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The protein α-synuclein, which is well-known for its links to Parkinson’s Disease, is
associated with synaptic vesicles (SVs) in nerve terminals. Despite intensive studies, its
precise physiological function remains elusive. Accumulating evidence indicates that
liquid-liquid phase separation takes part in the assembly and/or maintenance of
different synaptic compartments. The current review discusses recent data suggesting
α-synuclein as a component of the SV liquid phase. We also consider possible implications
of these data for disease.
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INTRODUCTION

The first synuclein protein was identified by its association with synaptic vesicles (SVs) in the
Torpedo electric organ (Maroteaux et al., 1988). Subsequently, three homologous members were
identified in mammals, α-, β-, and γ-synuclein, and the enrichment of the latter in synaptic boutons
and SV clusters in mammalian neurons was confirmed [Figure 1; (Totterdell et al., 2004; Hoffmann
et al., 2021)]. α-Synuclein has been the focus of intense research efforts due to its strong coupling with
Parkinson’s disease (PD) and other synucleinopathies: it is a component of the Lewy bodies
occurring in the diseased brain, and mutations in α-synuclein cause rare familial variants of PD
(Simon et al., 2020).

α-Synuclein is natively unfolded in solution but adopts an α-helical conformation in contact with
acidic phospholipids and/or highly curved phospholipid membranes (Sulzer and Edwards, 2019).
This change involves the formation of so-called ALPS-motifs (amphipathic lipid packing sensor
motifs), which can bind to and stabilize curved membranes (Antonny, 2011; Pranke et al., 2011;
Westphal and Chandra, 2013; Runwal and Edwards, 2021). Moreover, the C-terminal part can bind
phospholipids in a calcium-dependent manner (Lautenschlager et al., 2018). These properties of α-
synuclein are likely to explain its strong association with SVs. Only low levels of α-synuclein occurs in
the cytosol of neurons (Gerdes et al., 2020).

The enrichment of α-synuclein in the SV cluster of synapses is suggestive of a physiological role in
the SV cycle. However, synucleins are not essential for neurotransmitter release. No discernable
homologs have been detected in invertebrates, and triple knockout of synucleins in mice only gives
rise to subtle changes of synaptic function (Bendor et al., 2013; Runwal and Edwards, 2021). Mice
lacking α-synuclein appear essentially normal and have a normal lifespan. Thus, in the context of
synapse physiology, α-synuclein appears to play redundant roles. Several links of α-synuclein to
presynaptic functions have nonetheless been suggested. SV-bound α-synuclein dissociates upon
exocytosis and subsequently re-associates, consistent with an involvement in SV cycling (Fortin et al.,

Edited by:
Huan-Xiang Zhou,

University of Illinois at Chicago,
United States

Reviewed by:
Lin Guo,

Thomas Jefferson University,
United States

Brett M. Collins,
The University of Queensland,

Australia

*Correspondence:
Lennart Brodin

lennart.brodin@ki.se
Oleg Shupliakov

oleg.shupliakov@ki.se

Specialty section:
This article was submitted to

Cellular Biochemistry,
a section of the journal

Frontiers in Molecular Biosciences

Received: 08 March 2022
Accepted: 26 April 2022
Published: 18 May 2022

Citation:
Brodin L, Milovanovic D, Rizzoli SO and
Shupliakov O (2022) α-Synuclein in the
Synaptic Vesicle Liquid Phase: Active

Player or Passive Bystander?
Front. Mol. Biosci. 9:891508.

doi: 10.3389/fmolb.2022.891508

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8915081

REVIEW
published: 18 May 2022

doi: 10.3389/fmolb.2022.891508

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.891508&domain=pdf&date_stamp=2022-05-18
https://www.frontiersin.org/articles/10.3389/fmolb.2022.891508/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.891508/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.891508/full
http://creativecommons.org/licenses/by/4.0/
mailto:lennart.brodin@ki.se
mailto:oleg.shupliakov@ki.se
https://doi.org/10.3389/fmolb.2022.891508
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.891508


2005). Overexpression and knockout studies point to roles of α-
synuclein in different steps of the SV cycle. These include control
of the fusion pore (Logan et al., 2017), regulation of SNARE
proteins (Burre et al., 2010), involvement in SV recycling (Vargas
et al., 2014), and in the regulation of axonal transport of SVs
(Scott and Roy, 2012). In addition, a function in mitochondrial
dynamics has been proposed (Kamp et al., 2010; Nakamura et al.,
2011; Guardia-Laguarta et al., 2014). These putative functions
have recently been the subject of insightful reviews (Sulzer and
Edwards, 2019; Runwal and Edwards, 2021) and will therefore
not be further considered here. Instead, we will focus on the
possible involvement of α-synuclein in the organization of the SV
cluster by liquid-liquid phase separation (LLPS), it’s possible roles
as a part of this liquid phase, and factors contributing to the
formation of pathological protein aggregates.

PHASE SEPARATION IN THE NERVE
TERMINAL

The nerve terminal in excitatory synapses contains three structurally
distinct compartments, the active zone (AZ), the proximal portion of
the SV cluster (near theAZ), and the distal portion of this cluster. The
AZ comprises a dense proteinaceous matrix, which covers the
presynaptic plasma membrane and is aligned with the
postsynaptic density. It contains calcium channels and numerous
proteins, many of which contain large helical regions with molecular
weights exceeding 400 kDa (Sudhof, 2012; Gundelfinger et al., 2015;
Acuna et al., 2016). In direct apposition to the AZ lies the vesicle pool
that comprises about 3–4 layers of SVs and is distinguished by its

independence of synapsin at rest (Pieribone et al., 1995; Rosahl et al.,
1995; Siksou et al., 2007; Vasileva et al., 2012). This pool, here referred
to as the proximal SV pool, is not evident in inhibitory synapses
(Gitler et al., 2004). On the top of the proximal pool lies a large distal
pool that comprises the bulk of the SV cluster. The distal pool is
disrupted by knockout or perturbations of synapsin (Pieribone et al.,
1995; Rosahl et al., 1995; Siksou et al., 2007; Vasileva et al., 2012).
While SV pools have also been defined by physiological criteria
(Denker and Rizzoli, 2010; Chanaday and Kavalali, 2018), it is
important to note that such functional pools do not correlate with
the two structural SV pools discussed here.

In the context of cell biology, LLPS is an emerging principle of
subcellular organization by which biomolecules, including
proteins, nucleic acids and vesicles, form mesoscale assemblies
throughmultivalent, low-affinity interactions (Banani et al., 2016;
Shin and Brangwynne, 2017). These interactions can be mediated
by intrinsically disordered regions (IDRs) of proteins or modular
binding domains, such as SH3 domains binding proline-rich
motifs, allowing for protein/protein, protein/membrane or
protein/nucleic acid interactions (Li et al., 2012; Banani et al.,
2016; Shin and Brangwynne, 2017; Mittag and Parker, 2018;
Dignon et al., 2020; Zhao and Zhang, 2020).

Recently, LLPS has been implicated in the assembly and/or
maintenance of two presynaptic compartments, the AZ and the
distal part of the SV cluster. In vivo studies in Caenorhabditis elegans
showed that the assembly of the developing AZ depends on phase
separation of the core AZ proteins SYD-2 and ELKS-1 (McDonald
et al., 2020). Notably, synaptic SYD-2/ELKS-1 condensates remain in
a liquid state only during early developmental stages but mature into
hydrogel-like structures at later stages (McDonald et al., 2020).

FIGURE 1 | Accumulation of α-synuclein and synapsin in SV clusters. (A)mCherry-synapsin I and α-synuclein-BFP constructs are targeted to synapses in primary
hippocampal neurons. Heterologous expression of mCherry-Synapsin I. Scale: 10 µm. From (Hoffmann et al., 2021). (B,C) Electron microscopic images of symmetrical
synaptic contacts (arrows) in the prefrontal cortex (B) and hilus (C) labeled with anti-α-synuclein antibodies. Note an accumulation of the synuclein labeling over synaptic
vesicle clusters. Scale: 0.3 µm. From (Totterdell et al., 2004).
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Corresponding in vivo experiments have not yet been performed in
vertebrates, but in vitro studies have shown that the AZ proteins RIM
and RIM-BP can undergo LLPS in vitro (Wu et al., 2019). Such RIM/
RIM-BP condensates can recruit calcium channels, consistent with a
role in AZ assembly (Wu et al., 2019).

Regarding the SV cluster, pioneering in vitro studies pointed at
synapsin as an organizer by means of LLPS. Synapsin or its isolated
IDR can form protein droplets in solution (Milovanovic et al., 2018),
either alone or together with small acidic liposomes (Milovanovic
et al., 2018), or with isolated SVs (Hoffmann et al., 2021). These
in vitro data are supported by in vivo observations (Milovanovic and
De Camilli, 2017). Unlike the active zone, however, the SV cluster
appears to remain in a liquid state in the adult nervous system. Thus,
SV clusters inmature synapses exhibit dynamic properties compatible
with a liquid phase (Betz et al., 1992; Kamin et al., 2010; Staras et al.,
2010; Milovanovic and De Camilli, 2017). Moreover, the acute
disruption of interactions of the synapsin IDR in an adult synapse
causes dispersal of the distal SV pool (Pechstein et al., 2020).

While numerous membrane-less organelles have been shown to
be organized by LLPS the vast majority of these contain only proteins
and/or proteins andRNA. The SV cluster, together with assemblies of
COPII vesicles (Zhao and Zhang, 2020), is thus distinct from most
other membrane-less organelles in that it contains lipid vesicles.

In addition to synapsin and α-synuclein, the SV cluster contains a
plethora of proteins [Table 1; (Denker et al., 2011; Shupliakov, 2009)],
many of which bind to SVs (Perego et al., 2020; Reshetniak et al., 2020).
The majority of these proteins contain IDR(s) and some contain SH3
domains (Table 1). The possible roles of these proteins in the
maintenance of the SV liquid phase is presently unclear (regarding
α-synuclein, see below). Regarding the SH3 domain-containing
proteins it is interesting to note that the SH3 domain pentamer of
intersectin co-assembles with synapsin in protein droplets and can
stimulate their formation (Milovanovic et al., 2018). In view of the well-
established role of SH3 domain multimers in LLPS (Li et al., 2012;
Banani et al., 2016; Ghosh et al., 2019) it is thus possible that intersectin
promotes phase separation in the SV cluster. On the other hand, it is
unclear to what an extent intersectin acts as a multivalent binding
partner of synapsin as only one of its SH3 domains (SH3A) shows
detectable synapsin binding (Gerth et al., 2017; Pechstein et al., 2020).
Moreover, in the resting intact synapse, antibodies inhibiting
interactions with the SH3A domain does not interfer with SV
clustering, nor does antibodies inhibiting interactions with the
amphiphysin SH3 domain (Pechstein et al., 2020). These
observations do, however, not rule out a combined contribution of
several cluster-enriched SH3 domain proteins on phase separation of
SVs. Would there be such a contribution, it can be anticipated that it is

TABLE 1 | Properties of proteins enriched in the synaptic vesicle cluster.

Protein IDR SH3
domain

Fold enrichment in SV cluster versus rest of
synapse

Primary role References

α- SNAP − − 35 Post exocytosis Reshetniak et al. (2020)
α-synuclein + − 37 Unclear Maroteaux et al. (1988)
Amphiphysin ++ + 40 Endocytosis Evergren et al. (2004)
AP180 ++ − 27 Endocytosis Denker et al. (2011)
Calmodulin − − 8 Ca2+ binding Reshetniak et al. (2020)
Clathrin − − 11 Endocytosis Denker et al. (2011)
Complexin − − 19–34 Exocytosis Denker et al. (2011)
Doc2a + − 29 Endocytosis Reshetniak et al. (2020)
Dynamin ++ − 86 Endocytosis (Evergren et al., 2007; Denker et al., 2011)
EHD − − Not studied Endocytosis Jakobsson et al. (2011)
Endophilin + + 19 Endocytosis, autophagy (Shupliakov, 2009; Bai et al., 2010; Sundborger

et al., 2011)
Eps15 ++ − Not studied Endocytosis Koh et al. (2007)
Epsin ++ − 44 Endocytosis Jakobsson et al. (2011)
Hsc70 + − 8 Chaperone Denker et al. (2011)
Intersectin ++ +++++ 90 Endocytosis Evergren et al. (2007)
Munc13 ++ − 19 Exocytosis Reshetniak et al. (2020)
Munc18 − − 27 Exocytosis Reshetniak et al. (2020)
NSF − − 11 Post exocytosis Denker et al. (2011)
Rab3 + − 19 Exocytosis Fischer von Mollard et al. (1990)
Rab5 ++ − 19 Endocytosis Reshetniak et al. (2020)
Rabphilin ++ − Not studied Exocytosis Denker et al. (2011)
RIM ++ − Not studied Exocytosis Denker et al. (2011)
SCAMP1 ++ − Not studied Carrier Reshetniak et al. (2020)
Septin5 − − 19 Nucleotide binding,

autophagy
Reshetniak et al. (2020)

Synapsin ++ − 134 SV clustering De Camilli et al. (1983)
Syndapin ++ + 35 Endocytosis Andersson et al. (2008)
Synaptojanin ++ − Not studied Endocytosis McPherson et al. (1996)

Features of soluble proteins enriched in synaptic vesicle clusters. For intrinsically disordered regions (IDRs): + = a stretch of >20 amino acids with a disorder probability of >0.6; ++ = a
stretch of >50 amino acids with a disorder probability of >0.6 according to PrDOS (Ishida and Kinoshita, 2007). Values were calculated on the human 1/A isoform for each protein. For SH3
domains: each + indicates one SH3 domain.
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under complex regulation by the many components of the SV cluster
(Ghosh et al., 2019).

A growing field of study regard interactions between intrinsically
disordered proteins and membranes (Zhao and Zhang, 2020; Hicks
et al., 2021). How do such interactions pertain to the SV cluster liquid
phase? It is first important to note that the SV liquid phase, confined
to the distal portion of the SV cluster, is not in contact with the
plasma membrane as the two are spatially separated by the proximal
portion of the cluster. Regarding SVs, the multiplicity of interactions
with cluster-enriched proteins (Perego et al., 2020; Reshetniak et al.,
2020) may well involve IDR-membrane interactions. For example,
synapsin primarily binds SVs via an N-terminal region (Benfenati
et al., 1989; Krabben et al., 2011), but an additional contribution of its
IDR cannot be excluded. Likewise, many of the proteins listed in
Table 1may potentially interact with SVs via their IDRs. Hence, the
SV membrane may serve as an additional template for LLPS.

It remains to be determined how the proximal SV pool is
organized. The protein matrix of the AZ extends, at least partly,
into this pool (Sudhof, 2012; Gundelfinger et al., 2015). However,
liquid condensates formed by RIM and RIM-BP do not
incorporate SVs, but only absorb them on their surface (Wu

et al., 2021). It seems likely that the protein matrix and vesicles at
the AZ are creating a surface that favors the attachment of the SV
phase of the distal pool.

Apart from organizing the distal vesicle pool, LLPS may take
part in SV endocytosis in the periactive zone, as LLPS has been
implicated in other forms of clathrin-mediated endocytosis
(Schiano Lomoriello et al., 2022). Notably, however, specific
data on endocytosis in the synapse is presently lacking.

POSSIBLE INVOLVEMENT OF
α-SYNUCLEIN IN ORGANIZING THE
SYNAPTIC VESICLE LIQUID PHASE
To what extent may α-synuclein contribute to the
organization of the SV liquid phase? While both synapsin
and α-synuclein have IDRs, recent in vitro studies do not favor
a role of α-synuclein as an initiator of the SV liquid phase. For
example, α-synuclein does not undergo LLPS in vitro at
physiological (i.e., low micromolar) concentrations, which
contrasts with the behavior of synapsin [Figure 2B;

FIGURE 2 | Synapsin recruits α-synuclein into liquid protein droplets but α-synuclein is not able to drive phase separation effectively and recruit synaptic vesicles
into the liquid droplets. (A) Colocalization of reconstituted condensates containing EGFP-Synapsin 1 (6 µM) and α-synuclein (2 mM, chemically labeled with Alexa Fluor
647, AF 647) in 3% PEG, 8,000. Scale bars, 5 µm. (B) Condensate formation of purified recombinant proteins. 6 µM EGFP-synapsin one in magenta; 6 µM mCherry in
red; 2 µM α-synuclein in green in the absence (full line) or presence of 3% PEG 8000 (dashed line). The condensate formation wasmeasured as a change in turbidity
at 405 nm. (C) Excess of α-synuclein reduces the rate of synapsin condensate formation, and α-synuclein is unable to recruit SVs. Condensate formation of purified
recombinant proteins EGFP-synapsin I and α-synuclein in different molar ratios (curves in tones of blue), EGFP-synapsin one alone (magenta), α-synuclein alone (green) in
presence of 23 nM SVs. The condensate formation was measured as a change in turbidity at 405 nm. Each value is shown as the average ±standard error of the mean,
data are from three independent replicates (each time fresh isolation of native SVs). (D) Scheme of the synapsin/SV condensation in the presence of different molar ratios
of α-synuclein (α-synuclein-to-synapsin, 1:1 left and 3:1 right) or in the absence of synapsin (bottom). From (Hoffmann et al., 2021).
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(Hoffmann et al., 2021)]. Moreover, α-synuclein cannot
recruit isolated SVs into protein droplets [Figures 2C,D;
(Hoffmann et al., 2021)]. Together with the fact that SV
clusters persist in synuclein triple knockout mice (Vargas
et al., 2017), these data argue against a role of α-synuclein
as an initiator of the SV liquid phase. Nevertheless, α-
synuclein may be one of several factors that contribute to
maintaining the SV liquid phase. In fact, all proteins listed in
Table 1 that contain IDRs and/or SH3 domains may
potentially fulfill this role. Additionally, integral SV
proteins may contribute (Kim et al., 2021; Park et al., 2021).

Interestingly, recent in vitro experiments have shown that
α-synuclein at low micromolar concentrations can be
recruited into synapsin droplets and it remains in a liquid
state therein [Figure 2A; (Hoffmann et al., 2021)]. A role of α-
synuclein in contributing to the SV liquid phase is consistent
with the observation that α-synuclein multimers can cluster
vesicles and restrict their motility under in vitro conditions
(Pranke et al., 2011). It is also consistent with ultrastructural
studies showing that SV clusters have a higher packing density
in synuclein knockout mice than in control animals (Vargas
et al., 2017). Moreover, the lamprey synuclein ortholog has
very high homology to mammalian synuclein (Busch et al.,
2014; Vorontsova et al., 2018; Fouke et al., 2021), and
microinjection of pan-synuclein antibodies into the giant
reticulospinal axon resulted in migration of SVs away from
the SV cluster in a piecemeal fashion (i.e., small packets
of vesicles), suggesting the putative role of α-synuclein in
higher-level assembly of SV condensates (Fouke et al., 2021).

CAN α-SYNUCLEIN ALONE UNDERGO
PHASE SEPARATION UNDER
PHYSIOLOGICAL CONDITIONS?
At high concentrations (i.e., 200 µM) α-synuclein alone can undergo
LLPS in vitro (Figure 3A; (Ray et al., 2020). Importantly, under these

conditions, there is also a maturation of α-synuclein droplets from a
liquid into a solid-like state (Figure 3B) (Hardenberg et al., 2021; Ray
et al., 2020). A similar maturation occurs when α-synuclein is
ectopically overexpressed in cells (Hardenberg et al., 2021). How
might these findings relate to in vivo conditions? The precise
concentration of α-synuclein in the SV cluster is not known. The
average concentration in nerve terminals is in the 20 µM range, based
on a measured concentration of α- and β-synuclein of 43 µM in
synaptosomes (Wilhelm et al., 2014). The concentration of α-
synuclein in SV clusters is probably several-fold higher due to its
efficient binding to the curved SVmembrane, with the concentration
of free α-synuclein in the synapse cytosol, away from the vesicle
clusters, being estimated to only ~1.2 µM (Reshetniak et al., 2020).
Interactions with other cluster-enriched proteins (Table 1) may
contribute to further enrichment. It is unclear, however, whether
α-synuclein occurs in SV clusters at concentrations that would enable
it to undergo LLPS directly, without the intervention of other synaptic
proteins. It must be noted that, while α-synuclein can undergo LLPS
in vitro, this was performed in conditions of very high crowding,
using 10% polyethyleneglycol (PEG), which may not represent the in
vivo situation (Ray et al., 2020). This hypothesis is tempting, since
proteins occupy ~7–13% of the volume of synapses, close to the PEG
levels used in the in vitro experiments (Wilhelm et al., 2014), but it is
not clear whether the two situations are truly comparable.
Importantly, despite its presumed high concentration in SV
clusters, α-synuclein remains in a liquid state in vivo, at least in
healthy neurons (Fortin et al., 2004; Unni et al., 2010). The fact that α-
synuclein reversibly dissociates from SVs upon exocytosis (Fortin
et al., 2005) indicates a robustness of its liquid state, even under
conditions of dynamic turnover of SVs and proteins.

A DUAL VIEW OF α-SYNUCLEIN AT THE
SYNAPSE

The behavior of α-synuclein at the synapse can be viewed from
two perspectives: 1) on the one hand, it may function as a

FIGURE 3 | α-synuclein can undergo liquid-to-solid transition at high concentrations in vitro, which is reduced by negatively charged liposomes. (A) α-Synuclein (α-
Syn) undergoes LLPS in vitro. Differential interference contrast (DIC) images of α-Syn phase-separated droplets at different protein concentrations in the presence and
absence of the molecular crowder PEG-8,000. From (Ray et al., 2020). (B) α-synuclein/liposome droplets mature slower than droplets containing α-synuclein only
(protein:lipid, 1:1). Lowering the protein:lipid ratio to 10:1 results in a loss of the protective effect. From (Hardenberg et al., 2021).
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supporter of the SV liquid phase thereby facilitating synaptic
transmission; 2) on the other hand, the SV liquid phase may
provide a “safe” environment that prevents its aggregation and
misfolding. The factors contributing to the apparent stability of α-
synuclein in vivo need to be elucidated, but the environment
provided by the SV cluster is likely to be vital. This environment
probably depends not only on the curved phospholipid surface of
SVs but also on numerous integral SV proteins (Kim et al., 2021;
Takamori et al., 2006) and soluble SV cluster proteins (Table 1).
The role of the SV membrane in maintaining α-synuclein in a
non-aggregated state is supported by in vitro data showing that
acidic liposomes can prevent the maturation of liquid α-synuclein
droplets into solid-like droplets (Figure 3B; [Hardenberg et al.,

2021]). It can be assumed that the environment of the SV cluster
has evolved in vertebrate phylogeny to simultaneously support
neurotransmission and prevent the pathological transformation
of its constituents.

THE SYNAPTIC VESICLE CLUSTER LIQUID
PHASE AS A POSSIBLE STABILIZER OF
NON-AGGREGATED α-SYNUCLEIN
Several lines of evidence point to impaired synaptic proteostasis
as one factor leading to protein aggregation in synucleinopathies
(Nachman and Verstreken, 2021). We speculate that another
contributing factor is a disturbance of the delicate SV cluster
milieu. Such disturbance may be caused by elevated expression of
α-synuclein. Indeed, multiplications of the gene locus encoding α-
synuclein, SNCA, or mutations in upstream regulatory regions
cause rare familial dominant PD (Runwal and Edwards, 2021;
Sulzer and Edwards, 2019). Mutations within α-synuclein may
also contribute. For example, the human A30P PD mutation
impairs α-synuclein´s association with synapses and thus likely
its binding to SVs (Fortin et al., 2005; Henning Jensen, 2001). An
additional factor might be mutations in other proteins that
contribute to the SV liquid phase. Parkinson-related mutations
have indeed been found in some of the proteins listed in Table 1;
(Nachman and Verstreken, 2021). Our recent in situ data are
consistent with the general notion that the SV liquid phase is
critical to prevent protein aggregation. Thus, acute disruption of
the SV liquid phase and the associated vesicle pool in the lamprey
reticulospinal synapse leads to the occurrence of electron-dense
aggregates in the presynaptic region [Figure 4; (Pechstein et al.,
2020)]. . It will now be of key interest to determine whether these
aggregates contain misfolded proteins and how they are
organized and evolve structurally in time.
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FIGURE 4 | Disruption of the SV liquid phase by antibodies to the IDR of
synapsin results in formation of electron-dense protein aggregates in the
lamprey giant synapse. (A) Electron microscopic image showing partial
disruption of the vesicle cluster and formation of electron dense
condensates associated with synaptic vesicles (arrows) in a synapse in a
reticulospinal axon at rest. (B) Electron dense condensates associated with
synaptic vesicles (sv) in a synaptic region of a resting axon microinjected with
antibodies at higher magnification. Scale bars in µm. From (Pechstein et al.,
2020).
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