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Abstract: Acoustic tweezers for microparticle non-contact manipulation have attracted attention
in the biomedical engineering field. The key components of acoustic tweezers are piezoelectric
materials, which convert electrical energy to mechanical energy. The most widely used piezoelectric
materials are lead-based materials. Because of the requirement of environmental protection, lead-free
piezoelectric materials have been widely researched in past years. In our previous work, textured
lead-free (K, Na)NbO3 (KNN)-based piezoelectric ceramics with high piezoelectric performance
were prepared. In addition, the acoustic impedance of the KNN-based ceramics is lower than that
of lead-based materials. The low acoustic impedance could improve the transmission efficiency of
the mechanical energy between acoustic tweezers and water. In this work, acoustic tweezers were
prepared to fill the gap between lead-free piezoelectric materials research and applications. The
tweezers achieved 13 MHz center frequency and 89% −6 dB bandwidth. The −6 dB lateral and axial
resolution of the tweezers were 195 µm and 114 µm, respectively. Furthermore, the map of acoustic
pressure measurement and acoustic radiation calculation for the tweezers supported the trapping
behavior for 100 µm diameter polystyrene microspheres. Moreover, the trapping and manipulation
of the microspheres was achieved. These results suggest that the KNN-based acoustic tweezers have
a great potential for further applications.

Keywords: acoustic tweezer; non-contact manipulation; ultrasound; lead-free; piezoelectric;
textured ceramics

1. Introduction

Non-contact manipulation for microparticles has attracted attention in the biomedical
engineering field [1,2]. As of now, the most widely employed methods for non-contact
manipulate microspheres and cells are optical tweezers [3,4]. However, there are several
limitations for the use of optical tweezers. First of all, the optical tweezer can only be
applied on optically transparent objects [1,5]. Secondly, the trapping force is weak (at
piconewton range) and the optical tweezer can only handle small objectives at a level of
several micrometers or nanometers [5,6]. Finally, for bio-samples such as cells or bacteria,
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the high energy generated by the focused light beam may damage the bio-samples [6].
An acoustic tweezer is a method that can spatially manipulate micro-particles and cells
without contact [1]. The trapping force of an acoustic tweezer is significantly higher than an
optical tweezer. For bio-samples, sound is much safer than light. In addition, the trapping
range of an acoustic tweezer is much larger than an optical tweezer [5,7].

The most important component of acoustic tweezers is piezoelectric material [8]. Piezo-
electric materials enable the conversion of electrical energy to mechanical energy [9–11].
The most widely used piezoelectric materials are Pb(Zr, Ti)O3 (PZT)-based ceramics with
high piezoelectric properties [12,13]. To date, most acoustic tweezers have been based on
LN single crystals or PZT-based ceramics. A single-beam acoustic tweezer has been utilized
to trap microspheres and cells based on 193 MHz which was prepared using LiNbO3 (LN)
single crystals [5]. Moreover, 30 MHz acoustic tweezers by LN single crystals were used
to trap cancer cells and quantify mechanical properties without any contact [6]. Zhu et al.
reported 50 MHz single-beam acoustic tweezers that were prepared by PZT-based thick
films [8].

However, there are several limitations to LN single crystals or PZT-based ceramics
used on acoustic tweezers. The most significant restriction for PZT-based ceramics is lead
which is harmful to the environment and human health [14–17]. Instructions have been
issued to limit the use of lead in industry [18,19]. Meanwhile, LN single crystals are not
high-performance piezoelectric materials with about 49 pC/N d33 value [20]. To replace
the PZT-based ceramics and LN single crystals, lead-free piezoelectric materials have been
well researched. For example, (K, Na)NbO3 (KNN)-based piezoelectric ceramics are one
of the most promising candidate. Saito et al. reported high-performance textured KNN-
based lead-free ceramics prepared by reactive templated grain growth (RTGG) method [14].
Recently, several great works for KNN-based ceramics have been reported. Xu et al.
reported a 570 pC/N d33 value in non-textured KNN-based ceramics [21], and Li et al.
achieved superior piezoelectric properties (d33 ≈ 700 pC/N and d33* ≈ 980 pm/V) at
KNN-based textured ceramics [18].

Besides the limitations of lead and piezoelectric properties, the high acoustic impedance
of both PZT-based ceramics and LN single crystals also restrict their usage in the acoustic
tweezer field [7]. As we know, the transparency of sound waves is dependent on the
acoustic impedance ratio between the piezoelectric materials and water [7,22]. Because
of the mismatch of acoustic impedance, acoustic energy transferred between mediums is
reflected. Thus, very little energy can transfer into the water and the trapping force would
be low [7]. The acoustic impedances of KNN-based ceramics are much lower than those
of PZT-based ceramics and LN single crystals which would greatly improve the acoustic
energy transparency between the piezoelectric materials and water.

In our previous work, textured 0.915(K0.45Na0.5Li0.05)NbO3-0.075BaZrO3-0.01(Bi0.5Na0.5)TiO3
(KNLN-BZ-BNT) ceramics with high piezoelectric properties, superior thermal stability
and good fatigue resistance were prepared [23,24]. In this paper, we have prepared acoustic
tweezers using textured KNN-based ceramics. The advantages of the textured KNN-based
ceramics for acoustic tweezers are illustrated and compared to LN and PZT-based ceramics.
Besides, the pulse-echo, impedance, insertion-loss, and resolution of the tweezers have
been measured. Furthermore, the acoustic pressure field of the tweezers was simulated by
finite elements analysis software and measured by hydrophone. The acoustic radiation of
microspheres in the acoustic pressure field was calculated. Finally, the 100 µm diameter
microspheres were trapped and manipulated by the KNN-based acoustic tweezers.

2. Materials and Methods

The preparation and measurement of the KNN-based textured ceramics were illus-
trated in our previous manuscript. In the simulation of the acoustic pressure field, the
finite elements analysis software COMSOL was used. Besides, the theoretical of acoustic
radiation force (ARF) calculation were illustrated in our previous work [25].
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The properties of the KNN-based textured ceramics are shown in Table 1. As a
comparison, properties of PZT-5H (most common used PZT type) ceramics and LN single
crystals are shown in Table 1 too. The piezoelectric response d33 of KNN-based textured
ceramics is 319 pC/N, which are slightly lower than 585 pC/N for PZT-5H ceramics and
much higher than 49 pC/N for LN single crystals. The dielectric constant (εr) of the KNN-
based textured ceramics is 1651, which is the lower half of PZT-5H ceramics. Furthermore,
the εr for LN single crystals is only 39. In addition, the acoustic impedance (Za) of PZT-5H
ceramics and LN single crystals are both about 35.5 MRayl which is much higher than the
Za value 25.5 MRayl of KNN-based textured ceramics.

Table 1. Properties of piezoelectric materials.

ρ (kg/m3) d33 (pC/N) kt εr tanδ c (m/s) Za (MRayl)

KNN KNLN-BZ-BNT 4500 319 0.42 1651 0.035 5610 25.2
LN [22] 4700 49 0.49 39 0.001 7360 34.5

PZT-5H [26] 7500 585 0.51 3400 0.02 4580 34.4

In the preparation of the acoustic tweezers, the KNN-based ceramics were polished
into 180 µm in thickness. The Cr/Au (50 nm/100 nm) electrodes were sputtered on both
sides of the ceramics. Ag-epoxy were then put on the ceramics and polished into 20 µm
as matching layer. Next, the ceramics-matching layer was cut into squares with 3.5 mm
length of side. Then an E-solder 3022 backing layer was placed on the backing side. Then,
the elements were cut into a cylinder with a 3 mm diameter and a 2 mm thickness. The
elements were fixed in copper housing and connected to SMA connectors. Following this,
the acoustic tweezers were pressed by a steel ball with 4 mm diameter. Finally, a 2 µm-thick
parylene C layer was deposited onto the acoustic tweezers as the protective layer and
covering layer by a Labcoator (PDS 2010, Specialty Coating Systems, Indianapolis, IN,
USA). A picture of the acoustic tweezers is shown in Figure 1a. The picture of the focused
piezoelectric elements can be found in Figure 1b.

Figure 1. Pictures of (a) acoustic tweezer and (b) its piezoelectric element.

The pulse-echo measurement was tested under distilled water, by pulser/receiver
(5073PR, Olympus, Bethlehem, PA, USA) with an electrical impulse at a 200 Hz repeti-
tion rate and 50 Ω-damping. The insertion loss was observed by a function generator
(AFG3252C, Tektronix, Beaverton, OR, USA) and oscilloscope (TDS 5052, Tektronix). The
resolution of the acoustic tweezers was evaluated by pulser/receiver (JSR Ultrasonics
DPR 500, Imaginant, Pittsford, NY, USA) scanning three tungsten wire targets with 35 µm
diameter and a pig eye. The acoustic pressure field was measured by a hydrophone
(NH1000, UK).
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The system of acoustic tweezer experiments is shown in Figure 2. The acoustic
tweezers were fixed on a self-made fixture. The fixture was set on a three-axis motorized
linear stage that controlled the movement of the acoustic tweezers. Meanwhile, a function
generator (AFG3252C, Tektronix) and a 50 dB power amplifier (525 LA, ENI Rochester,
Rochester, NY, USA) were used to drive the acoustic tweezers. Photographs and movies of
the trapped motions of the microsphere were taken by a microscope (LIOO, Beijing, China)
with a CMOS camera. We used 100 µm polystyrene (PS) microspheres (Ruige, Luoyang,
China) as the trapping targets.

Figure 2. The diagram of acoustic tweezer system.

3. Results

The electrical impedance and pulse-echo response are shown in Figure 3. The electrical
impedance can be found in Figure 3a. As with the simulated data, there were two resonance
peaks at 8 MHz and 16.8 MHz. The peak at 8 MHz was much higher than the peak at
16.8 MHz. In addition, the impedance of acoustic tweezers at 13 MHz was near 70 Ω, which
is near the electrical matching of 50 Ω. The pulse-echo measurement illustrated the send
and receive performance of the acoustic tweezers, which is shown in Figure 3b. The center
frequency was 13 MHz, and the −6 dB bandwidth was 89%. Meanwhile, the peak-to-peak
voltage was about 600 mV. Because of the high sensitivity and board −6 dB bandwidth, the
KNN-based acoustic tweezers can be excited under a large range of frequency.

Figure 3. (a) Electrical magnitude (black) and phase angle (red), (b) pulse-echo wave (black) and
frequency spectrum (red) performances of acoustic tweezers by textured KNN-based ceramics.

The value of insertion-loss could evaluate the availability of electromechanical ef-
ficiency of the acoustic tweezers. The two-way insertion-loss of the acoustic tweezers
can be found in Figure 4. The optimal insertion-loss was found at 9 MHz with −29 dB.
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Furthermore, the insertion-loss in 8 MHz to 17 MHz was retained higher than −33 dB,
which means the acoustic tweezers could achieve high sensitivity under a wide excitation/
receiving frequency.

Figure 4. Two-way insertion-loss of KNN-based acoustic tweezers.

To determine whether the focused process was effective on the acoustic tweezers,
four tungsten wire targets with a 35 µm diameter were used to test the resolution of the
acoustic tweezers. Figure 5 shows the phantom image. The measured −6 dB lateral and
axial resolutions estimated by Figure 5 are shown in Figure 6.

Figure 5. Tungsten wire targets image by KNN-based acoustic tweezers.

Figure 6. (a) Lateral and (b) axial resolution of KNN-based acoustic tweezers.
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The −6 dB lateral resolution was 195 µm, and the −6 dB axial resolution was 114 µm.
As comparisons, the theoretical values of resolution have been calculated by the following
formulas [7]:

Axial resolution Rax =
λ

2BW
(1)

Lateral resolution Rlat = f λ (2)

where BW is the −6 dB bandwidth of the acoustic tweezers, f is the f-number (focal dis-
tance/diameter of piezoelectric element) of the acoustic tweezers, and λ is the wavelength
in water at the center frequency. The diameter of piezoelectric elements is 2 mm, and the
focal distance is also 2 mm. Thus, the f-number of the acoustic tweezers is 1. Based on the
equations, the lateral resolution of the KNN-based acoustic tweezers is 119 µm and the axial
resolution is 62 µm. The measured lateral resolution is lower than the theoretical value,
which might be due to the cracking during the focusing process. The excellent resolution
shown that the acoustic tweezers were tightly focused.

The map of acoustic pressure has been simulated by a finite element method (FEM) in
the COMSOL environment, which is shown in Figure 7a. The focal point of the acoustic
tweezers was defined as zero point, and the piezo-elements were 2 mm away from the
zero point. The high acoustic press area is about 2 mm length and 0.5 mm width. In
addition, the measured acoustic pressure field is shown in Figure 7b. The distribution of the
acoustic press field is similar to the simulation. There is a 2 mm length and 0.5 mm width
high-intensity area. The results illustrates that the simulated map of acoustic pressure is
highly reliable.

Figure 7. (a) Simulated and (b) measured map of acoustic pressure of KNN-based acoustic tweezers.

To further understand the trapping of microsphere, the acoustic radiation for 100 µm
diameter PS microspheres has been calculated by the FEM simulated acoustic press field.
The acoustic radiation of the microsphere is the same in the x and y directions, and only the
force with one dimension was calculated by the following formula [25,27]:

Fx =
1

8π2ρc2k2 Re

{
∞

∑
n=0

Ψn

n

∑
m=−n

Amn
(

HmnH∗
n+1,M+1 − Hn,−mH∗

n+1,−m−1
)}

(3)

where the function
Hmn =

x

k2
x+k2

y≤k2

dkxdkyS
(
kx, ky

)
Y∗

nm(θk, ϕk) (4)

k is the wavenumber in the fluid, θk is the spherical angle of the wave vector, ϕk is the polar
angles, c is the sound velocity of the fluid, Y∗

nm(θk, ϕk) is spherical harmonics, Amn and Ψn is

Amn =

√
(n + m + 1)(n + m + 2)

(2n + 1)(2n + 3)
(5)
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Ψn = 2
(
cn + c∗n+1 + 2cnc∗n

)
(6)

respectively, where the * means the complex conjugation, cn is the scattering coefficients.
The S

(
kx, ky

)
is the angular spectrum of the acoustic wave generated by the acoustic

tweezers. At its focal point:

S
(
kx, ky

)
=

+∞x

−∞

p(x, y)e−ikx x−ikyydxdy (7)

where p(x, y) is the distribution of complex acoustic pressure generated by the acoustic
tweezer. Base on those formulas, the acoustic radiation force can be calculated with
knowledge of the propagation medium, the scatterer, and complex sound field distribution.

The lateral distributions of the lateral component of force (Fx) on the xy plane for
100 µm diameter PS microsphere are shown in Figure 8. In Figure 8a, the red areas indicate
that the orientation of Fx is the positive direction of the x-axis, and the blue areas means the
Fx forward to the negative direction of the x-axis. Plots for Fx along the y = 0 line in the
force map are shown in Figure 8b. When a microsphere moved to the left, the direction of
Fx was to the right. By contrast, when the microsphere moved to the right, the direction of
Fx was to the right. Based on this observation, it was concluded that the microparticles can
be trapped by the KNN-based acoustic tweezers.

Figure 8. (a) Lateral distributions of the lateral component of force (Fx) on the xy plane for 100 µm
diameter polystyrene (PS) microsphere. (b) Plots for acoustic radiation forces Fx along the y = 0 line.

A single PS microsphere with a 100 µm diameter was trapped and manipulated using
the KNN-based acoustic tweezers, which is shown in Figure 9. The acoustic tweezers
were driven by 10 MHz excitation frequency, 10 mV peak-to-peak voltage with 50 dB
signal amplification, 5% duty cycle, and 1 kHz pulse repetition frequency. As can be
seen, a single microsphere was manipulated along the movement of the transducer. (The
video can be found in Video S1) The arrows represent the movement direction of the
transducer. The results demonstrate that the KNN-based textured ceramics could be used
for acoustic tweezers.
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Figure 9. (a–d) show trapping and manipulation process of 100 µm diameter PS microsphere by the
KNN-based acoustic tweezers.

4. Discussion

In this work, novel lead-free ceramics such as KNN-based, (Bi, Na)TiO3-based, BiFeO3-
based ceramics, etc. were used in acoustic tweezers for the first time. In this field, there are sev-
eral advantages to the textured KNLN-BZ-BNT ceramics besides environmental protection.

Compared to LN single crystals, the piezoelectric response of the textured KNN-
based ceramics is much higher (319 pC/N to 49 pC/N), which would greatly improve the
acoustic radiation force to microspheres by KNN-based acoustic tweezers. In addition,
the machinability of ceramics is much better than that of single crystals. Moreover, the
dielectric constant of the KNN-based ceramics is much lower than PZT-5H ceramics.
The low dielectric constant would substantially help acoustic tweezers when the center
frequency becomes high.

Za is one of the most important parameters for piezoelectric materials in acoustic
applications as it determines the efficiency of mechanical energy transmission between
different media. The transmission coefficients (T) between piezoelectric materials and
water with 0 of incident angle are as follows [7]:

T = 2Zw/(Zw + Za) (8)

where Za is the acoustic impendence of piezoelectric materials and Zw is the acoustic
impendence of water, which is about 1.5 MRayl. According to Equation (3), the closer the
Za of piezoelectric materials to 1.5 MRayl, the higher the T between piezoelectric materials
and water. Most of the Za of piezoelectric ceramics and single crystals are much higher than
1.5 MRayl. Thus, the lower Za would bring higher T. Among the properties of materials
in Table 1, compared to PZT-5H ceramics and LN single crystals, the Za of KNN-based
textured ceramics is much lower. The low Za could help the textured KNN-based ceramics
achieve a high mechanical energy transmission. For acoustic tweezer applications, the
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high mechanical energy transmission could greatly increase the acoustic radiation, finally
enhancing the effect of microsphere trapping. By way of comparison, the pulse-echo
measurements of PZT-based acoustic tweezers are shown in Figure S1. In addition, the
trapping of the PS microsphere with a 20 µm diameter by using KNN-based and PZT-based
tweezers is shown in and Videos S2 and S3, respectively. Although the properties of KNN-
based tweezers are slightly lower than the properties of the PZT-based tweezers, those
results could illustrate that the novel lead-free ceramics have great potential on piezoelectric
devices

5. Conclusions

Acoustic tweezers have been prepared by textured KNLN-BZ-BNT ceramics with
13 MHz center frequency and 89% −6 dB bandwidth. The insertion-loss was −29 dB at
9 MHz and was retained higher than −33 dB between 8 MHz and 17 MHz. The −6 dB
lateral and axial resolutions of the acoustic tweezers were 195 µm and 114 µm, respec-
tively. The map of acoustic pressure was measured and the acoustic radiation for 100 µm
diameter PS microspheres was calculated to demonstrate the acoustic trapping. Then,
100 µm-diameter PS microspheres were trapped and multiplied by KNN-based acoustic
tweezers. Furthermore, the acoustic impedance of the textured KNLN-BZ-BNT ceramics
was 25.2 MRayl, which was much lower than most commonly used piezoelectric materials
of PZT-5H and LN single crystals. Based on the results, the textured KNLN-BZ-BNT
ceramics are a promising type of piezoelectric material for acoustic tweezer applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi13020175/s1, Figure S1: Pulse-echo wave (black) and frequency
spectrum (red) performances of acoustic tweezers by PZT-based ceramics. Video S1, Video S2,
Video S3.
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