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Abstract: The fast progress in research and development of multifunctional, distributed sensor
networks has brought challenges in processing data from a large number of sensors. Using deep
learning methods such as convolutional neural networks (CNN), it is possible to build smarter
systems to forecasting future situations as well as precisely classify large amounts of data from
sensors. Multi-sensor data from atmospheric pollutants measurements that involves five criteria,
with the underlying analytic model unknown, need to be categorized, so do the Diabetic Retinopathy
(DR) fundus images dataset. In this work, we created automatic classifiers based on a deep
convolutional neural network (CNN) with two models, a simpler feedforward model with dual
modules and an Inception Resnet v2 model, and various structural tweaks for classifying the data
from the two tasks. For segregating multi-sensor data, we trained a deep CNN-based classifier
on an image dataset extracted from the data by a novel image generating method. We created
two deepened and one reductive feedforward network for DR phase classification. The validation
accuracies and visualization results show that increasing deep CNN structure depth or kernels
number in convolutional layers will not indefinitely improve the classification quality and that a
more sophisticated model does not necessarily achieve higher performance when training datasets
are quantitatively limited, while increasing training image resolution can induce higher classification
accuracies for trained CNNs. The methodology aims at providing support for devising classification
networks powering intelligent sensors.
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1. Introduction

With the rapidly deployment of sensors and actuators, the amount of quantitative data produced
by them have been increasing rapidly. To analyze the data and learn the underlying knowledge
poses a challenge. Machine learning methods have been widely used in industrial, medication and
scientific data processing. Machine learning techniques provide novel ways of analyzing sensor data,
so that the meaning of new data can be precisely interpreted based on the learnings from past sensor
data. Emerging technologies have demonstrated the integration of machining learning functions with
physical/chemical sensors. Machine learning has now become one of mandatory building blocks in
a wireless sensor network [1]. There have been many investigations on using the CNN to process
data of various sensors. CNN has been used for the retrieval of land surface temperatures from
microwave sensors [2]. It has also been utilized in a fall detection system, which consists of many
types of sensors such as accelerometers, acoustic sensors, and wearable sensors [3]. Here is a case
where CNN technology can be part of a smart sensing mechanism. The traditional imaging sensors
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(e.g., photodetectors) convert incident light into electronic signals. With the CNN technique, the photo
sensing technology could be improved to become close-loop and adaptive, i.e., the electrical signals
converted from light can be read by the CNN technique, and then the CNN calculation results can be
used to generate a feedback to the sensor to adjust the region of interest, sensitivity, etc. There are more
examples that show the seamless link between reported technology and various sensory technologies.
Machine learning tasks can be generally divided into supervised learning, unsupervised learning and
reinforcement learning. In supervised learning tasks, the algorithm builds a model from a set of data
that contain both the input and the desired output. The tasks in this article are supervised learning task
with each data specimen having been assigned categories by experts. Classic machine learning methods
include support vector machines, boosting, random forest, k nearest neighbor and artificial neural
network (ANN). Support vector machines, with appropriate kernel function, can solve non-linear
classification problems. With many-fold cross validation, SVM can tackle classification problems
involving multiple classes. Using a Gaussian radial basis function as kernel function, the authors
of [4] modeled the I-V characteristics of gas sensors using support vector regression (SVR) with
temperature and gas concentration as criteria. However, a 3-layer feedforward ANN predicted the I-V
characteristics of the gas sensor model with much higher accuracy than SVR when examined with
experiment data. Using principal component analysis (PCA) as feature selection method, the authors
of [5] employed SVM for classifying multi-sensor data in the prediction of high power laser welding
status. Back propagation neural network had been proven to be able to correctly predict the average
particle size of TiO2 nanosized particle samples from their near-infrared diffuse reflectance spectra [6].
Artificial intelligence paradigms had shown their ability to deal with pattern association, recognition,
classification, optimization and prediction tasks in the realm of nanotechnology where many of the
systems under study were highly undetermined and several interacting parameters had a strong
influence on the results [7].

Deep learning (DL) has the advantage of being sensitive to imperative minute variations while
insensitive to large irrelevant variations of the input over classic machine learning methods that
rely on linear classifiers on top of hand-engineered features [8]. Deep neural network contains
thousands of parameters distributed in the hidden layers, which can be seen distorting input in a
non-linear way so that categories become linearly separable by the last layer. Deep learning methods
have demonstrated their feature extraction ability for training classic machine learning classifiers
such as Adaboost or SVM [9–11]. A deep learning (DL) method that utilized feedforward structure
rendered the highest prediction accuracy against six other machine learning methods when trained
on 271 breast cancer samples, each consisting of measured data of 162 metabolites with known
chemical structure [11]. It also successfully learned the top five features that have been proposed as
breast cancer biomarkers. The authors of [12] utilized a deep CNN consisting of six one-dimensional
convolutional layers with a filter shape of 1 × 3 interspersed with pooling layers for classifying the
simulated data which are one-dimensional time-domain signals. The deep CNN achieved higher
classification accuracy than that of SVM, while not being susceptible to bias induced by hand-crafted
features. In computational mechanics, the authors of [13] built a predictive network based on group
method of data handling (GMDH) which is a self-organizing deep learning method for time series
forecasting problems without big data requirements. The authors used numerical analysis for tracing
a part of equilibrium path, the data of which was then used for training the predictive network.
The resulting network demonstrated high accuracy while being much less computationally intensive
than conventional approach based purely on numerical analysis. Deep learning has shown its potential
in biological image and forensic image classification [9,14–16]. The authors of [16] used a feedforward
deep convolutional network with interspersed convolutional layers and pooling layers for binary
classification of diabetic retinopathy. They also utilized a data augmentation strategy for increasing
the limited training image quantity. The authors of [9] carried out the research of applying deep
CNN to detecting generative adversarial networks (GANs) generated photo-realistic facial images.
They interspersed four dropout layers in the CNN to overcome overfitting resulting from increased



Sensors 2019, 19, 3584 3 of 16

network depth. By replacing softmax with the Adaboost classifier in the CGFace model, the newly
formed ada-CGFace model achieved classification accuracy that compared very favorably against
CGFace model alone when detecting a highly imbalanced dataset containing very a small proportion
of computer-generated facial images. AlexNet DNN [10] was utilized as a feature extraction method
which was paired with either principle component analysis (PCA)-based or linear discriminant analysis
(LDA)-based feature selection for providing training features on which a support-vector-machine based
DR classifier was trained. AlexNet DNN-based DR helped classifier achieve accuracy of 97.93% when
paired with LDA feature selection, higher than the 95.26% when it was paired with PCA. Using spatial
invariant feature transform (SIFT) based feature extraction entailed a classifier of accuracy of 94.4%,
confirming the AlexNet DNN based DR feature extraction’s ability.

In this work, we used deep CNN for solving multi-nominal gas sensors data classification task
employing a novel data to image conversion mechanism. We then conducted a comparative study
on hyperparameter and structure design with a simpler feedforward CNN with dual modules and a
state-of-the-art Inception Resnet v2 model. With high resolution color fundus photographs as training
dataset, our work can shed light on the influence of changing of hyperparameters or structure on the
performance of the resulted CNNs. The characteristics of the mentioned deep learning methods and
ours are presented in Table 1.

Table 1. Comparison of Deep Learning Methods.

Methods Characteristics

Deep feedforward convolutional neural network [17]

Learning a hierarchy of features including simple
curves and edges to global motifs from raw images.
Sensitive to crucial minute details yet insensitive to
large irrelevant variations in image.

Group method of data handling [13] Self-organizing deep learning method for time series
forecasting problems without requirement of big data

Ada-CGFace framework [9]

Uses Adaboost classifier in place of softmax.
Contains dropout layers for avoiding overfitting and
trained using adaptive moment estimation instead of
stochastic gradient descent.

Deep CNN with dual modules (our method)
Has certain level of scale invariability to target object.
1 × 1 convolutional kernel induces small
computational cost.

Inception Resnet v2 [18]
Residual connection improves training speed greatly.
Inception is computationally efficient. It can abstract
features at different scales simultaneously

In the next section, we briefly describe the CNN models that we used. In Section 3, we describe the
experiment detail and results of atmosphere pollutant classification with multi-sensor data. In Sections 4
and 5 we elaborate on the method and results of studying the tweaking hyperparameters and the
structure’s influences on CNN performance.

2. Computational Methods

2.1. Model Design

The prevalent deep CNN models include recurrent neural networks [19], densely connected neural
network [20], residual neural network [21], inception v4 [18] and dual-path network [14]. We used a
feedforward CNN model with dual modules and Inception Resnet v2 for experiments.

A certain neural network processes a fixed sized input and produce a fixed sized output.
The feedforward CNN with dual modules targets input image with a resolution of 66 × 66 pixels
or 224 × 224 pixels. It comprises 42 layers, including a simple convolutional layer, three dual-path
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reduction modules, 10 normal dual-path modules, one pooling layer, one fully connected layer
followed by a Softmax function for classification, as shown in Table 2. Batch normalization is attached
to every convolutional neuron because it can smooth out the optimization landscape significantly,
inducing a more predictive and stable behavior of the gradients, allowing for faster training [22].
Each convolutional unit, after batch-normalized, is connected to nonlinear activation function of
rectified linear unit (ReLU) because it generally learns much faster in networks with many layers,
allowing training of a deep supervised network without unsupervised pre-training [8].

Inception Resnet v2 [18] is the second variant of the Inception ResNet model. It was introduced
with a residual connection to the original inception module, which improves the training speed
greatly while retaining the efficiency of realizing optimal sparse structure with dense, readily available
components in the inception module [23]. The original inception model is the model powering the
well-known GooglNet, which proved its performance in the ILSVRC2014 competition. The Inception
ResNet v2 model consists of 22 layers. It achieves a wider instead of deeper network within the same
computational budget. A typical dual module comprises one 1 × 1 kernel and one 3 × 3 kernel, whereas
a typical module in Inception ResNet v2 model comprises four 1 × 1 kernels, three 3 × 3 kernels.
The increase in width of layers for Inception ResNet v2 model enables it to detect a feature regardless
of its scale variance [18].

The CNN classification methodology is illustrated in Figure 1. Input images are fed into
convolutional layers to be analyzed. A unit in a convolutional layer connects to a small region called
receptive field in an input image, but always extending through the whole depth of the image (for a
RGB image, the depth is 3). Units in a convolutional layer are arranged in feature maps. The units in
the same feature map share the same filter bank. The output of the last normal dual module, designed
to be a 336-dimensional feature vector in our work, is flattened and analyzed by a fully connected
layer which contains neurons of the number of the classes. The output of the fully connected layer is
eventually converted by a Softmax function to probabilities being every classes.
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Figure 1. Illustration of classification methodology and deep CNN training process: The input image is
analyzed by convolutional filters (Blue squares) which apply to a small receptive field but detecting at
each of the image positions and always extending through the whole depth of the image. The resulting
output feature maps (Green Squares) are analyzed by convolutional layers or pooling filters at each of
their surface positions until being processed by a global average pooling layer which is followed by
one fully connected layer. Each green square represents a feature map corresponding to the output
for one of the learned features. The convolutional neurons are activated using ReLU function, while
the final layer connects to a Softmax function which converts the output into probabilities of the
input image belonging to different categories. For training, the true label joins the predicted classes
for calculating loss using object function which is cross entropy in our case. The losses are then
backpropagated through the network for updating weights of convolutional filters and fully connected
layer, where stochastic gradient descent was used for updating weights.
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We used t-distributed stochastic neighbor embedding (t-SNE) [24] for reducing the 336-dimension
data from the last convolutional layer to three dimensions for visualization. t-SNE has the advantage of
being able to preserve local structure of the original data compared to other dimension reduction method
such as principle component analysis (PCA). The distance between two samples in t-SNE converted
space is decided by the probability of one sample having the other as its neighbor, which equals to the
probability of them being neighbor in the original 336-dimension space.

2.2. Choosing Hyperparameters

The hyperparameters involved in designing a CNN architecture include the number of kernels,
kernel shapes, pooling kernel shapes, learning rate, momentum, and learning rate decay factor. For
choosing the number of kernels, it is often the norm to assign the initial layers with fewer kernels
and latter layers with more kernels. It is because the neurons in initial layers detect simpler motifs,
like small curves and edges, while the latter ones detect motifs that captures more information from
larger region of the original image. Kernel shape depends on how much information to capture
during convolution. The larger the kernel, the more data will be used in deciding the output from
the activation function. Larger kernel size is usually used at initial convolutional layers for quickly
sub-sampling input image sizes. Pooling kernel size decides the ability to discard small shifts and
distortions and to reduce the dimension of the input. Learning rate determines the footstep size
applied during the stochastic gradient descent. Larger learning rates can be beneficial at the early
phase of training by allowing to explore different domains of the loss function while decaying the
learning over time allows better fine tuning in later stages [14]. Too large a learning rate may cause the
object function to miss its lowest point during back propagation while too small a learning rate may
cause it to converge to local minimum instead of the global one. Momentum controls how fast the
Stochastic Gradient Decent (SGD) process converges. If the objective function during SGD has the
form of a long shallow ravine leading to the optimum and steep walls on the sides, momentum needs
to be introduced to prevent the SGD from oscillating across the narrow ravine and push the objective
towards the optimum more quickly along the shallow ravine [25]. Learning rate decay factor decides
the rate at which learning rate decreases for certain epochs.

Table 2. The CNN architecture modified for training on higher resolution images.

Module Name Kernel Size (Width × Height × Channel), Number and Stride Output Size

Input Raw image N/A (224 × 224 × 3)
Simple Convolution 9 × 9 × 3 Conv (96 stride 3) (74 × 74 × 96)
Normal dual-path modules 1 1 × 1 × 96 Conv (32 stride 1), 3 × 3 × 96 Conv (32 stride 1) (74 × 74 × 64)
Normal dual-path modules 2 1 × 1 × 64 Conv (32 stride 1), 3 × 3 × 64 Conv (48 stride 1) (74 × 74 × 80)
Dual-path reduction module 1 3 × 3 × 80 Conv (80 stride 2), 3 × 3 Max pooling (1 stride 2) (37 × 37 × 160)
Normal dual-path modules 3 1 × 1 × 160 Conv (112 stride 1), 3 × 3 × 160 Conv (48 stride 1) (37 × 37 × 160)
Normal dual-path modules 4 1 × 1 × 160 Conv (96 stride 1), 3 × 3 × 160 Conv (64 stride 1) (37 × 37 × 160)
Normal dual-path modules 5 1 × 1 × 160 Conv (80 stride 1), 3 × 3 × 160 Conv (80 stride 1) (37 × 37 × 160)
Normal dual-path modules 6 1 × 1 × 160 Conv (48 stride 1), 3 × 3 × 160 Conv (96 stride 1) (37 × 37 × 144)
Dual-path reduction module 2 3 × 3 × 144 Conv (96 stride 2), 3 × 3 Max pooling (1 stride 2) (19 × 19 × 240)
Normal dual-path modules 7 1 × 1 × 240 Conv (176 stride 1), 3 × 3 × 240 Conv (160 stride 1) (19 × 19 × 336)
Normal dual-path modules 8 1 × 1 × 336 Conv (176 stride 1), 3 × 3 × 336 Conv (160 stride 1) (19 × 19 × 336)
Dual-path reduction module 3 3 × 3 × 336 Conv (96 stride 2), 3 × 3 Max pooling (1 stride 2) (10 × 10 × 432)
Normal dual-path modules 9 1 × 1 × 432 Conv (176 stride 1), 3 × 3 × 432 Conv (160 stride 1) (10 × 10 × 336)
Normal dual-path modules 10 1 × 1 × 336 Conv (176 stride 1), 3 × 3 × 336 Conv (160 stride 1) (10 × 10 × 336)
Pooling layer 10 × 10 Average pooling (1 stride 1) (1 × 1 × 336)
Flatten N/A (336 × 1)
Fully connected layer Hidden nodes (5) (5 × 1)
Softmax layer N/A (5 × 1)
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3. Predicting Air Pollutant Type from Apparatus Readings

3.1. Data Preparation and Augmentation

The data set used to train our network had been measured using multiple apparatus. Each specimen
of air components data includes five parameters, which are doping material, angle, force, air pressure,
and ‘in air current’. Together they decide which of the five pollutants—acetone, ethanol, chloroform,
toluene, and methanol—the detected air pollutant is. The data measured by the apparatus include
56 specimens. While the remaining four parameters are fixed values, air pressure data was measured
as a range. For each measured specimen, we produced the training dataset by keeping four parameters
the same while setting the air pressure parameter to values varying in the given range at an increment
of 295 Pascal. We then normalized the five parameters independently over all specimens because any
value that is larger than 1 will be treated as white color when converting the data into gray-scale images.

For each created specimen, a 64 by 64 matrix was created which comprised five zones that were
individually configured with values of the five parameters. The matrixes were then converted to
grey scale images. This is because image contains spatial information among the five regions which
makes regions of same value in different locations still represent different data which deep CNN can
distinguish. Conventional machine learning methods do not consider spatial information, since the
image will be flattened or have features extracted before classification. The schematic image that
embeds all five of the parameters is illustrated in Figure 2. A similar method of converting data
into HSV data and further into RGB images was used to transforming the quantum Monte Carlo
sampling data for building a fermionic phases distinguishing method based on convolutional neural
network [26]. The squares marked 1, 2, 3, and 4 represent the first four parameters while the square
marked 5 represents the most decisive parameter, the ‘in air current’ data. The whole square is 64
by 64 pixels in size with small squares marked with 1, 2, 3 and 4 each being 20 by 20 pixels in size.
With this training dataset creating mechanism we obtained 537 images. We then created another
training dataset of 993 images by reducing the air pressure parameter value increment to 147.5 Pascal.
We trained two CNN instances separately on the two datasets.
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Figure 2. A sample image from training dataset used in training CNN for distinguishing air pollutant.
Grey scales of numbered zones are determined by a sample’s five parameters.

3.2. Training Process and Results

The ratio of training set over validation set is set at 0.9. We used the feed forward CNN model with
dual modules. We initialized the weights in the CNN by imparting them random values from normal
distribution using Xavier method, which keeps the scales of gradients roughly the same in all layers.
Such weight initialization was also used in the training of feedforward CNN for DR classification.

With batch size of 56 and training for 200 epochs, the best validation precision appeared during
training on the 537 images set is 0.892857. Training on the 993 images data set for 200 epochs entails
highest validation accuracy of 0.9375. It is 0.04464 higher than the previously one. The increment
indicates that the validation precision of trained network is positively related to the size of the
training dataset.
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The last normal dual module in the trained CNN produces a 336-dimensional feature map for each
validation image. All the feature maps of validation set images form an activation space. The activation
space is transformed into a 3-dimensional representation space by t-SNE algorithm in MATLAB.
The visualization of it is shown in Figure 3. The circles are colored according to their respective classes.
Because we measured current passing through different doping material in different air pollutant,
there is minimal internal correlation among different measured data specimens. This is reflected in
the t-SNE visualization that circles from different classes are not arranged according to the sequence
of their class numbers. Even circles belonging to the same class can appear in different locations in
representation space. The large distance between circles group in t-SNE visualization indicates that
their represented specimens share very few features with each other. The trained network also learnt a
new class 5 that was not known during training data preparation, in an unsupervised manner. It could
be data specimens that represent the air itself. The trained deep CNN can be used for classification of
apparatus data considering the classification accuracy of 0.9375.
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Figure 3. 3-dimensional t-SNE visualization of the result of air component experiment validation set in
activation space representation. Class 0 to 4 represent acetone, ethanol, chloroform, toluene, methanol,
respectively. Finally, class 5 represents a new undefined ingredient apart from the defined five types
of ingredients.

4. Classification of DR Fundus Images Using CNNs

We then studied the classification of color fundus images in diabetic retinopathy (DR), which is
the leading cause of blindness in the working-age population of the developed world. The aim is to
investigate the application of CNN in DR phases classification. We also modified the CNN model
for training on higher resolution images by firstly making the network reduce the image dimension
quicker in the early layers. We then added two more reduction dual-path and four more normal
dual-path modules to the feedforward network and compared the results.

4.1. Data Set Preparation

The training samples and validation samples that we use were released by EyePACS, LLC [27].
The DR dataset contains 35,126 high-resolution human fundus images for training and 53,576 equally
high-resolution raw fundus images for testing. The fundus raw images can be categorized into five
different phases of disease progression according to their severity. The dataset comprises images
acquired from both left and right eyes of the patients. Table 3 displays the fundus images distribution
in the DR dataset. The DR fundus raw image data set is accompanied by an excel file which stores
the DR phases numbers to their corresponding images which were assigned by qualified clinicians.
The raw images are of sizes that are in the thousands by thousands of pixels range which were too large
to train on. Therefore, we needed to resize them to smaller uniformed sizes in preparation for training.
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Table 3. DR fundus images distribution.

Class DR Classification No. of Images Percentage (%) Imbalanced Ratio

0 Normal 25,810 73.48 1.01
1 Mild NPDR 2443 6.96 1.84
2 Moderate NPDR 5292 15.07 1.26
3 Severe NPDR 873 2.48 2.76
4 Proliferative DR 708 2.01 2.89

4.2. Training a CNN Instance with Feedforward Model of Dual Modules

Firstly, we resized the fundus raw images to have their shorter borders to be 64 pixels and then
crop the central squared regions out of them. This ensured that the eyeball’s aspect ratio remained
unaltered. Apart from resizing we did not perform any image post processing or enhancement because
CNN’s biggest benefit is being able to learn information directly from raw images. We notice that the
fundus images can be of opposite orientations as illustrated in Figure 4. Even among solely left eye
images, there are significant proportions of retinas that are of opposite orientations to others. But we
decided not to flip the images to make them align along the same direction. The consideration was
two-fold. Firstly, the generic patterns of diabetic retinopathy symptoms, like blood vessel visibility
and haze region, should be shared by both oppositely facing retina images. Secondly, the neural
network will be able to associate fundus images of both sides to professionally classified labels which
have practical usage in real life. The sample images are arbitrarily assigned to either training set or
validation set by the sample preparation program at a ratio chosen as 0.9 between training set and
validation set.
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Figure 4. Two randomly picked fundus images from the training data set that feature oppositely
oriented retinas.

The hyperparameters in the training of CNN in DR phases distinguishing were chosen as follows.
Learning rate was 0.01. Learning rate decaying factor was chosen as 0.1. Momentum was chosen as 0.9.
Weight decaying rate was chosen as 0.0005. The training program was designed to run for 400 epochs.
An epoch is one round of optimization. The highest validation accuracy recorded during the training
process of the trained CNN is 0.763068 at epoch 95. After epoch 95, the validation accuracies of
remaining epochs start to gradually decrease. It falls back to around 0.72 at the end of the training
(Figure 5a). This shows that training for prolonged epochs does not translate into increased validation
accuracy of the network. So long as the number of epochs is enough to allow it to reach the maximum
value, there is no need to train an extensive number of epochs. The t-SNE visualization of the activation
space representation by the original CNNs is shown in Figure 5b. Even though segregation of dots
representing instances from classes 0 to 4 is present, the continuity information among classes 0–4 is
not evident.
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Figure 5. (a) validation accuracies recorded for every 20 epochs over 400 epochs. (b) t-SNE visualization
of validation set in activation space representation by the trained CNN with feedforward structure
with dual modules. The arrangement of circles of class 0 to 4 in 3-dimensional space reflects the correct
sequence of disease progression.

4.3. Training a CNN Instance on Higher Resolution Samples

Each CNN structure is specifically designed for a certain image resolution. Otherwise the network
is unable to properly reduce the dimension of the input image for global pooling layer to process,
leading to too many variables in the flattened feature vector. When we increased the resolution of the
training data record, we modified our CNN architecture accordingly. We uniformly resized the data
record size to 224 by 224 pixels, a resolution that should retain more useful information and learnable
features than that of retinas images of a resolution of 66 by 66 pixels.

Firstly, we kept the structure of the original deep CNN structure unchanged yet making the first
simple convolutional layer more aggressive at reducing the dimension of the input images. The kernel
architecture is shown in Table 2 which contains sizes and numbers of kernels in each constituting
module. We modified the first simple convolutional layer by increasing the convolutional kernel size
from 3 × 3 pixels to 9 × 9 pixels and the stride from 1 × 1 pixel to 3 × 3 pixels. Similar configuration
strategy has been employed in the inception net structure design [28]. This increase in convolutional
kernel size will allow the kernel to analyze a larger region of pixels on the input raw image in 1 round
of convolution. This makes each pixel in the output feature map of the convolutional layer incorporate
more information from the raw image. Meanwhile, the enlargement of stride for the kernel effectively
reduced sizes of the outputs.

The training was set to run for 100 epochs. The highest validation accuracy of 0.809106 appeared
at the 90th epoch. It decreased slightly afterwards but remained higher than 0.8 over the next 10 epochs.
Training the network with reductive first convolutional layer had proven to be very effective at
consolidating the information of the raw images. The training program can process a batch size of
68 images at a speed of 130 images per second. Training for 100 epochs took only approximately 6 h.
According to the label definition, label 0 to 4 represent no diabetic retinopathy (DR), mild, moderate,
severe, and proliferative DR respectively. The 3-dimensional t-SNE visualization of the validation set
in activation space representation is shown in Figure 6.
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Figure 6. Reconstruction of disease progression in diabetic retinopathy by CNN with reductive first
convolutional layer that was trained on high resolution images. The red arrow indicates the inferred
disease progression sequence among dots representing class 0 to 4.

Samples with label 0 to label 4 are aligned correctly according to the disease progression sequence
from healthy (label 0) to severe (label 3). The dots representing proliferative (label 4) do not follow the
progression curve that are formed by dots labelled 0 to 3. Meaning that proliferative DR images have
more features in common with those of medium (3) than severe (4) DR. Class 5 is an inferred class.
The dots representing class 5 scatter among the main body of dots that represent class 0, 1 and 2. The red
arrow represents the inferred direction of disease progression represented by t-SNE visualization of
activation space of the validation image set by the trained CNN.

When the input image is a square, the feature map dimension produced by the kernel can be
calculated by Equation (1):

Wout =
Win −K + 2P

S
+ 1 (1)

where Win and Wout are widths of input image and output image respectively. K is the kernel width.
P is the padding width. S is the stride width. The replication of filters along the width and height of the
input volume allows features to be detected regardless of the location in a visual field, thus realizing
the property of translational invariance.

5. Analyzing the effects of deepening CNN architecture

5.1. Experiment Details

To study the influence of the depth of a neural network architecture, four more normal dual-path
modules and two more dual-path reduction modules were inserted into the neural network. They were
inserted behind the last normal dual-path module and before the global pooling layer in the original
network structure (Table 4). The added normal dual module contains 224 (1 × 1) kernels and
192 (3 × 3) kernels, while the former highest (1 × 1) kernel number and (3 × 3) kernel number are 176
and 160 respectively. This should enable the trained CNN to learn a wider range of global features from
the training data set. A reduction dual module reduced the size of the output feature map to a quarter
of the original size for every other two normal dual-path modules. The reduction was realized by
making the pooling kernel and (3 × 3) kernel slide at a stride of 2 × 2 pixels for one time of calculation
along the width and the height direction of the input data. The reduction dual modules ensure that
the output from the normal modules can be small enough that global pooling layer can finally down
sample it to desired dimension to be flattened.
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For preparation of training and validation data set, we have uniformly resized them to a resolution
of 224 by 224 pixels during training record file preparation. The ratio between training dataset over
test dataset was chosen as 0.9. The batch size was set as 7.

Table 4. The deepened CNN architecture with 6 more modules inserted.

Module Name Kernel size (Width × Height × Channel), Number and Stride Output Size

Input Raw Image N/A (224 × 224 × 3)
Simple Convolution 3 × 3 × 3 Conv (96 stride 1) (224 × 224 × 96)
Normal dual-path modules 1 1 × 1 × 96 Conv (32 stride 1), 3 × 3 × 96 Conv (32 stride 1) (224 × 224 × 64)
Normal dual-path modules 2 1 × 1 × 64 Conv (32 stride 1), 3 × 3 × 64 Conv (48 stride 1) (224 × 224 × 80)
Dual-path reduction module 1 3 × 3 × 80 Conv (80 stride 2), 3 × 3 Max pooling (1 stride 2) (112 × 112 × 160)
Normal dual-path modules 3 1 × 1 × 160 Conv (112 stride 1), 3 × 3 × 160 Conv (48 stride 1) (112 × 112 × 160)
Normal dual-path modules 4 1 × 1 × 160 Conv (96 stride 1), 3 × 3 × 160 Conv (64 stride 1) (112 × 112 × 160)
Normal dual-path modules 5 1 × 1 × 160 Conv (80 stride 1), 3 × 3 × 160 Conv (80 stride 1) (112 × 112 × 160)
Normal dual-path modules 6 1 × 1 × 160 Conv (48 stride 1), 3 × 3 × 160 Conv (96 stride 1) (112 × 112 × 144)
Dual-path reduction module 2 3 × 3 × 144 Conv (96 stride 2), 3 × 3 Max pooling (1 stride 2) (56 × 56 × 240)
Normal dual-path modules 7 1 × 1 × 240 Conv (176 stride 1), 3 × 3 × 240 Conv (160 stride 1) (56 × 56 × 336)
Normal dual-path modules 8 1 × 1 × 336 Conv (176 stride 1), 3 × 3 × 336 Conv (160 stride 1) (56 × 56 × 336)
Dual-path reduction module 3 3 × 3 × 336 Conv (96 stride 2), Max pooling 3 × 3 (1 stride 2) (28 × 28 × 432)
Normal dual-path modules 9 1 × 1 × 432 Conv (176 stride 1), 3 × 3 × 432 Conv (160 stride 1) (28 × 28 × 336)
Normal dual-path modules 10 1 × 1 × 336 Conv (176 stride 1), 3 × 3 × 336 Conv (160 stride 1) (28 × 28 × 336)
Dual-path reduction module 4 3 × 3 × 336 Conv (112 stride 2), 3 × 3 Max pooling (1 stride 2) (14 × 14 × 448)
Normal dual-path modules 11 1 × 1 × 448 Conv (224 stride 1), 3 × 3 × 448 Conv (192 stride 1) (14 × 14 × 416)
Normal dual-path modules 12 1 × 1 × 416 Conv (224 stride 1), 3 × 3 × 416 Conv (192 stride 1) (14 × 14 × 416)
Dual-path reduction module 5 3 × 3 × 416 Conv (112 stride 2), 3 × 3 Max pooling (1 stride 2) (7 × 7 × 528)
Normal dual-path modules 13 1 × 1 × 528 Conv (224 stride 1); 3 × 3 × 528 Conv (192 stride 1) (7 × 7 × 4160
Normal dual-path modules 14 1 × 1 × 416 Conv (224 stride 1); 3 × 3 × 416 Conv (192 stride 1) (7 × 7 × 416)
Pooling layer 7 × 7 Average pooling (1 stride 1) (1 × 1 × 416)
Flatten N/A (416 × 1)
Fully connected layer Hidden nodes (5) (5 × 1)
Softmax layer N/A (5 × 1)

5.2. Training Results Analysis

Training for 100 epochs took 23 h. The highest validation accuracy of 0.813068 among the
100 epochs had been recorded, which appeared at epoch number 93. As the t-SNE visualization
(Figure 7a) shows, locations of circles from classes 0 to 3 in 3-dimensional representation of activation
space exhibit the correct order of DR disease progression. The inferred classes arranging sequence
displayed by the visualization is indicated by a red arc (Figure 7a) with the arrow pointing at the
progression direction. The dashed line in the middle of the arc represents an area where circles are
scarce. The scarcity of circles should not be interpreted as a lack of samples acquired that belong to
this missing phase of disease progression. Rather, it should be interpreted as the phenomenon that
fundus images of phases 1 and 2 share very few common features in the 416-variable feature maps
produced by the CNNs. This translates to the fact that there are big changes in retinas when the disease
progresses from mild phase to medium phase, which is reflected in Figure 7b.

Notice that circles representing phase 4 do not appear behind end of circles of phase 3. Instead
they aggregate as a cluster (pointed by a black arrow in Figure 7a) appending to the end of clusters
consisted of circles representing phase 2. This indicates that fundus images of prolific phase share more
features with images of normal and mild phases instead of with those of severe phase. Nevertheless,
circles of class 2 and class 3 are still well separated from the circles of class 0 and class 1, making
detecting DR in its early stages using CNN desirable.
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5.3. Revised Deepened Architecture

Upon inspecting the 416-variable data in the feature file produced by the trained CNN described
in the previous section, it was found that there were multiple columns of data consisting of completely
zeros. The activation function that we use for constructing a neuron is rectified linear unit (ReLU),
which is written as:

f (x) = max(0, x) (2)

where it outputs 0 for input of negative value. This means that the neurons in the feature maps
responsible for the variables with 0 values have not made ReLU ‘activate’ at all, leading to the global
pooling layer producing 0 values. We count the number of variables that are all zeros as 107, leaving
the number of non-zero variables as 309. This number of variables that are not all zeros was less
than that were in the feature file produced by the original CNN and the CNN with reductive first
convolutional layer. We noticed that the last two normal dual-path modules of the deepened CNN
(Table 4.) leveraged on input data size of only 7 × 7 (width × height). For comparison, the last two
normal dual-path modules in the original CNN and the CNN with reductive first convolutional layer
receive feature maps that are 8 × 8 and 10 × 10, respectively. We assume that the shrink in input
data size for the final normal dual-path modules was the reason for some kernels failing to learn any
feature, thus outputting all zeros for all validation set images. We then reduced the kernel numbers in
the added normal and reduction dual-path modules (Table 5) to find out the optimal kernel number
to make sure that all kernels can learn features from the 7 × 7 resolution input. The training ran for
100 epochs, taking 15 h. The highest validation accuracy (0.819294) recorded appeared at epoch number
100. The meaningful variables number is 295 from the 336 total variables in the feature map. Despite
the total useful kernels number being smaller than that of the previous deepened CNN, the empty
kernels number had dropped by half (38 against 107). We conjectured that the size of the input image
does limit the number of features a convolutional layer can learn from. The increase in kernel numbers
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of latter global convolutional layers cannot continually improve validation accuracy when they have
captured all learnable global features.

Table 5. New version of six inserted dual modules following the last normal dual module of the
original CNN architecture.

Module Type Kernel Size (Width × Height × Channel), Number and Stride Output Size

Reduction Dual-path Module 3 × 3 × 336 Conv (96 stride 2), 3 × 3 Max pooling (1 stride 2) (14 × 14 × 432)
Normal Dual-path Module 1 × 1 × 432 Conv (176 stride 1), 3 × 3 × 432 Conv (160 stride 1) (14 × 14 × 336)
Normal Dual-path Module 1 × 1 × 336 Conv (176 stride 1), 3 × 3 × 336 Conv (160 stride 1) (14 × 14 × 336)
Reduction Dual-path Module 3 × 3 × 336 Conv (96 stride 2), 3 × 3 Max pooling (1 stride 2) (7 × 7 × 432)
Normal Dual-path Module 1 × 1 × 432 Conv (176 stride 1, 3 × 3 × 432 Conv (160 stride 1) (7 × 7 × 336)
Normal Dual-path Module 1 × 1 × 336 Conv (176 stride 1), 3 × 3 × 336 Conv (160 stride 1) (7 × 7 × 336)
Global Pooling Layer 7 × 7 Average pooling (1 × 1 × 336)

5.4. Training Using Inception Resnet v2 Model

We built and trained a network based on the Inception Resnet v2 model using TensorFlow 1.13
on the same hardware. The training details are as follows. The whole dataset of 35,125 images was
divided into training and validation set by a ratio of 0.9. They were resized to 299 by 299 pixels using
bilinear filtering method and packaged into 10 TFRecord files, five each for the training and testing
datasets. During training, we further resized the images to 240 by 240 pixels and fed them to the
network with a batch size of 32. In terms of hyperparameters, we used an initial learning rate of 0.01.
Learning rate decayed for every two epochs at a learning rate decaying factor of 0.94 using exponential
decaying method. Loss function was chosen as Softmax cross entropy. The optimization method was
stochastic gradient descent. We use a momentum of 0.9 for propelling gradient descent. Training
Inception ResNet v2 model for 100 epochs costed approximately 42 h which is eight times of that of
the reduction dual-module network. It reflects the fact that the Inception ResNet v2 contains more
weights. It is certainly slower to train than all variants of the feed forward model with dual modules.

The highest validation accuracy among the 100 epochs was 78.708%, appearing at epoch 17.
The validation accuracies then fell to its lowest point before rising to a steady 74% as shown in Figure 8.
The accuracy curve of the reduction dual module network stays above that of the Inception Resnet v2
model after around epoch number 20 at an increasingly wider gap. We contribute this reduction in
accuracy to the fact that the fundus images have been uniformly scaled with similarly sized retinas
in the center, which make the differently sized filter banks in an inception module redundant since
they are designed to detect features at different scales simultaneously [23]. We also recorded the
training accuracy for every 100th batch. We found that since epoch number 40, the training accuracies
had remained constantly above 99%, which were much higher than the validation accuracies of the
same epochs. We deduced that the trained model had encountered overfitting problem, likely due
to the limited size of the training dataset. The Inception ResNet v2 model was originally trained on
ImageNet database which includes millions of images of resolutions of 240 × 240 pixels, while our
dataset constitutes 35,000 images.

5.5. Comparison of CNNs of Five Different Architectures

We trained our networks on a single Nvidia GTX1070Ti-powered PC. The best validation accuracies
from various CNN architectures in DR phase classification are listed in Table 6. Both the deepened
architecture and reductive architecture have achieved validation accuracies that are over 4% higher
than the original feedforward architecture during training the same number of epochs. This proves
that training with higher resolution data can improve the accuracy of the CNN. Higher resolution
training data provides more abundant information for the CNN to leverage on, resulting in learned
filters that are more accurate at classification. The deepened architecture has achieved an accuracy that
is 0.5245% higher than the reductive architecture. Within margin of error, they are equivalent. It can be
concluded that adding more convolutional layers alone will not improve the accuracy any further after
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it reaches certain depth [21]. The revised deepened architecture, with fewer kernels in added dual
modules, also achieved similar accuracy, within margin of error, to the deepened architecture (Figure 8.
This could be attributed to the meaningful global features that can be learned from the output of the
earlier layers are limited. Therefore, increasing kernel numbers cannot continually improve accuracies
of CNNs.
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Table 6. Comparison of highest validation accuracy of different CNNs.

CNN Architecture Validation Accuracy (%) Appeared Epoch Training Time (hours/100 h)

Original Architecture 76.3068 95 N/A
Reduction Architecture 80.7823 100 6
Deepened Architecture 81.3068 93 23
Revised Deepened
Architecture 81.9294 100 15

Inception Resnet v2 78.708 17 42

Despite being able to take advantage of the efficiency of mimicked sparse structure with dense,
readily available components, Inception Resnet v2 lost the best performing to the simpler feedforward
networks in classification quality by a margin of 7%. It also took the longest time to train. Just to
benchmark our model with the online leader board on the DR recognition, our best result of classification
accuracy of 81.9% sits in the top 10 places of the current leader board.

6. Conclusions

In this article, we employed deep CNN for analyzing multi-sensors data of atmospheric
pollutant measurement and classification of DR progression phases for color fundus images. A data
transformation method that can embed multi-variable data into an image for training deep CNN
classifier was proposed. It capitalizes on the fact that the convolutional unit scans the image from top
to bottom and left to right, allowing different regions of the same grey scale value on the same image
hosting different information. Because deep CNN can classify image at a rate of hundreds of images
per second, it can undertake real time multi-sensor data classification task. Through experiments
with CNNs distinguishing DR phases for fundus images, we learned 5-fold lessons as follows. Firstly,
the global features which can be learned from a given image by deeper convolutional layers are limited.
Secondly, configuring more layers in a CNN architecture or more kernels in latter convolutional layers
will not improve CNN validation accuracy continually. Thirdly, training on higher resolution images
induce higher validation accuracy for the trained network. Fourthly, for training CNNs on high
resolution data or large amount of data, designing architectures with a first convolutional layer that
have larger kernels and bigger stride can help sub-sample the input image more effectively while
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retaining the information embedded in the image. Fifthly, training with Inception ResNet v2 model
shows that when tackling object recognition problems in specialized realm, where objects of interest are
uniformly scaled in images, the variously sized filter banks can be rendered redundant since decisive
features are of the same scale. Three CNNs trained on high resolution image achieved 5-class validation
accuracies exceeding 80%, which can help in real world diagnosis. For solving the overfitting problem
arisen with deep CNN, adding dropout layers to the CNN structure should help.
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