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Purpose: Current treatment options for head and neck squamous cell carcinoma
(HNSCC) are limited, especial ly for cases with cancer stem cell-induced
chemoresistance and recurrence. The WNT signaling pathway contributes to
maintenance of stemness via translocation of b-catenin into the nucleus, and
represents a promising druggable target in HNSCC. Dehydroepiandrosterone (DHEA),
a steroid hormone, has potential as an anticancer drug. However, the potential anticancer
mechanisms of DHEA including inhibition of stemness, and its therapeutic applications in
HNSCC remain unclear.

Methods: Firstly, SRB assay and sphere formation assay were used to examine cellular
viability and cancer stem cell-like phenotype, respectively. The expressions of stemness
related factors were measured by RT-qPCR and western blotting. The luciferase reporter
assay was applied to evaluate transcriptional potential of stemness related pathways. The
alternations of WNT signaling pathway were measured by nuclear translocation of b-
catenin, RT-qPCR and western blotting. Furthermore, to investigate the effect of drugs in
vivo, both HNSCC orthotopic and subcutaneous xenograft mouse models were applied.

Results: We found that DHEA reduced HNSCC cell viability, suppressed sphere
formation, and inhibited the expression of cancer-stemness markers, such as BMI-1
and Nestin. Moreover, DHEA repressed the transcriptional activity of stemness-related
pathways. In the WNT pathway, DHEA reduced the nuclear translocation of the active
form of b-catenin and reduced the protein expression of the downstream targets,
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CCND1 and CD44. Furthermore, when combined with the chemotherapeutic drug,
irinotecan (IRN), DHEA enhanced the sensitivity of HNSCC cells to IRN as revealed by
reduced cell viability, sphere formation, expression of stemness markers, and activation of
the WNT pathway. Additionally, this combination reduced in vivo tumor growth in both
orthotopic and subcutaneous xenograft mouse models.

Conclusion: These findings indicate that DHEA has anti-stemness potential in HNSCC
and serves as a promising anticancer agent. The combination of DHEA and IRN may
provide a potential therapeutic strategy for patients with advanced HNSCC.
Keywords: dehydroepiandrosterone, head and neck squamous cell carcinoma, WNT, stemness, irinotecan
INTRODUCTION

Head and neck squamous cell carcinomas (HNSCCs) are a group
of malignancies that arise from transformed cells of the oral
cavity, oropharynx, larynx, or hypopharynx mucosa. HNSCC is
the sixth most common cancer worldwide. Approximately
650,000 new cases of HNSCC are diagnosed every year, and it
accounts for about 5% of all cancer-related deaths (1, 2). The
standard treatment for HNSCC includes surgery, radiotherapy,
chemotherapy, and combinations of these modalities. However,
the survival rate of patients with HNSCC remains low because of
drug resistance, tumor metastasis, and recurrence (3). Therefore,
it is critical to understand the mechanisms of local recurrence,
metastasis, and resistance that may significantly improve the
treatment outcomes of patients with HNSCC.

Cancer stem cells (CSCs) are a subpopulation of cancer cells
that possess self-renewal capacity and pluripotency. CSCs are
involved in tumor development, cell proliferation, and
metastasis, and are the key “seeds” for tumor initiation,
metastasis, and resistance to chemo- and radiotherapies (1,
3–5). These processes are regulated by several key transcription
factors involved in cancer stemness and sphere formation, such
as OCT4, Nanog, SOX2, KLF4, and MYC. Additionally, many
signaling pathways, such as the WNT and Notch pathways, also
contribute to the development of cancer stemness (6–10).

The WNT signaling pathway involves in cell proliferation,
survival, and progression, and influences the self-renewal of stem
cells under physiological and pathological conditions (11, 12). Upon
activation of the WNT pathway, unphosphorylated b-catenin
translocates into the nucleus and subsequently triggers TCF/LEF-
mediated transcription of downstream genes, such as CCND1,
MYC, and CD44. Dysregulation of the WNT/b-catenin signaling
pathway is strongly associated with tumorigenesis and progression
by maintaining cancer stemness (13). Recent studies have focused
on the therapeutic potential of agents targeting WNT signaling for
cancer treatment in mono- or combination therapy (14).

Irinotecan (IRN) is a topoisomerase I inhibitor that has
anticancer activity in solid tumors, such as metastatic colorectal
/2; CSCs, cancer stem cells, HNSCC,
inoma; IRN, irinotecan; DHEA,
amine B; TCF/LEF, T cell factor/

2

and lung cancer (15–17). IRN showed some clinical benefit in
recurrent or metastatic HNSCC (R/M HNSCC) (18–20). IRN is a
prodrug that is converted into the active metabolite SN-38 by
carboxylesterase (CES) 1 or 2 (17). CES1 was found to be a poor
prognostic marker for HNSCC in TCGA HNSCC cohort (21). It
was upregulated in patients with poor prognosis and represented a
good therapeutic target for IRN therapy (16, 17, 21). IRN mono-
and combination therapies with other chemotherapeutic agents
have been shown to improve the treatment response in cancer
patients (19, 20, 22). Murphy et al. conducted a Phase II study of
irinotecan in patients with R/MHNSCC, the cohort 1 including 22
patients received irinotecan 125 mg/m2/week for 4 weeks followed
by a 2-week rest. Due to the excessive toxicity among cohort 1, the
16 patients from cohort 2 were given the reduced dosage of
irinotecan at 75 mg/m2/week for 2 weeks followed by 1-week
rest. Toxicity and response among two cohorts to treatments were
assessed using standard criteria (20, 23). Overall response rate is
defined as the proportion of patients who have a partial or
complete response to therapy (23, 24). According to National
Cancer Institute (NCI) (website: https://www.cancer.gov/
publications/dictionaries/cancer-terms), survival rate is referred
to the percentage of people in a study or treatment group who are
still alive for a certain period of time after they were diagnosed
with or started treatment for a disease, such as cancer. Murphy
et al. study displayed that IRN showed a modest overall response
rate of 21.2% (95% confidence interval [CI] = 9%-38.9%) for 33
evaluable patients at both dose levels (20). Median survival for all
evaluable patients was 214 days (95% CI = 146-365 days) with a 1-
year survival rate of 30.2% (20). Response to IRN and its toxic side
effects appeared to be dose-dependent (20). Furthermore, the
combination of IRN with cisplatin showed synergistic anticancer
effect in a phase II trial (19) and the cisplatin/tegafur-uracil
(UFUR)/irinotecan triple combination therapy demonstrated a
moderate response in patients with R/M HNSCC (18). Toxicity to
patients was tolerable, and the quality of life of the patients
improved (18). However, IRN also induces side effects, such as
diarrhea and neutropenia, which can be resolved by optimizing the
treatment dosage or increasing the target specificity.

Dehydroepiandrosterone (DHEA) is an endogenous steroid
precursor hormone. In humans, DHEA is produced in the brain,
adrenal cortex, gonads, and gastrointestinal tract (25), and is
stored in its sulfated form, DHEA sulfate (DHEA-S) (26). DHEA
and DHEA-S are both the most abundant steroids in the human
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serum and are precursors of sex hormones, such as estrogen and
androgen. Recently, DHEA has been reported to have several
beneficial effects such as anti-obesity, hypoglycemia, anti-
atherosclerosis, anti-aging, and memory-enhancing effects (27–
29). Moreover, DHEA has anticancer effects in vitro and in vivo
in several cancer types, including breast (30–32), hepatoma (27),
myeloma (33), leukemia (34), colon adenocarcinoma (35),
pancreatic cancer (36) and cervical cancer (37). In breast
cancer, DHEA inhibited cell proliferation and metastatic
processes, such as migration, invasion, and epithelial
mesenchymal transition (EMT), and decreased spheroid size
(30–32). In addition, in human sphere mesenchymal stem
cells, DHEA suppressed stem cell gene expression (38) which
suggests that DHEA may have the ability to suppress CSCs.
However, the effect of DHEA on HNSCC, especially cancer stem
cell-like traits, remain unclear. Here, we investigated the anti-
tumor and anti-stemness potential effects of DHEA, as well as the
efficacy of its combined use with IRN against HNSCC.
METHODS

Cell Lines and Cell Culture
The human HNSCC cell line, CAL 27, was obtained from the
American Type Culture Collection (ATCC, USA), and HSC-3
and SAS were obtained from the Japanese Collection of Research
Bioresources Cell Bank (JCRB, Japan). The human oral
fibroblasts (HOF) were obtained from the ScienCell Research
(USA). The lentivirus packaging cell line human embryonic
kidney (HEK)-293T was also obtained from the ATCC. All cell
lines were cultured in standard medium according to the
manufacturer’s instructions containing 10% fetal bovine serum
(FBS; Gibco, USA), 1% L-glutamine (Gibco, USA), and
antibiotics (penicillin and streptomycin; Gibco, USA), and
maintained in a humidified atmosphere of 5% CO2 at 37°C.

Chemical Compounds
Trans-dehydroepiandrosterone (DHEA) (Sigma #D4000) was
dissolved in dimethyl sulfoxide (DMSO) and maintained in 1%
DMSO in the medium during in vitro drug treatment at 0-400
µM. Irinotecan (IRN) used for in vitro studies was purchased
from Sigma (#I1406) and treated with cells from 0-10 µM.
Campto® (irinotecan hydrochloride trihydrate) used for
animal administration was obtained from Pfizer. For in vivo
experiment, DHEA and Campto® were given at 10 mg/kg and 50
mg/kg, respectively, via intraperitoneal (IP) injection. The
further details were described in the figure legends. The
chemical compounds and reagents used in this study are listed
in Supplementary Table 1. During the drug treatment, control
(vehicle) groups were maintained in 1% DMSO in the medium,
which was the same condition as DHEA treatment.

Sulforhodamine B (SRB) Assay and
Synergistic Effect Assessment
Cells were plated at 2000 cells/well in a 96-well microplate.
Following drug treatments for the desired periods, cells were
fixed with 10% trichloroacetic acid (w/v) for 1 h at 4°C, washed
Frontiers in Oncology | www.frontiersin.org 3
with water, and air-dried. SRB solution (0.4% [w/v] in 1% acetic
acid) was used to stain the cells for 1 h and then 1% acetic acid
was used to wash and remove the excess dye. After adding 20
mMTris-base, the optical density (OD) of the protein-bound dye
was measured at 540 nm to obtain the absorbance. Cell viability
was normalized to the control, and the IC50 was calculated using
GraphPad Prism 7 software. The synergistic effect assessment
was performed by CompuSyn software (https://www.combosyn.
com/) according to the user instruction. The resulting
combination index (CI) theorem of Chou-Talalay offers a
quantitative definition for additive effect (CI = 1), synergism
(CI < 1), and antagonism (CI > 1) in drug combinations (39).

Sphere Formation Assay
Sphere formation assay was performed as described previously
(40). Briefly, cells were incubated with serum-free medium
supplemented with 20 ng/ml of bFGF (PeproTech #100-18B),
EGF (PeproTech #AF-100-15), and 1× B27 supplement (Gibco
#17504044) in a humidified 5% CO2 atmosphere at 37°C. Then
the cells were co-incubated with drugs in ultra-low attachment 6-
well plates (Corning) at a density of 5000 cells/well. The images
of spheres were captured using a phase contrast microscope
(Leica), and the sphere size was determined using ImageJ
software. To quantify the sphere size, we drew a line and set as
the known distance according to the scale bar from pictures by
using “Analyze” and “Set scale” from ImageJ. Then, we drew
lines equal to each sphere and then conducted to “Measure” from
ImageJ. Finally, the results of measured length were further used
to statistical analysis.

Isolation of Nuclear Extract
Nuclear and cytosolic extracts were isolated from cells using the
rapid, efficient and practical (REAP) method (41). Briefly,
following drug treatment, cells were scraped with cold
phosphate buffered saline (PBS) and suspended in ice-cold
0.1% NP-40. After pipetting and centrifugation, half of the
supernatant was transferred to a new tube and diluted with 4X
SDS sample buffer, which was the cytoplasmic fraction. The
remaining cell pellet was washed twice with ice-cold 0.1% NP-40
and resuspended with 1X SDS sample buffer diluted in 0.1% NP-
40, which constituted the nuclear fraction. To detect protein
expression in the fractions, the cytoplasmic fraction and the
nuclear fraction from each treatment were conducted western
blotting assay as described in next section. a-tubulin was used as
a cytoplasmic control; lamin A/C was used as a nuclear
fraction control.

Western Blotting Assay
After drug treatment, cells were lysed, and protein concentration
was measured using the Bradford assay (Thermo). Protein lysates
(30 mg) were separated by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and then
electro-transferred to 0.45 mM polyvinylidene difluoride (PVDF)
membranes (Millipore). After blocking with 5% milk in Tris-
buffered saline containing Tween-20 (TBST) for 1 h, the
membranes were incubated with primary antibodies at 4°C
overnight followed by incubation with the corresponding
July 2022 | Volume 12 | Article 775541
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secondary antibody for 1 h. The expression signals were visualized
using the Immobilon Western Chemiluminescent HRP Substrate
(Millipore #WBKLS0500) and detected using the Fujifilm
LAS4000 luminescent image analysis system. Protein levels were
quantified using ImageJ, and the expression was normalized to
that of the internal control (b-actin). The antibodies used in this
study are listed in Supplementary Table 2.

Establishment of Stable Cells and
Reporter Assay
The pGreenFire TCF/LEF (T cell factor/lymphoid enhancer
factor), Nanog, OCT4, and Notch1 reporter lentivectors were
purchased from System Biosciences. Pseudo reporter viruses
were produced as described in our previous study (42). Briefly,
HEK293T cells were co-transfected with reporter lentivectors
and packaging plasmids MD2G and pCMV-dR8.91 (RNAiCore,
Taiwan). After 48 h of transfection, viral supernatants were
collected and added to the culture medium of target cells along
with polybrene (Sigma). To obtain stable cell lines, the target cells
were selected in puromycin (1 mg/mL, Invitrogen) for 48 h. To
assess the effect of DHEA on TCF/LEF, Nanog, OCT4, and
Notch1-regulated transcription, the stable cells were treated with
the drugs, and then promoter activity was measured using ONE-
Glo Luciferase Assay System (Promega).

Reverse Transcription and Real-Time PCR
(RT-qPCR) Assay
Total RNA was extracted from the cells using the TRIzol method
(Invitrogen #15596026). The total RNA (2 mg) was used as a
template for reverse transcription performed with a SuperScript
III kit (Invitrogen). The cDNA was subjected to RT-qPCR in
triplicate using Omics Green qPCR Master Mix and Gunster
MB-P08A 8-strip PCR tubes (Gunster Biotech Inc., Taiwan). The
primers used are listed in Supplementary Table 3. The relative
expression was obtained using the comparative Ct method after
normalization to the expression of GAPDH in the StepOne™

Real-Time PCR System.

In Vivo Experiments
All animal experiments were performed in strict accordance with
the guidelines for the Care and Use of Laboratory Animals of the
National Institutes of Health (NIH). The animal experimental
protocol was approved by the Institutional Animal Care and Use
Committee of Academia Sinica (Taipei, Taiwan; protocol no.:
ASIACUC-R19-07-1329). Male NOD.CB17-Prkdcscid/NcrCrl
(Nod-SCID) mice aged 5–6 weeks were used for all the
experiments. To evaluate the in vivo tumorigenicity and anti-
stemness ability, 3 × 106 CAL 27 cells or 1000 FACS sorted
CD44+/CD133+ CAL 27 stem-like cells resuspended in PBS were
subcutaneously inoculated into the right flank of the mice. For
the HNSCC orthotopic model (43), CAL 27 luciferase-expressing
cells (5 × 105) resuspended in PBS were injected into the buccal
submucosa of mice. In vivo tumors were imaged using the IVIS
Imaging System (Caliper Life Sciences), and the signal intensity
of luciferase expression was measured. Drugs were administered
via intraperitoneal injection twice per week. Tumor growth and
Frontiers in Oncology | www.frontiersin.org 4
body weights were measured once a week. To determine the
tumor formation frequency of mouse models bearing CAL 27
stem-like cells, the formed tumor was examined by autopsy after
eight weeks of standard DHEA treatment regimen.

Hematoxylin and Eosin (H&E) and
Immunohistochemical (IHC) Staining and
Analysis
Tumor sections were formalin-fixed and paraffin embedded.
H&E or IHC staining was performed using a Discovery XT
automated immunostainer (Ventana Medical System). After
dewaxing, deparaffinization, and rehydration, Tris-EDTA
buffer was used for antigen retrieval. The sections were
immunostained for PCNA (GTX #100539, 1:500, GeneTex,
USA) and Ki67 (Dako #M7240, 1:150, DAKO/Agilent, Santa
Clara, CA), and subsequently counterstained with hematoxylin.

Statistical Analysis
All statistical analyses were performed using the Student’s one-
tailed t-test using Prism 7 software (GraphPad Software Inc., La
Jolla, CA, USA). Data are presented as the mean ± standard
deviation (SD) or standard error of mean (SEM) from
independent experiments. Statistical significance was set at
p < 0.05.
RESULTS

DHEA Showed Anticancer Effect and
Suppressed Stemness Potential of
HNSCC Cells
To examine the effect of DHEA on HNSCC cell viability,
HNSCC cell lines including CAL 27, SAS, and HSC-3, were
treated with different doses of DHEA for 24, 48, and 72 h,
respectively. DHEA significantly inhibited cell viability in a time-
and dose-dependent manner (Figure 1A and Supplementary
Figure 1A). The half maximal inhibitory concentration (IC50) of
DHEA was found to be 192.2 ± 28.4 mM for CAL 27 cells, 292.9 ±
43.9 mM for SAS cells, and 211.5 ± 13.5 mM for HSC-3 cells at 72
h. Also, we examined the effect of DHEA on the normal human
oral fibroblast (HOF). As shown in Figure 1B, in contrast to
HNSCC cell lines, CAL27 and SAS, DHEA 200 mM showed less
toxicity and inhibitory effect in the viability of HOF after 72 h
exposure. The cell viability decreased 20% in HOF, 32% in SAS
and 50% in CAL 27. A previous study demonstrated that DHEA
decreases the expression of stem cell genes in human sphere
mesenchymal stem cells (38). Therefore, to examine the role of
DHEA on HNSCC stemness potential, CAL 27 and SAS cells
were incubated with 0, 100, and 200 mM DHEA for 20 days in a
sphere formation assay. DHEA significantly suppressed the
sphere size in both the HNSCC cell lines (Figure 1C).
Furthermore, DHEA also decreased stemness-related mRNA
levels, including ALDH1A3, BMI-1, KLF4, and SOX2, after 6 h
of treatment in CAL 27 and SAS parental cells (Figure 1D) as
well as in spheroid cells (Figure 1E). DHEA treatment resulted in
a slight reduction in the protein expression of BMI-1 and Nestin
July 2022 | Volume 12 | Article 775541
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but did not affect OCT4 and Nanog expression (Figure 1F). To
further examine the transcriptional activity of stemness-related
transcription factors, we used WNT (TCF/LEF), Nanog, OCT4,
and Notch1 response element reporter assays. Although DHEA
Frontiers in Oncology | www.frontiersin.org 5
reduced the protein levels of OCT4 and Nanog only marginally,
the transcriptional activities of OCT4 and Nanog, the stemness
transcription factors, were markedly decreased in HNSCC cells
(Figure 1G). Taken together, these results suggest that DHEA
A B

D

E

F

G

C

FIGURE 1 | DHEA showed anticancer effect by reducing sphere size, expression of stemness markers, and transcriptional activity of related proteins in HNSCC
cells. (A) HNSCC cells were treated with 0, 50, 100, 200, and 400 mM DHEA for 24, 48 and 72 h Cell viability was determined by SRB assay. (B) HNSCC cells and
HOF were treated with 0 and 200 mM DHEA for 72 h. Cell viability was determined by SRB assay. (C) Sphere formation assay results showing CAL 27 and SAS cells
incubated with 0, 100, and 200 mM DHEA for 20 days. Scale bar: 200 µm (D, E) RT-qPCR results showing mRNA level of stemness markers in CAL 27 and SAS
parental cells (D), and spheroids (E) after treatment with 200 mM DHEA for 6 h (F) Western blot analysis showing expression of stemness marker in CAL 27 and
SAS cells after DHEA treatment for 72 h. Left, representative western blots of three independent experiments are shown. Right, bar charts represent the quantitation
of three independent experiments. (G) Luciferase reporter assay showing transcriptional activity of stemness-related markers, including TCF/LEF (WNT), Nanog,
OCT4, and Notch1 in CAL 27 and SAS cells after treatment with 200 mM DHEA for 24 h. Data represent mean ± standard deviation (SD) derived from three
independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, compared to control (1% DMSO only) using t-test.
July 2022 | Volume 12 | Article 775541
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inhibits HNSCC cell viability and cancer stemness potential,
including sphere size and expression of stemness markers.

DHEA Inhibited Activity of the WNT
Pathway by Decreasing Nuclear
Translocation of Active b-Catenin
In human epithelial carcinomas, such as HNSCC or colorectal
cancer, WNT signaling is crucial for the tumorigenesis and
progression (44, 45). To further investigate the effect of DHEA on
b-catenin, a crucial signal transducer of theWNT pathway, HNSCC
cell lines were treated with DHEA followed by nuclear extraction
assay. As shown in Figure 2A, DHEA treatment suppressed the
nuclear translocation of active (non-phosphorylated) b-catenin,
which prevented downstream effectors such as CCND1, CD44,
Frontiers in Oncology | www.frontiersin.org 6
and c-MYC (Figures 2B, C). Taken together, these results
demonstrated that DHEA downregulates WNT transcriptional
activity to inhibit the potential of HNSCC stemness.

HNSCC Stem-Like Cells Elevated the
Expression of the IRN Activity-Converting
Enzyme CES1/2
IRN, a topoisomerase I inhibitor, is a chemotherapeutic drug
currently used for the treatment of colorectal cancer (46). In
addition, IRN has been used in mono- and combination therapy
along with other chemotherapeutic agents in patients with
HNSCC and has shown improvement in patient response (18,
20). Following administration, IRN is converted to its active
form, SN-38, by CES1/2 enzymes in patients (47). Recent studies
A

B

C

FIGURE 2 | DHEA downregulated WNT pathway in HNSCC cells. (A) Western blotting with nuclear extracts showing the effect of treatment with 200 mM DHEA for
24 h on active b-catenin in CAL 27 and SAS cells. a-tubulin was used as a cytoplasmic control; lamin A/C was used as a nuclear fraction control. Active b-catenin
was normalized to a-tubulin or lamin A/C. (B, C) RT-qPCR (B), and western blotting (C) showing effect of DHEA on mRNA and protein expression of downstream
genes of the WNT pathway in CAL 27 and SAS cells. Left, representative western blots of three independent experiments are shown. Right, bar charts represent the
quantitation of three independent experiments. Data represent mean ± SD derived from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001,
compared to control (1% DMSO only) using t-test.
July 2022 | Volume 12 | Article 775541
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have shown that the activity and expression of CES are related to
IRN efficacy in lung cancer cell lines (17, 48) and solid tumors
(49–51). In addition, Shaojun et al. demonstrated that in patients
with metastatic colorectal cancer, high CES2 expression was
correlated with better IRN therapeutic effect, which implies
that CES2 may play an important role in IRN sensitivity.
Therefore, evaluation of CES1/2 expression may provide
preliminary clinical evidence for response to IRN-based
therapies (16). Interestingly, CAL 27 spheroids showed higher
CES1/2 mRNA levels compared to their parental cells
(Figure 3A). In addition, inhibition of WNT signaling
decreased cancer stem cell-like features and increased the
sensitivity of the cancer cells to chemotherapies, including IRN
(52, 53). Our findings revealed that DHEA has an inhibitory
effect on the WNT signaling pathway (Figures 1F and 2). Hence,
we sought to determine whether DHEA sensitizes HNSCC CSCs
to IRN.

DHEA Combined With IRN Showed
Improved Anti-Cancer as Well
as Anti-Stemness Potential Effect,
and Further Downregulated WNT
Pathway in HNSCC Cells
To evaluate the effect of DHEA combined with IRN onHNSCC, cell
viability was examined using SRB assay and the synergistic effect
was assessed via combination index (CI) calculation by using
CompuSyn software (39). In CAL 27 and HSC-3 cells, DHEA
combined with IRN further inhibited cell viability compared to
DHEA or IRN alone at 72 h treatment, and the CI index showed a
synergistic effect (CI value < 1) (Figures 3B, C and Supplemental
Figures 1B, C). The viability of CAL 27 cells following DHEA (50
mM), IRN (10 mM), and combination treatment was 84.1%, 35.9%,
and 24.0%, respectively. This dose combination showed the best
synergism (CI value = 0.48) and was used to perform subsequent
experiments in CAL 27 cells. In addition, other chemotherapeutic
agents were tested in combination with DHEA in CAL 27 and SAS
cells (Supplemental Figure 2). Some of the combination treatments
of DHEA plus gemcitabine, docetaxel or methotrexate showed
synergistic effect but less than that of DHEA plus IRN. Among
these chemotherapeutic drugs, docetaxel or gemcitabine obtained
quite effective single agent chemotherapy inHNSCC treatment cells.
Therefore, we did not further examine the combination uses to
enhance cytotoxicity. Therefore, IRN was selected as the
combination chemotherapeutic drug with DHEA for further
studies. In the sphere formation assay, the combination
significantly decreased CAL 27 sphere size compared to DHEA or
IRN alone (Figure 3D). In addition, the combination treatment
showed a greater inhibitory effect on the expression of stemness
markers, including BMI-1, OCT4, and Nanog (Figure 3E). Notably,
in the WNT pathway, the combination treatment further decreased
the expression of active non-phosphorylated b-catenin and
downstream targets, such as CCND1 and CD44 from the whole
cell lysate (Figure 3F). These data confirmed that combination
treatment of DHEA with IRN exerted better anticancer and stem
cell like traits inhibitory effects compared to DHEA or IRN alone in
HNSCC cells.
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DHEA Combined With IRN Showed Better
Anti-Tumor Effect Than IRN Monotherapy
in Subcutaneous HNSCC Mouse Models
To further investigate the effect of DHEA combined with IRN
against HNSCC in vivo, CAL 27 cells were subcutaneously
injected into the flank of immunodeficient mice to establish
xenograft models. DHEA (10 mg/kg/twice a week) and/or IRN
(50 mg/kg/once a week) were administered via intraperitoneal
injection (Figure 4A). Compared to DHEA or IRN alone, the
combination treatment showed greater inhibitory effect on
tumor size and weight compared to the controls (Figures 4B,
C, E). Interestingly, the combination treatment alleviated
irinotecan-induced loss of body weight, suggesting that DHEA
may reduce the side effects of IRN (Figure 4D). In H&E staining
of HNSCC xenografts (Figure 4F), the tumor size of the IRN
alone and the combination treatment groups was smaller than
that of vehicle or DHEA groups. As shown in Figure 4G, mice
with combination treatment showed lower expression of the
proliferation markers PCNA and percentage of Ki67, compared
to those treated with drug alone. Taken together, DHEA
enhanced irinotecan-mediated anticancer effects and further
reduced tumorigenicity in vivo.

DHEA Combined With IRN Exerted Better
Anti-Tumor Effect Than IRN Monotherapy
in Orthotopic Mice Models
To further evaluate the efficacy of DHEA in an orthotopic oral
cancer model, CAL 27 cells with luciferase (Luc)-expression were
inoculated into the buccal submucosa of immunodeficient mice.
The drugs were injected intraperitoneally, and the tumor growth
rate was assessed by measuring the bioluminescence signals
using the IVIS Spectrum System once a week. Treatment with
DHEA alone did not have a significant effect on inhibition of
tumor growth in the orthotopic oral cancer model
(Supplemental Figure 3). The CD44+/CD133+ CAL 27 stem-
like cells in vivo models revealed that DHEA treatment reduced
the HNC stem-like cells’ tumor formation frequency more than
control (Supplemental Table 4). To further investigate the effect
of DHEA combined with IRN in the orthotopic oral cancer
model, mice were separated into three groups for different
treatments: vehicle, IRN (50 mg/kg once a week), and DHEA
(10 mg/kg/once a week) combined with irinotecan (Figure 5A).
As shown in Figures 5B, C, DHEA combined with IRN caused a
significant reduction in the orthotopic HNSCC xenograft
bioluminescent signals in the buccal sites of the mice
compared to vehicle or IRN alone. Taken together, these
results revealed that compared to monotherapy, DHEA
combined with IRN demonstrated increased anti-tumor effect
in the orthotopic mouse model of oral cancer.
DISCUSSION

In the present study, we found that DHEA showed anticancer
and cancer stem cell-like traits of HNSCC cells via
downregulation of the WNT signaling pathway (Figures 1, 2).
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In the drug combination treatment strategy, DHEA plus IRN
exerted a synergistic effect by further reducing cell viability,
inhibiting cancer stem cell-like features, and suppressing WNT
signaling in vitro (Figure 3). Furthermore, the combination
Frontiers in Oncology | www.frontiersin.org 8
treatment showed better anti-tumor growth effect in
subcutaneous and orthotopic mouse models (Figures 4, 5).

DHEA is the most abundant steroid in human serum at
young age and is a precursor for the sex hormones. DHEA has
A B

D

E

F

C

FIGURE 3 | DHEA combinated with IRN synergistically decreased cell viability and stemness, and further downregulated WNT pathway in CAL 27. (A) RT-qPCR
results showing mRNA level of IRN-metabolism enzymes in CAL 27 spheroids and parental cells. CES1/2: carboxylesterase 1/2. (B) CAL 27 cells were treated with
DHEA (0, 50, and 100 mM), IRN (0, 0.5, 1, 5, and 10 mM) alone or in combination for 72 h and cell viability was determined by SRB assay. Data represent mean ±
SD derived from three independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001, compared to the same concentration of DHEA using t-test. # p < 0.05; ## p
< 0.01; ### p < 0.001, compared to the same concentration of IRN using t-test. (C) CI following various treatments in (B). CI > 1, antagonism; CI = 1, additivity; CI
< 1, synergism. (D) Sphere formation assay showing CAL 27 cells co-incubated with DHEA (50 mM) and/or IRN (10 mM). Scale bar: 200 µm (E, F) Western blotting
showing protein expression of stemness markers (E), and WNT pathway-related factors (F) in the whole cell lysate extracted from CAL 27 after DHEA and/or IRN
treatment for 24 h Left, representative western blots of three independent experiments are shown. Right, bar charts represent the quantitation of three independent
experiments. Data represent mean ± SD derived from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 using t-test. All treatments were
maintained in the same percentage of DMSO. CT, control; DH, DHEA; IRN, irinotecan.
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been used as a dietary supplement and reported to show anti-
aging and anti-inflammatory effects. Recently, using the drug
repurposing approach, DHEA has been studied in various
diseases, including cancer. Several studies have demonstrated
that DHEA affects cancer via various signaling pathways. In
breast cancer, several reports have demonstrated that DHEA
inhibits the metastatic processes, including cell migration,
invasion, and anchorage-independent growth, and partially
Frontiers in Oncology | www.frontiersin.org 9
reverses the EMT process, and suppresses tumor growth in
MDA-MB-231-mouse xenografts (30–32). In hepatoma, DHEA
inhibits PI3K/AKT signaling to induce apoptosis and thereby
decreases cell proliferation in HepG2 cells (35). In colon cancer,
DHEA shows anticancer proliferation via induction of cell cycle
arrest in the G0/G1 phase in HT-29 cells (35). In myeloma,
DHEA decreases cell number and induces expression of PPARb
and IkBa genes via downregulation of interleukin-6 (33). In
A B
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FIGURE 4 | DHEA combined with IRN showed increased anti-tumor effect in HNSCC subcutaneous mouse models. (A) Flow chart showing the experimental
schedule and drug administration. CAL 27 cells were subcutaneously injected into mice and then treated with DHEA (10 mg/kg/twice a week) and IRN (50 mg/kg/
once a week) via intraperitoneal injections. Tumor size and body weight were measured once a week. (B–E) Tumor size (B), tumor weight (C), body weight (D), and
tumor appearance (E) of CAL 27 tumor-bearing mice in vehicle- and drug-treated groups. (F) Hematoxylin and eosin (H&E) staining results of tumors from mice
following vehicle and drug treatment. (G) IHC staining for PCNA (upper) and Ki67 (lower) in tumors from mice following various treatments. Data represent mean ±
SEM (n = 5/per group). *p < 0.05; **p < 0.01; ***p < 0.001, n.s. not significant, compared to each other using t-test. IRN, irinotecan.
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pancreatic cancer, DHEA administration significantly
suppressed tumor growth in vivo by altering plasma sex
hormone concentrations (36). These findings suggest that
DHEA affects many aspects of cancer cells, but some potential
functions and important roles of DHEA have never been
explored. In this study, we investigated the effect of DHEA on
HNSCC and cancer stemness. Our findings demonstrated that
DHEA had an inhibitory effect on HNSCC viability and was less
toxic to normal cells, HOF (Figures 1A, B).

CSCs are a major obstacle in effective cancer treatment due to
their self-renewal capability. Previously, DHEA has been
reported to suppress the expression of stem cell genes,
including SOX2, Nanog, and OCT4 (38) in human sphere
mesenchymal stem cells. Furthermore, DHEA has been found
to decrease the spheroid size of breast cancer, which may have
the potential to suppress cancer stemness (30). However, the
effect of DHEA on cancer stemness-related events and the
underlying mechanisms have never been studied. Our results
showed that DHEA suppressed cancer stemness properties of
HNSCC, including decreased sphere size and transcriptional
activities of stemness-related transcription factors, such as
WNT (TCF/LEF), Nanog, and OCT4. OCT4 and Nanog are
pluripotent transcriptional factors that contribute to
maintenance of stemness and cancer progression (54, 55).
Frontiers in Oncology | www.frontiersin.org 10
Although the expression of OCT4 and Nanog was slightly
decreased following DHEA treatment, their transcriptional
activities were significantly decreased by DHEA, indicating that
DHEA has the ability to inhibit CSC potential (Figures 1C-G).

One possible strategy to overcome with the ineffectiveness of
cancer chemotherapies is to target the key signaling pathways
that promote cancer stemness. The WNT/b-catenin signaling
pathway regulates the maintenance and self-renewal of CSCs in
colon cancer (56) and breast cancer (57), and shows significantly
higher activation in breast CSCs compared to that in normal
stem-like cells (58). Aberrant activation of the WNT signaling
pathway has already been demonstrated in HNSCCs and CSCs
(59). Binding of the WNT ligands to the WNT receptors
activates the WNT pathway, accumulation and translocation of
stable, non-phosphorylated b-catenin into the nucleus and
binding to the TCF/LEF transcription factors. Consequently,
the activation of transcription factors initiates the expression of
downstream target genes. Thus, blocking b-catenin, a key factor
in the WNT pathway, may be an effective strategy for inhibiting
the WNT pathway (60). Several studies have developed WNT
pathway inhibitors, including targeting b-catenin transcriptional
activity and b-catenin target genes (14). However, in clinical
trials among patients with HNSCC, WNT974, a Porcupine
(PORCN) inhibitor that blocks the secretion of WNT ligands,
A

B

DC

FIGURE 5 | DHEA combined with IRN further reduced tumor growth in HNSCC orthotopic mouse models. (A) Flow chart of the experimental schedule and drug
administration. CAL 27 cells with luciferase expression (CAL 27-Luc) were injected into the buccal submucosa of mice. DHEA (10 mg/kg/once a week) and IRN (50
mg/kg/once a week) were injected intraperitoneally (IP). Tumor growth (measured by bioluminescent signals using the IVIS Spectrum Imaging System) and body
weights were measured once a week. (B-D) Bioluminescence images (B), quantitation of photon counts (C), and body weights (D) of orthotopic mouse models
following various treatments. Data represent mean ± SEM (n = 5/per group). n.s. not significant; **p < 0.01, compared to each other using t-test.
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is the only drug being administered (14, 61). These findings
suggest that targeting WNT/b-catenin signaling represents a
promising therapeutic strategy for HNSCC. DHEA inhibited
WNT signaling via downregulation of active b-catenin in the
nucleus, thereby decreasing the transcriptional activity of
downstream target genes, such as CD44 and CCND1 in
HNSCC (Figure 2). Previously, Li et al. found that DHEA
prevents osteoarthritis by regulating the WNT/b-catenin
pathway and decreasing the expression of b-catenin (62). Our
observations are the first to reveal the mechanism of DHEA on
b-catenin within the WNT pathway in cancers, especially
in HNSCC.

Chemoresistance of CSCs causes failure of cancer therapy and
tumor recurrence (4). Accumulating evidence suggests that
agents that block the WNT pathway may sensitize cancer cells
and CSCs to chemotherapies and may serve as novel synergistic
therapeutic regimens in combination treatment strategies (63).
As our data showed that DHEA inhibited cancer stem cell-like
traits via downregulation of the WNT pathway in HNSCC, we
further applied DHEA to combination therapy. In addition,
mRNA levels of CES1/2, which encode the enzymes involved
in generation of the active form of IRN, were higher in CAL 27
spheres than in their parental cells (Figure 3A). This hint that
the spheres may be more sensitive to IRN than parental cells due
to their higher CESs. DHEA combined with IRN exerted a
synergistic effect on cell viability, and the most optimal dose
was found to be 50 mMDHEA plus 10 mM IRN as revealed via CI
index calculation (Figures 3B, C). We also examined other
chemotherapeutic drugs in combination with DHEA, but their
anticancer effects were lesser than that of IRN (Supplemental
Figure 2). Furthermore, compared to DHEA or IRN alone, the
combination treatment further downregulated the sphere size,
expression of proteins associated with stemness, as well as the
WNT pathway in HNSCC cells (Figure 3). Moreover, DHEA
plus IRN demonstrated inhibitory effect on tumor growth in a
subcutaneous and an orthotopic oral cancer model
(Figures 4, 5). Although we used a general subcutaneous
HNSCC mice model rather than the classical cancer stem cells-
based animal models by serially diluted inoculation to investigate
the effect of DHEA and/or IRN on tumor inhibition. However,
Shrivastava et al. have observed CAL 27 cells possessed about
1.6% of CSC population in total number of parental cells (64). In
our subcutaneous in vivo models, there were about 48,000 CSCs
among the inoculation. This subset of cells might mimic the
ability of CSCs to tumor initiation and progression and provide
the preliminary result about the inhibitory effect of DHEA on
CSC potential. In additional, in our study, the 10 mg/kg DHEA
used in the mice administration was converted from a human
equivalent dose (50 mg) based on body surface area by the
formula from the US Food and Drug Administration and from
Chen et al. study (65). Also, as shown in our results, there were
no abnormal change of body weight of mice or other side effects
observed, suggesting that this dosage was tolerable. In addition,
the acute oral toxicity (lethal dose, LD50) of DHEA is >10,000
mg/kg in mouse, further supporting that there is no acute toxicity
of DHEA. Although the underlying mechanism of the DHEA-
Frontiers in Oncology | www.frontiersin.org 11
mediated anticancer effect of IRN needs to be further elucidated,
the in vitro and in vivo data presented in this study provide
evidence supporting the synergistic effect of DHEA and IRN
against HNSCC.
CONCLUSIONS

Taken together, our findings indicate that DHEA exerts
anticancer effects, especially with regard to the inhibitory effect
of cancer stem-like cells, via downregulation of the WNT
pathway in vitro and reduces tumorigenicity in vivo.
Furthermore, DHEA enhances the therapeutic efficacy of IRN
against HNSCC cells. The combination treatment showed
increased tumor growth inhibition in both subcutaneous and
orthotopic mouse models. These results highlight the need for
more in-depth investigations to understand the underlying
mechanism associated with the synergistic effects of DHEA
and IRN. Our results provide a novel and promising
therapeutic strategy for patients with HNSCC.
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