many
other studies suggest that thalamic abnormalities might
be important potential biomarkers of MDD [7-9]. The
clinical symptoms of MDD may arise, at least in part,
through the corresponding dysfunctions of thalamus and
thalamus-related neural circuits [10].The thalamus is not
only a sensory relay station involved in emotion, mem-
ory, and arousal [11], but also plays a central role in the
ongoing cortical function [12], and is a key central re-
gion, which can integrate all kinds of information being
processed by the whole cerebral cortex [13]. Meanwhile,
the thalamus is a part of the salience network, which has
been proved to have a central role in MDD [14]. Both
structural and functional abnormalities of thalamus were
found in patients with MDD. Patients with MDD were
shown to have reduced fractional anisotropy values in
the prefrontal lobe portion of the left anterior thalamic
radiation and increased thalamic blood flow velocity
compared with healthy people [15-17]. Other studies
have demonstrated decreased left thalamic volume, a
contracted shape on ventral aspects of the left thalamus
and decreased gray matter volume (GMV) in the right
thalamus [16, 18, 19] or in the bilateral thalamus [20],
and increased gray matter density (GMD) in the thal-
amus [21] in MDD patients, while some studies have

shown larger thalamic volume, which was seen only in
first-episode medication-naive patients. The results of
these studies on thalamic GMD and GMYV are inconsist-
ent, and these results may be affected by age, severity of
depression, and treatment. Thalamic structural abnor-
malities have been found in MDD patients of different
ages. In adolescents with MDD, GMYV in the thalamus is
inversely related to the severity of self-reported symp-
toms and decreases with age, while healthy adolescents
show increases with age [22]. In elderly patients with de-
pression, the volume of the thalamus is smaller than that
in normal people [17, 23]. In terms of the severity of de-
pression, although there is no significant correlation be-
tween depression scores and brain structure volume,
higher depression scores have indicated more thalamic
shape abnormalities [17],while some studies demon-
strated that the severity of mild depressive symptoms
was associated with reduced gray matter volume in the
thalamus [24]. Moreover, thalamic abnormalities have
been found in people at high risk of depression. In
people with subthreshold depression, the GMV in the
thalamus was increased [25]. In a study of healthy people
with cognitive vulnerability to depression, it was found
that these subjects had a smaller right thalamus than
MDD patients [19]. In addition, the thalamus may be re-
lated to antidepressant therapy. A multiple regression
analysis revealed that pretreatment smaller GMV in the
left thalamus was associated with a poorer response to
electroconvulsive therapy (ECT) and lower fractional
amplitude of low-frequency fluctuations (fALFF) in the
left thalamus [26]. Moreover, some studies have demon-
strated that the thalamus may play an important role in
MDD via thalamocortical circuits. A recent review of
previous studies reported that thalamocortical circuits
are candidates for controlling the activity of the default
network, including task-suppression effects [27]. Thala-
mocortical circuits are anatomically well situated to
exert a broad influence within and between cortical net-
works and to act as modulatory hubs [28]. Additionally,
dysregulation of thalamocortical circuits might increase
the risk of certain forms of mental illness, including
MDD [27]. Using group statistical analysis methods, the
abovementioned studies have provided strong evidence
that thalamic abnormalities are closely relevant to MDD.
Still, it remains unknown whether the thalamus could be
used as proper feature to identify MDD patients at
individual-level.

To predict individual cases, multivariate pattern ana-
lysis (MVPA) techniques could differentiate MDD
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patients from healthy controls (HCs) using magnetic res-
onance imaging (MRI) at the individual level. MVPA has
been proven to be more sensitive and more informative
about the organization of the cortex than univariate ana-
lysis with the general linear model (GLM). MVPA pro-
vides an investigation of different brain states that may
be produced by a cortical field or systems, thus increas-
ing the amount of information decoded from brain ac-
tivities [29]. In recent years, a considerable number of
studies have built support vector machine (SVM) models
to predict the diagnosis of MDD or bipolar disorder
(BD), MDD onset, refractory MDD patients, and treat-
ment response to different types of antidepressant ther-
apy, including electroconvulsive therapy, medication
therapy and cognitive behavioral therapy, with over 70%
accuracy by using structural magnetic resonance im-
aging (sMRI) or resting-state functional magnetic reson-
ance imaging (rs-fMRI) information [30-38]. In
addition, Gaussian process classification (GPC) has also
been used to recognize MDD, BD, and remitted MDD
patients using fMRI (e.g., amplitude of low-frequency
fluctuations (ALFF) and fALFF) or sMRI (e.g, GMD)
features with over 69% accuracy [7, 39-45]. GPC is a su-
pervised machine learning approach similar to SVM that
provides the added benefit of predictive probabilities of
class membership [46]. These results illustrate that
MVPA methods show outstanding performance in indi-
vidually discriminating MDD patients from healthy
people and patients with other mental disorders.

Although previous MRI studies have demonstrated
thalamic abnormalities in MDD and MVPA methods
have shown good performance in individually recogniz-
ing MDD patients, to date, there has been no research
on the individualized diagnosis of MDD using imaging
features of the thalamus. Hence the present study is
intended to focus on the thalamus and employ MVPA
to predict MDD at the individual level. We were to use
two MVPA methods, i.e., GPC and Gaussian process re-
gression (GPR), to examine the potential predictive cap-
acity of structural and rs-fMRI features of the thalamus.
Besides, to explore which subregions of the thalamus
contribute more to the diagnostic classification of MDD,
a sparse version of Multiple Kernel Learning (MKL) was
to be applied to explore the contribution of each sub-
region [47]. We hypothesized that the MRI features of
the thalamus would be biomarkers for individualized
diagnosis of MDD. More specifically, the predictive po-
tential of both GPCs and GPRs trained with two struc-
tural features, ie, GMD and GMYV, and two rs-fMRI
features, i.e., ALFF and fALFF, of the thalamus would be
expected to bring interesting results for this hypothesis.
We also hypothesized that the thalamic subregions
would contribute differently to the individualized diag-
nostic classification of MDD.
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Methods

Participants

In this study, 118 subjects were recruited, including 74
MDD patients (MDD group) and 44 healthy volunteers
as a control group (HC group). Previous studies have
shown that education level is a strong predictor of MDD
and therefore should be strictly controlled for in the data
analysis [48—52]. Because it was difficult to match, edu-
cation level was included as a covariate and controlled
for with statistical techniques during data processing in
the present study.

MDD patients (49 female and 25 male patients with
an average age of 26.53 + 8.56 years) were recruited from
the Department of Psychiatry of the Seventh People’s
Hospital of Hangzhou and the Department of Psychiatry
of the Second People’s Hospital of Hangzhou. All en-
rolled patients met the following criteria: [1] met the
International Classification of Diseases, 10th Revision
(ICD-10) criteria for MDD [2]; had no history of medi-
cation or physiotherapy for at least 1 month before re-
cruitment or were taking only selective serotonin
reuptake inhibitor (SSRI) antidepressants < 1 week [3];
had a Hamilton Depression Scale (version: 24 Items;
HAMD-24) total score > 20; and [4] were 18—-65 years of
age. There was no restriction on sex.

Healthy subjects (28 female and 16 male subjects with
an average age of 29.34 + 12.42 years) were recruited from
universities in Hangzhou and communities near the hos-
pitals by posters and internet announcements. The inclu-
sion criteria were as follows: [1] did not meet the ICD-10
“depression episode” diagnostic criteria, had no family his-
tory of mental illness, and had not taken any medications
at least 1 month before recruitment [2]; had a HAMD-24
total score < 8; and [3] were aged 18-65 years.

Both MDD and HC subjects were right-handed Han
Chinese individuals. Participants were excluded if they
met any of the following criteria: a history of or current
organic brain diseases, abuse of or dependence on psy-
choactive substances, schizophrenia or other psychiatric
disorders, depressive episodes with psychotic symptoms
or suicidal behavior, serious physical diseases, or any
contraindications for MRI, and for women, pregnancy or
lactation.

This study was approved by the ethics committee of
the Institutes of Psychological Sciences, Hangzhou Nor-
mal University. All methods were performed in accord-
ance with the relevant guidelines and regulations. All
patients’ legally authorized representatives and the con-
trols provided written informed consent before partici-
pating in the study procedures.

MRI data acquisition
Three-dimensional MR imaging was acquired using a
GE 3T scanner (MR750, GE Medical Systems,
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Milwaukee, WI) with a 32-channel radio frequency coil
at the Center for Cognition and Brain Disorders
(CCBD), Hangzhou Normal University (HZNU). Foam
filling was used to reduce head movement for all sub-
jects. During scanning, the subjects were asked to relax
and remain still. Using a magnetization-prepared rapid
acquisition gradient-echo sequence, three-dimensional
T1-weighted anatomical images were obtained in the sa-
gittal orientation (TR=9ms, TE=3.664ms, FOV =
240 x 240 mm?,  matrix = 300 x 300, flip angle = 13",
thickness = 0.8 mm, acquisition time = 13 min 37s). fMR
images were acquired using a gradient-recalled echo-
planar imaging sequence (TR =2000ms, TE=22ms,
FOV = 240 x 240 mm?, matrix = 96 x 96, flip angle = 77,
slice thickness =2.5mm, no interslice gap, and 240
volumes).

Data processing

MRI data preprocessing

All datasets were preprocessed via DPABI_V3.1 (a tool-
box for Data Processing & Analysis for Brain Imaging)
[53].

Structural data were segmented into GMV, GMD,
white matter volume, white matter density, cerebral
spinal fluid volume, and cerebral spinal fluid density.
“Dartel+segment” was applied for normalization to the
Montreal Neurologic Institute (MNI) space. Images were
smoothed with an 8-mm full-width at half-maximum
(FWHM) Gaussian kernel.

The following procedures were included in the rs-
fMRI data preprocessing: [1] removal of first 10 volumes
[2]; slice timing correction [3]; head motion correction
[4]; coregistration of T1 images to the averaged EPI
image [5]; spatial normalization to standard Montreal
Neurological Institute (MNI) space using “Dartel+seg-
ment” [6]; regression of head motion effects with the
Friston-24 parameter model (all the subject’s head mo-
tions were lower than our criteria of 2 mm and 2°) and
regression of head motion, white matter (WM) and cere-
brospinal fluid (CSF); and [7] removal of linear trends.

Features used for classification and prediction

DPABI was used to make the whole-thalamus mask [53]
and calculate the GMV, GMD, ALFF, and fALFF values.
The GMV, GMD, ALFF, and fALFF values in the thal-
amus were extracted as regression and classification
features.

GMYV and GMD are the important indicators of brain
structure changes. Many MRI studies found that the ab-
normal brain structure changes in MDD [54, 55]. These
two indicators were obtained through segmenting the
structural images using “Dartel+segment”.

ALFF and fALFF reflect the neural activity of the
brain. The abnormal levels of ALFF and fALFF may be

Page 4 of 14

related to MDD [56-59]. ALFF/fALFF, which are im-
portant indicators, are used to detect the local intensity
of spontaneous fluctuation of the blood-oxygen-level-
dependent (BOLD) signal [60], and the change in local
intensity of the BOLD signal depends on the spontan-
eous fluctuation of regional cerebral blood flow. Thus,
increases in ALFF/fALFF may indicate excessive neuro-
logical activity in the brain, while decreases in ALFF/
fALFF may indicate insufficient neurological activity
[61-63]. A ratio of the low-frequency amplitude within
0.01-0.1 Hz was computed at each voxel to obtain the
ALFF and fALFF. The maps were smoothed by 8-mm
FWHM Gaussian kernel.

Pattern analysis

In this study, GPC was built for pattern classification,
and GPR was built for HAMD score prediction using
the Pattern Recognition for Neuroimaging data Toolbox
(PRoNTo) toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto)
[64]. GPR has been widely used in supervised machine
learning due to its flexibility and inherent ability to de-
scribe uncertainty in function estimation [65]. A mask of
the thalamus was firstly added to limit the brain region
for analysis, and the BrainnetomeAtlas which divided
the thalamus into 16 subregions was added as a second-
ary mask (see Fig. 1) [66]. For every subregion, the signal
in each voxel was extracted and concatenated as a fea-
ture vector. A vector was associated to a label (i.e. MDD
or HC). Then, a linear kernel was built from the feature
vectors for each region. The computed kernels were
added to obtain a whole thalamus linear kernel. The ker-
nel and its associated labels were used to train the model
and estimate the model parameters. The model can then
give an associated predicted label for a new data [47]..
No parameters need to be optimized during the model
training. Fivefold cross-validation was used to evaluate
the generalization performance of the models. Because
of the imbalance between the number of MDD patients
and HC subjects, balanced accuracy ( acc?® = > acce,
subscript “c” would be the number of the class) was used
to evaluate the performance of each classifier. A 1000-
permutation test was performed to determine statistical
significance, and cross-validation was repeated for each
permutation.

Besides, the MKL model was trained to estimate the
contribution of each subregion of the thalamus for the
predictive model [47]. The steps of the calculation were
similar with the GPC. After building linear kernels for
subregions, these kernels and their associated labels were
used to train the model. First, model parameters were
estimated to define a decision function per kernel. The
weight of each decision function was then estimated to
provide a final decision function. The contribution of
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Fig. 1 Subregions of the thalamus. mPFtha, medial prefrontal thalamus; mPMtha, premotor thalamus; Stha, sensory thalamus; rTtha, rostral
temporal thalamus; PPtha, posterior parietal thalamus; Otha, occipital thalamus; cTtha, caudal temporal thalamus; IPFtha, lateral prefrontal
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each subregion for the decision function or predictive
model can be explicitly computed [47]. We performed
the MKL with the soft-margin parameters taking the de-
fault values 0.01, 0.1, 1, 10, and 100. The evaluation of
the model was the same as GPC and GPR.

Results

Sample characteristics

Table 1 shows the demographic variables and clinical
characteristics of the two groups. Age (Z=-0.83, P=
410) and sex (f° =0.08, P=.776) in the MDD group
and the HC group were well matched, and there was no
significant difference between them according to the
Mann-Whitney test and chi-square test, respectively.

Table 1 Demographic and Clinical Characteristics of Subjects

Characteristic MDD (n=74) HC (n=44) Statistic P-Value
Age (Years) 26.53 £ 856 2934+1242 7Z=-083 410
Sex, n (%)
Female 49 (66.22) 28 (63.64) )(2 =0.08 776
Male 25 (33.78) 16 (36.36)
Education level  468+0.74 543+0.73 X2 =3924 <001
HAMD-24 score 2842 +6.22 136+ 137 t=36.01 <001

MDD major depressive disorder group, HC healthy control group

Education level: 1 (illiterate), 2 (primary school), 3 (junior high school), 4
(senior high school), 5 (college or university), 6 (master’s degree), 7 (doctorate)
HAMD-24 Hamilton Depression Scale, 24-ltem version
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Table 2 Clusters in the thalamus with abnormal GMD in the MDD patients relative to the healthy controls

Cluster Cluster MNI GMD T P-Value
location size x y 2 MDD HC value

rTtha (L) 9 -9 15 6 055 + 004 047 £ 004 9.80 <0.0001
Otha (R) 4 255 -33 0 038 = 0.06 0.55 £ 0.08 -1252 < 0.0001
Stha (R) 2 16.5 —24 3 035+ 0.02 041 £ 0.02 -17.85 <0.0001

MDD major depressive disorder group, HC healthy control group, GMD gray matter density, rTtha rostral temporal thalamus, Otha occipital thalamus, Stha sensory

thalamus, L left, R right

Because the level of education was significantly higher in
the HC group than in the MDD group, which may have
potential effects on the results, the level of education
was used as an influencing factor for the covariate ana-
lysis in all subsequent steps. HAMD-24 scores were also
significantly higher in the patient group than in the HC

group.

Group-level results

Structural differences between MDD patrticipants and HCs
Both GMD and GMYV in the thalamus in MDD partici-
pants were significantly different from those in HC sub-
jects. MDD patients were confirmed to have higher
GMD in the left rostral temporal thalamus and lower
GMD in the right occipital thalamus and sensory thal-
amus than HC subjects; MDD patients exhibited higher
GMV in the left lateral prefrontal thalamus, the right
posterior parietal thalamus, and the right rostral tem-
poral thalamus and lower GMYV in the right medial pre-
frontal thalamus, the right sensory thalamus, and the left
rostral temporal thalamus than HCs (see Table 2, Table 3
and Fig. 2a).

Rs-fMRI differences between MDD patients and HCs

No clusters verified significant differences between
MDD patients and HCs in ALFF or fALFF in the thal-
amus, as shown in Fig. 2b.

Individual-level prediction: MDD vs. HC participants

GPCs trained with sMRI features

The GMD and GMYV of the thalamus were used to train
the GPC. The accuracy of GPC based on GMD of the
thalamus was 96.59% (P<.001), the sensitivity was

100%, and the specificity was 93.18%. The accuracy of
GPC trained with thalamic GMV was 93.18% (P < .001),
and the sensitivity and specificity were 100% and 86.36%,
respectively (see Table 4 and Fig. 3).

MKLs trained with sMRI features

The accuracy of MKL based on GMD of the thalamus
was 97.73% (P <.001), the sensitivity was 100%, and the
specificity was 95.45%. The accuracy of MKL trained
with thalamic GMV was 98.86% (P < .00I), and the sen-
sitivity and specificity were 100 and 97.73%, respectively
(see Table 5). The contribution of each subregion to the
classification is shown in Table 6.

GPCs trained with rs-fMRI features

The accuracy of GPCs trained with ALFF and fALFF
was at the chance level (see Table 7 and Fig. 4). The ac-
curacy of GPC trained with ALFF in the thalamus was
40.54% (P =.808), and the accuracy of GPC trained with
fALFF in the thalamus was 47.97% (P =.534).

Individual-level prediction of HAMD scores

GPRs trained with sMRI features

This study built a GPR model that used gray matter in-
formation to predict the HAMD scores of participants.
The correlation between HAMD score targets and pre-
dictions in the GPR trained with the GMD of the thal-
amus was 0.90, the P-value was lower than 0.001, and
the coefficient of determination r*=0.82. In a GPR
model trained with the GMV of the thalamus, the cor-
relation between HAMD score targets and predictions
was 0.89, the P-value was lower than 0.001, and r*=
0.79. Figure 5 shows the results.

Table 3 Clusters in the thalamus with abnormal GMV in the MDD patients relative to the healthy controls

Cluster Cluster MNI GMV T P-
location size X y 2 MDD HC value Value
IPFtha (L) 53 -3 -195 —4.5 029 +£0.03 027 £0.02 4.84 <.0001
PPtha (R) 12 9 =315 0 032 + 0.05 024 + 0.04 9.99 <.0001
mPFtha (R) 12 6 —4.5 0 0.19 £ 003 023 £ 0.04 —6.55 <0001
Stha (R) 31 16.5 —24 45 027 £0.02 033 £ 003 -1224 <.0001
rTtha (L) 58 —4.5 1.5 3 024 + 0.04 022 +0.03 2.75 007

MDD major depressive disorder group, HC healthy control group, GMV gray matter volume, IPFtha lateral prefrontal thalamus, PPtha posterior parietal thalamus,
mPFtha medial prefrontal thalamus, Stha sensory thalamus, rTtha rostral temporal thalamus, L left, R right
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(a) MDD > HC

'
o

(b) MDD > HC

corrected, voxel p-value = 0.001, cluster p-value = 0.05)

Fig. 2 (a). The picture shows significant differences between the MDD patients and HC participants in thalamic GMD and GMV. (b) The picture
shows no significant differences between the MDD patients and HC participants in ALFF and fALFF in the thalamus (Gaussian random field-

GPRs trained with rs-fMRI features

The GPR models trained with rs-fMRI data showed a
negative correlation between the true HAMD scores and
predictions, which implied that the GPR models cannot
correctly predict the HAMD scores. In the GPR trained
with ALFF in the thalamus, the correlation between
HAMD score targets and predictions was — 0.92 (P =.640,

* = 0.84). The correlation between targets and predictions
in the GPR trained with fALFF of the thalamus was — 0.92
(P =.872, 1 = 0.84). The results are shown in Fig. 6.

Discussion
In this study, we investigated the potential capacity of
the two structural features (i.e., GMD and GMYV) and
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Indicators Balanced accuracy (%) BA p-value Sensitivity (%) Specificity (%)
GMD 96.59 <0.001 100.00 93.18
GMV 93.18 <0.001 100.00 86.36

GPC Gaussian process classification, GMD gray matter density, GMV gray matter volume

the two rs-fMRI features (i.e., ALFF and fALFF) of the
thalamus in the diagnosis of MDD at the individual level
by MVPA methods (i.e., GPC and GPR). The results
showed that the balanced accuracy of the machine learn-
ing models trained with thalamic GMD and GMV was
significantly higher than the chance level. The correl-
ation between the real and the predicted HAMD scores
in the GPRs trained with GMD and GMV was signifi-
cant. The results also showed that the models trained
with ALFF and fALFF in the thalamus failed to discrim-
inate MDD patients from HC participants. Findings
from this study suggest that the structural MRI features
rather than the rs-fMRI features of the thalamus may
have good potentials for the individualized diagnosis of
MDD.

This study confirms that the thalamus is closely re-
lated to MDD, and different machine learning models
(i.e., GPC and GPR) trained with thalamic gray matter
imaging indicators showed good performance in identi-
fying MDD patients, which corresponded with our
group-level results showing significantly different clus-
ters in the thalamus. It is well known that all sensory

nerve pathways, except for those conveying olfactory in-
formation, project to the thalamus [67]. In other words,
the thalamus is a sensory relay station that is involved in
emotion, memory, and arousal [11]. Some evidence has
been illustrated to support the argument that the thal-
amus is not simply a relay station [13] but also plays a
central role in ongoing cortical functioning [12]. The
thalamus is globally connected with distributed cortical
regions, most thalamic subdivisions display network
properties that are capable of integrating multimodal in-
formation across diverse cortical functional networks,
and the thalamus is involved in multiple cognitive func-
tions [13]. Additionally, evidence has suggested that the
human thalamus is a critical hub region that could inte-
grate diverse information being processed throughout
the cerebral cortex [13]. The thalamus relays this infor-
mation to the corresponding cerebral cortical areas and
from there to the amygdala and hippocampus, which are
the regions of the brain most closely related to emotion,
memory, and arousal [11]. Depressed mood, loss of en-
ergy, difficulty with short-term memory, etc. are in-
cluded in the core symptoms of a depressive episode

Confusion matrix: all folds
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Fig. 3 The left image (a) shows the classification performance using gray matter density (GMD) data in the thalamus: the balanced accuracy was
96.59%, the sensitivity was 100%, and the specificity was 93.18%. The right image (b) shows the classification performance using gray matter
volume (GMV) data in the thalamus: the balanced accuracy was 93.18%, the sensitivity was 100%, and the specificity was 86.36%
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Table 5 The performance of MKLs trained with GMD and GMV
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Indicators Balanced accuracy (%) BA p-value Sensitivity (%) Specificity (%)
GMD 97.73 <0.001 100.00 9545
GMV 98.86 <0.001 100.00 97.73

MKL Multiple Kernel Learning, GMD gray matter density, GMV gray matter volume

[68]. Furthermore, a recent review of previous studies
confirmed that the results of rodent studies indicate that
thalamocortical circuits are candidates for controlling
the activity of the default network, including task-
suppression effects [27]. Dysregulation of thalamocorti-
cal circuits might also increase the risk of certain forms
of mental illness [27]. MRI studies have demonstrated
that MDD patients have abnormalities in prefrontal,
temporal, parietal, insular, occipital, and subcortical
structures [54, 55]. The abovementioned brain areas are
all related to thalamocortical circuits. If the gray matter
in the thalamus, an important part of thalamocortical
circuits, is abnormal, it may cause the whole thalamo-
cortical circuit to be abnormal, which may lead to MDD
[27]. Therefore, the analysis of structural imaging data
from the thalamus could distinguish MDD patients from
healthy people. Such an analysis, when performed at the
individual level by employing MVPA as in our study, is
more valuable for predicting individual cases.

The group-level analysis of the gray matter features of
the thalamus reported significantly different clusters

Table 6 The weights of thalamic subregions for MKLs

GMD GMV

Location Weights (%) Location Weights (%)
IPFtha, L 32.87 IPFtha, L 3531
CTtha, R 2353 cTtha, R 28.84
Stha, R 1297 Stha, R 1329
mPMtha, R 11.28 rTtha, L 12.56
rTtha, L 9.97 mPMtha, L 429
mPMtha, L 7.21 Otha, R 340
rTtha, R 2.18 mPMtha, R 1.81
mPFtha, L 0.00 Stha, L 026
mPFtha, R 0.00 Otha, L 024
Stha, L 0.00 mPFtha, L 0.00
PPtha, L 0.00 mPFtha, R 0.00
PPtha, R 0.00 rTtha, R 0.00
Otha, L 0.00 PPtha, L 0.00
Otha, R 0.00 PPtha, R 0.00
cTtha, L 0.00 cTtha, L 0.00
[PFtha, R 0.00 IPFtha, R 0.00

MKL Multiple Kernel Learning, GMD gray matter density, GMV gray matter
volume, mPFtha medial prefrontal thalamus, mPMtha premotor thalamus, Stha
sensory thalamus, rTtha rostral temporal thalamus, PPtha posterior parietal
thalamus, Otha occipital thalamus, cTtha caudal temporal thalamus, IPFtha
lateral prefrontal thalamus, L left, R right

between the MDD patients and HCs. Concurrently, the
subregions where most of the clusters are located had
high contribution weights in the classification. For the
first time, we found that heterogeneity in the thalamus
at the subregional level identified individuals with de-
pression. The thalamus comprises numerous nuclei,
which project to different brain areas and receive inputs
from other cortical or subcortical brain regions [11, 13].
The difference in connections between the different thal-
amic subregions and other brain regions may be associ-
ated with different functions in thalamic subregions. The
medial dorsal nucleus of the thalamus may play a role in
memory (perhaps specifically in the retrieval of episodic
memory), mood, motivation, and the sleep/wake cycle
[11]. The anterior nucleus of the thalamus may be in-
volved in memory, modulation of the sleep/wake cycle,
and directed attention [11]. The lateral dorsal nucleus of
the thalamus may be related to motivation and/or atten-
tion with sensory processes [11]. Thus, this heterogen-
eity may explain the differences in the results across
thalamic subregions. The findings of heterogeneity
across thalamic subregions were indirectly supported by
the results of our previous study [6], which, through
functional imaging data, revealed that MDD patients ex-
hibited distinct resting-state functional connectivity pat-
terns across thalamic subregions.

Results from this study suggest that ALFF and fALFF
in the thalamus may not be robust features for recogniz-
ing MDD patients. No significant difference in ALFF or
fALFF clusters in the thalamus was found between the
MDD and HC groups, and machine learning models
trained with ALFF and fALFF in the thalamus failed to
effectively discriminate individual patients from healthy
people with ideal performance in this study. We also
performed a two-sample t-test on the whole brain and
found that the differences of ALFF and fALFF were lo-
cated in the cortex area and brainstem, not the thalamus
(see supplementary materials Fig. S1). ALFF, in which
the square root of the power spectrum was integrated in
a low-frequency range, was used to detect the regional
intensity of spontaneous fluctuations in the BOLD signal
[69]. In fALFF, the ratio of the power spectrum of the
low-frequency (0.01-0.08 Hz) range to that of the entire
frequency range was computed [60]. Most neuroimaging
MDD studies have reported abnormal ALFF and fALFF
levels in the left cerebellum, amygdala, left hippocampus,
precuneus, right cingulate cortex, right putamen, medial
prefrontal cortex, left motor cortex and parietal lobe
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Table 7 The performance of GPCs trained with ALFF and fALFF

Page 10 of 14

Indicators Balanced accuracy (%) BA p-value Sensitivity (%) Specificity (%)
ALFF 40.54 0.808 81.08 0.00
fALFF 4797 0534 95.95 0.00

GPC Gaussian process classification, ALFF amplitude of low-frequency fluctuations, fALFF fractional amplitude of low-frequency fluctuations

[56—59], and some researches have found that abnormal
thalamic ALFF or fALFF may correlate with the anti-
depressant response but not MDD onset [9]. Another
reason why this study showed negative ALFF and fALFF
results in the thalamus was that a few days before enroll-
ment some of the MDD patients were taking antidepres-
sants, which may have influenced the research results.
Some studies have reported that ALFF and fALFF could
be changed by antidepressant use [70]. Thus, the reason
why the ALFF and fALFF features of the thalamus did
not have good enough performance in discriminating
MDD individuals in our study may in part be related to
this.

To our knowledge, this is the first study to focus on
the thalamus for the individualized diagnosis of MDD.
Using machine learning methods to analyze the MRI
data of thalamus, this study established an individualized
brain morphology-related diagnostic model for MDD
based on thalamic imaging features. If this model could
be applied in clinic, it is expected to be helpful to

improve the current situation that the diagnosis of MDD
in psychiatric clinic depends mainly on patients’ self-
statement and psychiatrists’ subjective judgment, and
also helpful to reduce the risk of misdiagnosis of MDD.
Further, the results of this study not only may provide
an important basis for the early identification and ob-
jective diagnosis of MDD at individual level, but also
may provide useful clues for the exploration of the bio-
logical and pathological mechanism behind MDD. Add-
itionally, our study reveals for the first time the
heterogeneity in the structural features of thalamic sub-
regions for predicting MDD at the individual level,
which demonstrates the importance and the heterogen-
eity of the thalamus in MDD, and may provide some
clue for further research about the whole thalamus and
thalamic subregions in emotion-related disorders.

There are some limitations in this study: [1] Although
118 subjects were included in this study, which exceeded
the sample size of most previous single-center studies,
the sample size of this study was still not large enough
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Fig. 4 The left image (a) shows the classification performance using amplitude of low-frequency fluctuation (ALFF) data in the thalamus: the
balanced accuracy was 40.54%, the sensitivity was 81.08%, and the specificity was 0.00%. The right image (b) shows the classification performance
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(from the perspective of requirements of multivariate
pattern analysis method), which may lead to some devi-
ation between the classification results and the actual
situation. We know that small data sets may possibly
lead to overfitting. By building a larger database upon
which to base a predictive model, the variations ob-
served among MDD patients could be more thoroughly
incorporated, which, in the future, may result in models
with better clinical utility [71]. In future studies, it will

performance of GPC and GPR in an independent large
database [2]. Not all MDD patients in our study were
medication-free subjects, and some of them were not in
their first depressive episode. This may have had some
influence on the results of this study. These problems
need to be addressed in future studies [3]. In this study,
the machine learning models trained with ALFF and
fALFF in the thalamus failed to effectively discriminate
individual MDD patients from healthy persons. This def-

be necessary to explore the validation of the initely does not mean that there are no functional
N
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alterations in the thalamus in MDD. Nor does it mean
that other functional MRI data of the thalamus are not
suitable to be chosen as features for individualized rec-
ognition of MDD patients. One of our previous studies
showed sample entropy changes in the bilateral thalami
in MDD patients [6], so we are considering using the
sample entropy of the resting-state fMRI data as a fea-
ture for the classification and prediction of MDD in our
future studies [4]. The whole brain volume was not con-
trolled as a covariate in this study, which may have po-
tential correlation with the volume of the thalamus, and
could be considered in future studies.

Conclusions

In conclusion, this is the first study to focus on the thal-
amus and to use machine learning methods to differenti-
ate MDD patients from healthy people. Both classifiers
trained with gray matter volume data and gray matter
density data have been confirmed to have high discrim-
inatory accuracy by pattern analysis. Both GPRs trained
with the GMD and the GMYV in the thalamus could pre-
dict HAMD scores of the participants. The GPCs and
GPRs trained with ALFF and fALFF in the thalamus
showed poor performance in recognizing MDD patients.
Therefore, the results of this study suggest that gray
matter information, but not functional information, in
the thalamus has good potential for the individualized
diagnosis of MDD. It would be expected that our results
would not only provide important basis for the early
identification and objective diagnosis of MDD, but also
provide useful clues for the exploration of the biological
and pathological mechanism behind MDD.
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