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Abstract

In the face of the global epidemic of diabetes, it is critical that we update our knowledge about the pathogenesis of diabetes
and the related micro alterations on the vascular network in the body. This may ultimately lead to early diagnosis and novel
treatment options for delaying the progression of diabetic complications. Research has recently revealed the pivotal role of
endothelin in the pathogenesis of diabetic complications, particularly in the regulation of the capillary flow, which is affected
in the course of retinopathy. Although there are several reviews on various approaches to the treatment of diabetes, including
normalization of glucose and fat metabolism, no reviews in literature have focused on the endothelin system as a therapeutic
target or early indicator of diabetic microangiopathy. In this review, we summarize some of the experimental and clinical
evidence suggesting that current therapeutic approaches to diabetes may include the modulation of the blood concentration
of compounds of the endothelin system. In addition, we will briefly discuss the beneficial effects produced by the inhibition
of the production of high levels of endothelin in vasculopathy, with focus on diabetic retinopathy. The cutting-edge
technology currently widely used in opththalmology, such as the OCT angiography, allows us to detect very early retinal
morphological changes alongside alterations in choroidal and retinal vascular network. Combination of such changes with
highly sensitive measurements of alterations in serum concentrations of endothelin may lead to more efficient early detection
and treatment of diabetes and related macro/microvascular complications.

Introduction

Diabetic retinopathy (DR) is a long-term manifestation of
diabetic microangiopathy and affects nearly 50% patients
with diabetes mellitus (DM) [1]. As a result of the pro-
longed exposure to the metabolic changes in the course of
DM, the lack of vascular autoregulation causes serious
consequences in human tissues that are highly susceptible to
microvascular harm: retina, kidneys, and peripheral nerves.
As a consequence, the major complications of DM are
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retinopathy, nephropathy, and neuropathy, which are
important causes of morbidity and mortality. DR is regarded
as the first leading cause of legal blindness in working-aged
people among the western populations and the fifth leading
cause worldwide, despite remarkable advances in the
diagnosis and treatment of ocular complications [2—4]. The
rising epidemic of DM is of significant concern because its
worldwide prevalence has already become a global problem
of public health and a social economic burden [5].

The risk factors for the development of DR are mainly the
length of exposure and severity of hyperglycemia, hyperten-
sion, and hyperlipidemia. Cardiovascular and cerebrovascular
accidents are the leading cause of morbidity and mortality
associated with DM. Since diabetes affects small as well as
large vessels, diabetic complications are globally classified as
microvascular (retinopathy, nephropathy, and neuropathy)
and macrovascular (heart disease, stroke, and peripheral
arterial vasculopathy) [6]. Endothelial dysfunction, defined as
an imbalance of endothelium-derived vasoconstrictor and
vasodilator substances, plays a crucial role in the pathogenesis
and progression of the above-mentioned vascular complica-
tions. Endothelins (ETs) are thought to contribute to the
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vascular endothelial dysfunction. In fact, the increased vas-
cular sensitivity may be due to overexpression with stronger
activity of ETs, which are proinflammatory and vasocon-
strictor peptides [8].

In this review, we will discuss the pivotal role of the ET
system in the diabetic retinal microangiopathy, mainly
focusing on impaired retinal vascular autoregulation and
activation of ET-1. Beyond traditional therapeutic approa-
ches such as strict control of glucose and fatty acids in
blood, we would like to take into great consideration the
role of ET in the pathogenesis of DR, characterized by
endothelial dysfunction and metabolic changes of the retinal
microenvironment. A simple and precise tool to measure
levels of ET in people with diabetes could become a new
useful method to follow-up patients who present ocular
signs of DR. Novel genetic strategies to detect abnormal-
ities of ET production in people with DM and cutting-edge
ophthalmic machines to enhance the visualization of initial
alterations in both retinal and choroidal vasculature will
improve early diagnosis of DR. In fact, it is crucial to
persevere with research in order to discover novel treatment
options (pharmaceutical or genetic) for prevention and/or
delaying the progression of diabetic vascular complications.

Diabetic retinopathy

DR is a multifactorial progressive disease of the retina
characterized by an extremely complex pathogenesis that
involves a variety of different cells, molecules, and factors.
Metabolic and biochemical changes bring about altered
expression of several mediators including growth factors,
neurotrophic factors, cytokines, vasoactive agents, inflam-
matory, and adhesion molecules [9].

Traditionally, DR is categorized into progressive stages,
namely non-proliferative, pre-proliferative, and pro-
liferative. Although the retina may appear normal on clin-
ical examination after years of DM, significant biochemical
and histological changes occur, such as leukocyte adhesion,
basement membrane thickening and pericytes loss. With the
increasing of the duration of diabetes, the likelihood of
remarkable vascular alterations in the retinal tissue rises.
The progressive dysfunction of endothelial cells (ECs) plays
a crucial role in the following retinal morphostructural and
pathophysiological changes: capillary basement membrane
thickening, perivascular cell loss, blood—retinal barrier
damage, and neovascularization [10, 11]. Along with these
modifications, some important biochemical processes take
place such as the formation of advanced glycation end
products, the activation of protein kinase C isoforms, and
the pathways of polyol and hexosamine [12]. Therefore,
oxidative stress, inflammation, and vascular dysfunction are
the subsequent events [13].
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ET system

ET was isolated and identified in 1988 by Yanagisawa et al.
[14]. The ET system comprises three vasoactive and neural
peptides (ET-1, ET-2, and ET-3), two G-protein-coupled
receptors (ETA and ETB), and two ET converting enzymes
(ECE-1 and ECE-2) [15]. The peptides are encoded by three
distinct genes. The ETs are considered to be paracrine
hormones, exerting their effects locally at the site of
synthesis [16]. The encoded precursor proteins are spliced
by endopeptidases to produce ETs. The ET converting
enzymes then transform ETs into mature ET peptides.

ET-1 is the main cardiovascular isoform of the ET sys-
tem produced primarily in the endothelium, although it can
also be produced in vascular smooth muscle cells (VSMCs)
of the arterial wall, macrophages, leukocytes, cardiomyo-
cytes, and fibroblasts [17, 18]. In the aqueous humor, pre-
sumably secreted by the ciliary epithelium and not directly
derived from plasma, ET-1 is found at a much higher
concentration than in plasma [19]. ET-2 is largely expressed
in the gastrointestinal tract and it serves as local and para-
crine/autocrine mediator with equally high affinity for both
ETA and ETB receptors. Murata et al. [19] found no evi-
dence of ET-2 gene expression in the retina. Very little is
known about the function of ET-3. ET-3 is less ubiquitous
and has been detected in the iris, ciliary body, and retina. It
seems to be secreted near the relevant target cells, such as
enteric neuroblasts expressing the ETB receptor.

ETs act on specific receptors (ETA and ETB) which are
transmembrane G-proteins described in ocular tissues and
retinal vessels [21]. ETA, selectively expressed by VSMCs,
has high affinity for ET-1 and ET-2 but low affinity for ET-
3 and is primarily involved in vasoconstriction [22]. ETB,
expressed on both VSMCs and ECs, is equally responsive
to all isoforms and is involved in vasodilation by releasing
of nitric oxide (NO) and prostacyclin (PGI,) [23]. The gene
transcription of ET-1 and ET-3, specifically in ocular tis-
sues, has been demonstrated in vascular and extravascular
sites of retina, uveal tract, and optic nerve. A remarkable
physiological role of these peptides turned out to be
important in control of the following physiological pro-
cesses of retina and optic nerve: vascular tone, aqueous flow
and neural modulation [24].

ET-1 is a strong vasoconstrictor with mitogenic, pro-
oxidative, and proinflammatory properties that are of sig-
nificant importance in the regulation of vascular function,
particularly relevant in the pathophysiology of diabetic
vasculopathy. Overproduction and increased functional
effects of ET-1 are reported to be greatly altered in diabetic
conditions [25]. The ETA and ETB receptors, coupled with
two distinct G-proteins, mediate the action of ET-1 on the
vascular tone. For instance, ETA and ETB receptors con-
tribute to the potent vasoconstrictor and mitogenic effect of
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ET-1 on VSMCs, whereas ETB receptors located in ECs
provoke vascular relaxation via the release of NO and PGI,
[25-27]. In diabetic patients, signaling mechanisms
between ET-1 and its receptors as well as the expression of
ETA and ETB are altered [29, 30].

In diabetes, just like in other cardiovascular and meta-
bolic diseases, there is a crosstalk among ET-1 and per-
oxisome proliferator-activated receptors (three isotypes:
PPARa, PPARP, and PPARy) [31]. On one hand, ET-1
significantly increases phosphorylation of IkB and decrea-
ses NFxB inhibition; on the other hand, it stimulates the
expression of vascular cell adhesion protein 1, intercellular
adhesion molecule 1, and cyclooxygenase-2 in VSMCs
stimulating vascular proinflammatory effects. In normal
conditions, these effects are partly counterbalanced, while
in diabetes the overexpression of ET-1 makes unnecessary
the crosstalk with PPARs [32].

In the course of diabetic microangiopathy, also the oxi-
dative stress plays an important role: reactive oxygen spe-
cies (ROS) generation leads to the synthesis of ET-1 via
transforming growth factor-p and, at the same time, ET-1
increases ROS generation via NAD(P)H oxidase in ECs
[33, 34]. However, the downregulation of ET-1 and NAD
(P)H oxidase-derived superoxide caused by an increase of
NO has demonstrated a sort of restoration of endothelial
function [35].

Impaired autoregulation and endothelial
dysfunction

Microangiopathy is a major complication of DM in both
experimental animal models and clinical studies [36, 37].
An impaired autoregulation of blood flow is involved in the
pathogenesis of diabetic microangiopathy, but the under-
lying mechanisms are still not completely understood. The
lack or imbalance of autoregulation are usually remarkable
features of early DR [38]. By definition, retinal vascular
autoregulation is the ability of blood vessels to keep blood
flow constant under varying perfusion pressure in order to
supply oxygen and metabolic requirements to the tissues
[39]. Because the human retinal vessels lack extrinsic
innervation, retinal vascular caliber and local blood flow are
normally regulated by non-nervous mechanisms intrinsic to
the retina, where the main actors are represented by ECs and
pericytes [40].

The vascular endothelium locally modulates the tone of
vessels by releasing relaxing factors (NO and PGI,) and
vasoconstrictors (endothelium-derived hyperpolarizing fac-
tors and ET-1) under basal conditions [41]. Several mole-
cules, such as bradykinin, acetylcholine, and histamine, act
on ECs, stimulating or inhibiting them, and on VSMCs, the
retinal pericytes capable of contraction, which are the main

regulators of the vascular tone in retinal capillaries [42]. The
endothelial dysfunction is regarded as a sort of transfor-
mation of the quiescent phenotype of the endothelium into
an activated form because of the change of the vascular
microenvironment where ROS, chemokines and cytokines
become the predominant actors and provoke inflammation
[43].

Pericytes, along with ECs, play an important role in the
pathogenesis of early and advanced DR. They are mural
cells encased within the vascular basement membrane sur-
rounding the ECs in capillary and post-capillary venules.
Pericytes contain components of contractile proteins con-
tributing to regulate microvascular tone and maintain the
morphofunctional integrity of the inner blood-retinal barrier
[44, 45]. The retina requirements are very high, just like the
high metabolic demand of the nervous cells of the brain. For
this reason, in the retina there is a large number of pericytes,
which turn out to be critical sensor of the retinal hypoxia in
order to support the metabolic needs [46]. Despite the
crucial importance of pericytes in the homeostasis of the
retinal microenvironment, at present the exact pathophy-
siology of pericyte loss in early DR remains poorly defined.

The biochemical and structural changes in the retinal
microvasculature in DR are not fully understood. Too little
is known about the exact temporal cascade of alterations in
ECs, pericytes, and VSMCs caused by the activation of ET-
1. Further investigations are required to better reveal the
complex molecular inter-relations among the ET system and
the main components of the retinal vascular wall.

ET and diabetic microangiopathy

In early DR, the blood concentration of ET-1 is commonly
enhanced. In patients with DM, it has been reported a
positive correlation between the extent of microangiopathy
and plasma ET levels [47, 48].

Since 1989, it is well-known that ECs can secrete ET-1
and pericytes have receptors for this peptide [49]. ET-1 is
one of the most potent vasoconstrictors in the body and its
action has a dual effect: on the one hand, it acts on receptors
of ECs and pericytes; on the other hand, it has a mitogenic
effect on VSMCs [50]. Hence, a decrease in ET-1 produc-
tion or a drop in its action influence the integrity and sta-
bility of VSMCs accounting for, at least in part, the
characteristic loss of pericytes. In other words, alterations in
the complex network between perivascular cells and bio-
chemical substances in blood are initially responsible for
early haemodynamic and histopathological abnormalities in
DR long before any clinically visible lesion.

Kohner and coworkers documented the reduced local
ET-1 concentration along with the resistance of pericytes to
local ET-1 action [51]. This could be a direct cause of a
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number of typical histological abnormalities found in DR:
capillary dilatation, increase in blood flow of the retinal
vessels, loss of the average ocular autoregulation, formation
of microaneurysms, and leakage of fluid [47]. On the con-
trary, Takagi and Chakrabarti with coworkers [51, 52]
demonstrated, in two distinct studies, increased ocular
levels of ET-1, ET-3, and augmented ETA, and ETB
mRNA expressions in the retina of rats with chronic dia-
betes if compared with controls. These findings suggest that
the ET system may also be involved in the pathogenesis and
development of advanced stages of DR, featured by pro-
gressive capillary occlusion with subsequent retinal ische-
mia and neovascularization [54].

In the past, several studies have documented high con-
centrations of circulating ET-1 as early phenomenon in
diabetic patients, regardless of the stage of DR or the
associated complications (microalbuminuria and micro/
macroangiopathy) [55, 56]. Hence, ET-1 might be an early
marker of endothelial dysfunction and diabetes-related
complications, also playing a pathophysiological role in
the development of hypertension as well as diabetic vas-
cular comorbidities.

The measurement of levels of ET-1 could be an inter-
esting tool to detect early alterations in circulation in
patients at risk but yet with no signs of diabetes. Low levels
of humors, such as 80-120 pl, are enough to measure the
levels of ET-1 using suspension multiplex array technology
[57]. The aqueous and vitreous samplings are feasible,
while invasive for the patient. Non-fasting venous blood
sampling is the best option for subjects with risk factors.
Usually, the sample is collected at morning time to avoid
circadian variation separating plasma from whole blood.
Plasma is stored at —80 °C until analysis to detect levels of
ET-1, which is normally measured using commercially
available immunoassay kit [58].

In the last decade, a large number of studies have high-
lighted the role of growth factors and peptides, activated in
response to hyperglycemia and ischemia, which lead to
overexpression of ET-1 in the course of DR. For instance,
angiotensin II has revealed to have mitogenic effect on

Table 1 Stages of diabetic retinopathy and corresponding levels of ET-1

VSMCs, stimulating the protein synthesis of extracellular
matrix and contributing to the development of diabetic
vascular complications [59, 60].

Other important molecules that interact with the ET system
are protein kinase C (PKC) and NO. Hyperglycemia induces
PKC activation, involved in processes of non-enzymatic
glycation and oxidative stress, that leads to vascular perme-
ability and blood flow changes, expansion of extracellular
matrix, and augmentation of the expression of vasoactive
factors and cytokines [61]. Evidence shows a negative inter-
action between NO and ET, namely the less NO is released,
the more ET increases. Presumably, this imbalance may
contribute to microvascular abnormalities [62, 63].

We can state that the duration of DR remains the main
factor that affects the upregulation of ET-1. The severity of
DR is, supposedly, not involved in the principal changes of
activation of ET-1. Table 1 better clarifies fluctuations of
ET-1 in the course of diabetes, as far as the medical lit-
erature actually reports.

The chronicity of diabetes leads to morphofunctional
micro/macrovascular damage. ECs are the primary targets
of glucose-induced cellular damage due to their innate
ability to uptake glucose regardless of insulin activity [64,
65]. Nonetheless, the exact mechanism of glucose-mediated
endothelial dysfunction is actually not fully understood.
Hyperglycemia induces oxidative stress and upregulation of
ET-1, [66] but, at the same time, it activates multiple
signaling pathways in nucleus of ECs and VSMCs,
leading to the gene expression of lots of peptides and fac-
tors. Through the interaction with the activated ET system,
these upregulated molecules increase the capillary perme-
ability and induce the overproduction of extracellular matrix
[67, 68]. In 2013, using in both vivo and vitro systems,
Feng et al. [68] demonstrated that miRNA-1 is down-
regulated in ECs under exposure to high-glucose blood
levels. This leads to the upregulation of ET-1, which has
wide-ranging downstream effects on genes of extracellular
matrix, such as fibronectin and laminin, and provokes the
thickening of the capillary basement membrane in the
course of DR [70, 71].

Pre-clinical diabetic retinopathy (haemodynamic and Clinical diabetic retinopathy
(clinically visible lesions)

hystopathological abnormalities)

Severe diabetic retinopathy (pre-proliferative and
proliferative diabetic retinopathy)

ET-1 increased ET-1 decreased

Activation of ECs/pericytes and mitogenic effect on
VSMCs

Increased extent of microangiopathy

VSMCs

Reduced action on pericytes and

Capillary dilation,

ET-1 and ET-3 increased
Upregulation of ECs, pericytes, and VSMCs

Capillary occlusion, ischemia, and

microaneurysms, and fluid leakage neovascularization

Actions of ET system over ECs/pericytes/VSMCs and structural changes in diabetic retinal tissue
ECs endothelial cells, ET-1 endothelin-1, ET-3 endothelin-3, VSMCs vascular smooth muscle cells
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Conclusions

DR is a multifaceted disease featuring with a complex
network of metabolic and biochemical alterations that
remarkably modify the retinal microenvironment. There are
not only morphological changes in vasculature architecture
and caliber, but also significant functional alterations in
retino—choroidal blood flow due to harm to the inner
blood-retinal barrier.

The impact of ET on ECs and pericytes, which are the
two main elements for the maintenance of the retinal
capillary integrity, needs to be taken into consideration. In
fact, novel genetic strategies to earlier detect the upregula-
tion of ET-1, or to assess the wide-ranging downstream
effects resulted from the activation of the ET system in the
course of hyperglycemia are a challenging field for new
research. Both genome-wide analytical and DNA sequen-
cing techniques might be a striking tool to better understand
the molecular basis of genetic alterations involving the ET
system and the microangiopathy of DR. Not only the
mechanisms that fine-tune interactions between ECs and
VSMCs could be important therapeutic targets, but also the
endeavor to control and regulate at least one of the prop-
erties of ET-1 (vasoconstrictor, mitogenic, pro-oxidative,
and proinflammatory) is, with any doubt, crucial. Tech-
nologies such as OCT angiography allow us to detect tiny
alterations of retinal or choroidal blood flow [7]. Thus,
along with dealing with hyperglycemia, we could actively
face the overexpression of ET-1 right before ophthalmic
clinical diabetic signs are detectable.

In conclusion, new genetic strategies and hi-tech retinal
imaging will enable us to make very early diagnosis of DR.
As a consequence, in our opinion, we could apply “indivi-
dualized” medicine and tailored treatment, remarkably
reducing the cost of hospitalization and the expensive care
of advanced stages of DR.
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