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Purpose: The purpose of this study was to investigate the influence of  CYP/CYP450 2C9 

(CYP2C9) promoter variable number tandem repeat (p-VNTR) polymorphism on susceptibility 

to cardiovascular disease and on warfarin sensitivity and responsiveness, in Jordanians with 

cardiovascular disease during initiation and stabilization phases of therapy.

Patients and methods: A total of 211 cardiovascular patients who were being treated with 

warfarin anticoagulants and 205 healthy individuals were enrolled in this study. PCR-based 

methods were performed to analyze the effects of CYP2C9 p-VNTR polymorphism on warfarin 

metabolism. The p-VNTR polymorphism was composed of tandem repeat motifs sorted into 

three alleles based on the length and structure: short (p-VNTR-S), middle (p-VNTR-M), and 

long (p-VNTR-L).

Results: We found that the genotypic and allelic frequencies differ significantly between patients 

and healthy individuals; therefore, our results suggest that this polymorphism is associated with 

cardiovascular disease in the Jordanian population. Moreover, during the initiation phase of 

therapy, 20% of warfarin-sensitive patients were homozygous for a short allele (p-VNTR-S), 

and 12.2% were heterozygous for this allele (p-VNTR-M/p-VNTR-S). During the stabilization 

phase, no significant differences were found between these groups and their genotypic frequen-

cies. Additionally, we did not confirm any relationship between the CYP2C9 p-VNTR polymor-

phism and warfarin response during either the initiation or the stabilization phases of therapy.

Conclusion: Our data show a significant difference between the CYP2C9 p-VNTR poly-

morphism and risk of cardiovascular disease, in addition to significant association between 

this polymorphism and sensitivity to warfarin at the initiation phase of therapy in a Jordanian 

population. However, there is no correlation between this polymorphism and warfarin response, 

international normalized ratio (INR) values, or required warfarin dose to achieve a target INR 

either at the initiation or stabilization phases of therapy. To further corroborate our results, 

additional studies are required with a larger number of samples and different ethnic groups.

Keywords: warfarin, CYP2C9 promoter variable tandem repeat, polymorphism, cardiovascular 

disorder, oral anticoagulant, INR, warfarin dosage

Introduction
Warfarin is an oral anticoagulant prescribed for the prevention and treatment of throm-

botic disorders and is indicated for thrombotic disorders such as atrial fibrillation, heart 

valve replacement, history of thrombosis, and post-orthopedic surgery.1 It is clinically 
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available as a racemic mixture of R and S isomers, where 

the S-isoform has a potent activity 2–5 times higher than the 

R-isoform and is metabolized mainly by the CYP/CYP450 

2C9 enzyme (CYP2C9) in the liver.1,2

The ability of warfarin to act as an anticoagulant stems 

from its deactivation of the vitamin K epoxide reductase 

C complex (VKORC1), regenerating the reduced form of 

vitamin K that is necessary for the activation of coagulation 

factors.1,3,4 The efficacy and safety of warfarin depend mainly 

on the maintenance of prothrombin time, represented by the 

international normalized ratio (INR), within the therapeutic 

range. Analysis of many studies has shown that higher INR 

values are related to an increased risk of hemorrhage, while a 

lower INR value leads to a high risk of thromboembolism or 

stroke.5–8 However, reaching the target INR may take weeks, 

increasing the risk of adverse drug events during the initial 

phase of therapy.9

Knowing the extent to which genetic and environmental 

factors affect the anticoagulant response might help predict 

more individualized warfarin doses, resulting in a more 

accurate and safe anticoagulation therapy.10 In the late 2000s, 

the United States Food and Drug Administration announced 

that the warfarin label stat (which describes patients’ thera-

peutic dosage) had to underline its pharmacogenetic activity, 

particularly in patients with VKORC1 1, 639G>A, CYP2C9 

* 2, and CYP2C9 * 3 polymorphisms.11–13

Polymorphisms in genes encoding metabolic enzymes, 

transporters, and drug receptors can modulate warfarin 

response.14 Correspondingly, pharmacogenetic analysis 

of two genes, CYP2C9 and VKORC1, suggests that their 

genetic variants strongly influence the individual response 

to warfarin.3 CYP2C9 metabolizes almost 25% of all clinical 

medications, and genetic variation in CYP2C9 gene can have 

a significant effect on the outcome of treatment, particularly 

for drugs with a narrow therapeutic index like warfarin.15

In humans, CYP2C9 gene has been mapped to chromo-

some 10q24.2 and covers >55 kilobases (kb).16,17 Polymor-

phisms of CYP2C9 coding region have been extensively 

studied, and over 30 alleles have been recognized.18 The 

most common CYP2C9 allele, CYP2C9 * 1, is considered to 

be a wild-type genotype, whereas the CYP2C9 * 2 and * 3 

alleles involve the single-nucleotide polymorphisms (SNPs) 

of Arg144Cys and Ile359Leu, respectively. Both the CYP2C9 

* 2 and * 3 alleles play an important role in the metabolic 

activity of warfarin.19

In the promoter region of CYP2C9, a variable number tan-

dem repeat (VNTR) polymorphism is located 4 kb upstream 

from the translation site, affecting the expression of CYP2C9 

mRNA in human liver. Three types of fragments were 

detected: short allele (p-VNTR-S) (417–438 bp), medium 

allele (p-VNTR-M) (446–488 bp), and long allele (p-VNTR-

L) (512–522 bp). Of these fragments, p-VNTR-S has been 

found to decrease the activity of allelic promoters and, in 

turn, mRNA expression.20 These VNTR polymorphisms can 

regulate gene expression in a number of ways: inhibiting or 

promoting gene expression by modifying transcription factors 

or other binding site proteins; and change in the structure of 

the DNA, such as the variation in the distance between the 

functional units.21,22 VNTR polymorphisms often have an 

effect on gene expression as well as the increased risk of 

disease.23–28

The goal of the present study was to demonstrate the 

effects of CYP2C9 (pVNTR) polymorphism on the risk of 

cardiovascular disease and the variability of warfarin dose 

requirements and sensitivity. Consequently, this study con-

tributes to efforts to individualize dosing regimens in the 

Jordanian population.

Patients and methods
subjects
Ethical approval for this study was obtained from the Human 

Research Committees at Jordan University of Science and 

Technology in Irbid and the Royal Medical Services in 

Amman. This study was also conducted in accordance with 

the Declaration of Helsinki. All patients were recruited from 

anticoagulation clinics within the Queen Alia Heart Institute 

in Amman, after they gave their written informed consent. 

Patients taking CYP2C9-inducing drugs or those receiving 

concomitant treatment known to interact with warfarin or 

recorded clinical data lost, pregnant women, and alcohol 

abuse were excluded. In total, 416 subjects (205 healthy 

controls free of any cardiovascular disease and 211 cardio-

vascular patients) who were aged ≥18 years, who had been 

receiving warfarin for at least 3 months, and who gave written 

approval were included in this study.

Data collection and follow-up time
The blood samples were collected for the determination of the 

venous INR and p-VNTR of the CYP2C9 genotype. During 

patients’ clinical visits, demographic data on gender, age, and 

body mass index were recorded, as well as indications for 

warfarin treatment, target INR (INR values were reviewed 

in medical records from January 2014 to November 2015), 

average weekly doses of warfarin required to reach the 

therapeutic INR, medical problems, and concurrent medi-

cations. In this study, the required warfarin dose and INR 
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values were recorded in two stages: the first stage is at the 

beginning of the therapy and called initiation phase, and the 

second stage is when the INR values reach the stable point, 

where the INR values are within the therapeutic range for 

at least three consecutive visits and this stage is called the 

stabilization phase of therapy.

Outcome measures
The patients in this study were divided into two categories 

during the initiation and stabilization of therapy. The first 

category was sensitivity to warfarin according to Klein et 

al study (2009):29 patients in this category were defined as 

patients with resistance to warfarin needing a high dose of 

warfarin to reach therapeutic INR (>49 mg/week), normal 

patients requiring an intermediate dose (21–49 mg/week), 

and sensitive patients needing a low dose of warfarin (<21 

mg/week). Based on Higashi et al’s (2002) study,30 the second 

category included response to warfarin and was subdivided 

into good responders (INR value within the therapeutic 

range), poor responders (INR value below the target), and 

ultra-responders (INR above the target range).

genotyping
Leukocyte DNA was extracted with the Gentra Pure gene 

Blood kit according to the manufacturing protocols (Pro-

mega Corporation, Fitchburg, WI, USA). The concentration 

and purity of the extracted DNA were evaluated using the 

NanoDrop 1000® spectrophotometer.

DNA samples were amplified by PCR in a final volume 

of 25 µL, each with 1.5 µL of primer, 2 µL of genomic DNA, 

12.5 µL of master mix, and 9.5 µL of nuclease-free water.

The sequences for the forward and reverse primers 

were 5'-TGTAGTCCCAGGTTGTCAAGAGG-3' and 

5'-CCAGTCTCTGTCTTTTCATCTCATTC-3', respec-

tively.20 The PCR conditions consisted of the initial denatur-

ation at 95°C for 1 minute, 35 1-minute cycles (denaturation 

at 94°C, annealing at 60°C, and extension at 72°C) and a 

final 5-minute extension at 72°C. Known genotype controls 

and DNA-free blank tubes were included with each batch of 

samples. The PCR products were visualized in 3% polyacryl-

amide gels stained with ethidium bromide.

statistical analysis
We used the Pearson chi-squared tests to assess the genetic 

association of p-VNTR and cardiovascular disease, and Hardy-

Weinberg equilibrium (HWE) P-values for genotypic distribu-

tion were calculated via the Court lab-HW calculator. In order to 

assess which of the selected CYP2C9 p-VNTR polymorphisms 

is associated with warfarin sensitivity and responsiveness, 

several statistical analyses of genetic correlation were carried 

out using SPSS version 21.0, including the chi-squared test and 

one-way ANOVA. Further, to study genotype-per-genotype 

association, we used post hoc multiple comparison test.

Results
Patient characteristics
A total of 211 warfarin intake patients agreed to participate 

in this study. These 211 patients were included in this study 

to evaluate the association of CYP2C9 (p-VNTR) genotype 

with increased risk of cardiovascular disease and its effect 

on the sensitivity and responsiveness of warfarin during the 

initiation phase of therapy in Jordanian population, of which 

only 132 patients reached the stabilization stage, and there-

fore, to evaluate the effect of this genotype on the sensitivity 

and responsiveness to warfarin during the stabilization phase 

of the therapy in Jordanian population.

Overall, 69.6% of the patients were good metabolizers, 

15.2% were extensive metabolizers, and 15.2% were poor 

metabolizers. The mean age and the smoking status were 

found to differ significantly between these three groups, with 

P=0.019 and P<0.0001, respectively. Patient demographics, 

indications for anticoagulation therapy, and warfarin dose 

requirements for each group are shown in Table 1. The mean 

age of the control (n=205) was 37.3 with SD 13.8, 112 out 

of 205 were male and 67 were smokers.

genotypic and allelic frequencies
All samples were genotyped for p-VNTR polymorphism, which 

was previously reported to affect CYP2C9 enzyme activity.20 

Regarding the length of p-VNTR repeats in the CYP2C9 

promoter region, five different genotypes were identified. The 

subjects were categorized into depending on whether they pos-

sessed the short (p-VNTR-S, 417–438 bp), medium (p-VNTR-

M, 446–488 bp), or long (p-VNTR-L, 512–522 bp) alleles.

These (p-VNTR) polymorphisms were in accordance 

with the HWE. Analysis of genotypes showed that there were 

seven (3.3%) subjects with the homozygous LL genotype, 

58 (27.5%) subjects with the heterozygous ML genotype, 

five (2.4%) subjects with the homozygous SS genotype, 82 

(38.8) subjects with the heterozygous MS genotype, and 59 

(28%) subjects with the homozygous MM genotype (Table 

2). Allelic and genotypic frequencies differed significantly 

between patients and controls (Table 2). The frequency of 

the MS genotype was 38.8% (82/211) in patients compared 

with 58.1% (119/205) in controls. Among the patients, the 

frequency of the ML genotype was 27.5% (58/211) compared 
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with 14.6% (30/205) in controls (overall P-value <0.001). 

Allelic and genotypic frequencies for CYP2C9 p-VNTR 

polymorphism are shown in Table 2.

association of CYP2C9 p-VnTr 
polymorphism with warfarin sensitivity 
during the initiation and stabilization 
phases of therapy
There were no statistically significant differences between the 

doses required to reach the target INR during the initiation 

and stabilization phases of therapy and CYP2C9 (p-VNTR) 

genotypes (P=0.192 and 0.966) (Table 3).

Table 1 Demographics and clinical characteristics of 211 cardiovascular patients treated with warfarin at the Queen alia heart 
institute

Category Subcategory Poor metabolizer Good metabolizers Extensive metabolizers P-value*

Demographics Patients (n, %) (32/211) 15.2% (147/211) 69.6% (32/211) 15.2%  
agea, years [%] 57.2 [17.1] 54.7 [14.8] 47.2 [14.7] 0.019
BMia, kg/m2 [%] 28.1 [6.2] 27.8 [4.9] 27.6 [3.5] 0.732
smoking (n, %) (15/32) 46.9% (42/147) 28.6% (16/32) 50.0% <0.0001
Male 59.4% 51.0% 65.6% 0.27
Female 40.6% 49.0% 34.4%

concomitant disease comorbidity 65.6% 68.7% 53.1% 0.075
hypertension 40.6% 42.2% 18.8% 0.046
Diabetes mellitus 21.9% 21.8% 21.9% 1.0
chD 31.3% 25.9% 28.1% 0.814
Thyroid 0% 3.4% 3.1% 0.57
lipid 3.1% 6.8% 3.1% 0.55

Medication aspirin 59.4% 66% 75% 0.411
indication of treatment MVr 18.8% 12.9% 21.9% 0.163

aVr 6.3% 23.8% 21.9%
aF 37.5% 17.7% 18.8%
DVr 18.7% 23.1% 25.0%
Others 18.7% 22.5% 12.4%

Target inr 2–3 46.9% 38.8% 37.5% 0.69
2.5–3.5 53.1% 61.2% 62.5%

Mean inra  2.8 [0.73] 2.4 [0.75] 2.5 [0.85] 0.027

Notes: *P-value <0.05 is considered significant. aMean sD in square brackets.
Abbreviations: AF, atrial fibrillation; AVR, aortic valve replacement; BMI, body mass index; CHD, chronic heart disease; DVR, double valve replacement; INR, international 
normalized ratio; MVr, mitral valve replacement.

Table 2 allelic and genotypic frequencies for the p-VnTr polymorphism, in 205 controls and 211 Jordanian cardiovascular patients

Genotype and allele Patients Control P-valuea Overall P-valuea

ss (5/211) 2.4% (1/205) 0.5% 0.271 <0.0001
MM (59/211) 28% (54/205) 26.3% 0.841
ll (7/211) 3.3% (1/205) 0.5% 0.133
Ms (82/211) 38.8% (119/205) 58.1% 0.045
Ml (58/211) 27.5% (30/205) 14.6% 0.045
s (92/422) 21.8% (121/410) 29.5% <0.0001 <0.0001
M (258/422) 61.1% (257/410) 62.7% 0.980
l (72/422) 17.1% (32/410) 7.8% 0.034

Note: achi-squared test with P-value <0.05 is considered significant.
Abbreviation: p-VnTr, promoter variable number tandem repeat.

Patients were referred to as sensitive, moderate, and resis-

tant, according to the required dose needed to reach the target 

INR. The sensitive group showed a high frequency of the SS 

(20%) and LM (22.4%) genotypes, while the resistant group 

showed a higher frequency of the LL genotype (28.6%) only 

during the initiation phase of therapy with overall P-value 

<0.001, whereas when we compared each separate genotype 

with these sensitive groups, no significant association was 

found (Table 4). During the stabilization phase, no signifi-

cant associations were found neither between the sensitive 

groups as a general value nor with each separate genotype 

with overall P-value =0.910 (Table 5).
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Table 3 association of CYP2C9 p-VnTr polymorphism with variability on required warfarin

Polymorphism Genotype Initiation 
dose

95% CI P-valuea Overall 
P-valuea

Maintenance 
dose

95% CI P-valuea Overall 
P-valuea

Lower 
bound

Upper 
bound

Lower 
bound

Upper 
bound

CYP2C9/p-VNTR ss 33.8600 16.4615 51.2585 0.969 0.192 33.1500 28.4751 94.7751 0.982 0.966
MM 36.4780 33.1357 39.8203 0.829 38.1206 32.2087 44.0325 0.979
ll 40.6463 33.7602 47.5325 1 36.0167 17.6241 54.4092 0.981
lM 35.8793 31.1840 40.5746 0.751 39.2184 32.3301 46.1068 0.998
Ms 41.0143 22.6276 59.4010 0.751 39.6346 34.8483 44.4209 0.998

Note: aOne-way anOVa with P-value <0.05 is considered significant, mean doses.
Abbreviation: p-VnTr, promoter variable number tandem repeat.

Table 4 association of CYP2C9 p-VnTr polymorphism with warfarin sensitivity during the initiation phase of therapy of 211 
cardiovascular patients treated with warfarin

Polymorphism Genotype Sensitive Moderate Resistance Overall P-valuea

p-VnTr ss (1/5) 20.0% (3/5) 60.0% (1/5) 20.0% <0.001
P-valuea 0.76 0.62 0.76
MM (8/59) 13.6% (43/59) 72.9% (8/59) 13.6%
P-valuea 0.69 0.55 0.69
ll (0/0) 0.0% (5/7) 71.4% (2/7) 28.6%
P-valuea 0.27 0.92 0.32
lM (13/58) 22.4% (37/8) 63.8% (8/58) 13.8%
P-valuea 0.07 0.27 0.84
Ms (10/82) 12.2% (59/82) 71.9% (13/82) 15.9%
P-valuea 0.32 0.53 0.84

Note: achi-squared test with P-value <0.05 is considered significant.
Abbreviation: p-VnTr, promoter variable number tandem repeat.

Table 5 association of CYP2C9 p-VnTr polymorphism with warfarin sensitivity during the stabilization phase of therapy of 132 
cardiovascular patients treated with warfarin

Polymorphism Genotype Sensitive Moderate Resistance Overall P-valuea

p-VnTr ss (0/2) 0.0% (2/0) 100.0% (0/2) 0.0% 0.910
P-valuea 0.55 0.27 0.42
MM (6/34) 17.6% (20/34) 58.9% (8/34) 23.5%
P-valuea 0.42 0.62 0.92
ll (0/6) 0.0% (5/6) 83.3% (1/6) 16.7%
P-valuea 0.32 0.27 0.69
lM (5/38) 13.2% (23/38) 60.5% (10/38) 26.3%
P-valuea 0.92 0.84 0.69
Ms (7/52) 11.8% (32/52) 62.7% (13/52) 25.4%
P-valuea 1 0.92 0.84

Note: achi-squared test with P-value <0.05 is considered significant.
Abbreviation: p-VnTr, promoter variable number tandem repeat.

association of CYP2C9 p-VnTr 
polymorphism with warfarin 
responsiveness during the initiation and 
stabilization phases of therapy
Based on warfarin responsiveness, patients were divided into 

three groups: poor, good, and ultra-responders. There were 

no significant differences between the frequencies for the 

different genotypes among the three groups, neither in the 
initiation phase (overall P=0.255) nor throughout the main-
tenance phase (overall P=0.350) of therapy (Tables 6 and 7).

There were no significant differences in the CYP2C9 
p-VNTR and the value of INR measured at the initial stage of 
therapy in 211 patients receiving warfarin (overall P=0.598) 
nor for INR values measured in 132 patients during the sta-
bilization phase (overall P=0.466) (Table 8).
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Discussion
In this study, we investigated and characterized the p-VNTR 

polymorphism of CYP2C9 gene and its association with 

increased risk of cardiovascular disease and with warfarin 

sensitivity and responsiveness during the initiation and stabi-

lization phases of warfarin therapy in a Jordanian population.

Sconce et al study exhibited that patients carrying 

CYP2C9 variants have an altered ability to metabolize 

Table 6 association of CYP2C9 p-VnTr polymorphism with response to warfarin during the initiation phase of therapy of 211 
cardiovascular patients treated with warfarin

Polymorphism Genotype Poor responder Good responder Ultra-responder Overall P-valuea

p-VnTr ss (2/5) 40.0% (3/5) 60.0% (0/5) 0.0% 0.255
P-valuea 0.92 0.55 0.37
MM (27/59) 45.8% (27/59) 45.8% (5/59) 8.5%
P-valuea 0.42 1 0.23
ll (0/0) 0.0% (5/7) 71.4% (2/7) 28.6%
P-valuea 0.02 0.16 0.19
lM (21/58) 36.2% (30/8) 51.7% (7/58) 12.1%
P-valuea 0.27 0.23 0.84
Ms (38/82) 46.3% (31/82) 37.8% (13/82) 15.9%
P-valuea 0.23 0.07 0.32

Note: achi-squared test with P-value <0.05 is considered significant.
Abbreviation: p-VnTr, promoter variable number tandem repeat.

Table 7 association of CYP2C9 p-VnTr polymorphism with response to warfarin during the stabilization phase of therapy of 132 
cardiovascular patients treated with warfarin

Polymorphism Genotype Poor responder Good responder Ultra-responder Overall P-valuea

p-VnTr ss (0/2) 0.0% (2/2) 100.0% (0/2) 0.0% 0.350
P-valuea 0.69 0.62 0.76
MM (4/34) 11.8% (26/34) 76.5% (4/34) 11.8%
P-valuea 0.19 0.01 0.02
ll (1/6) 16.7% (5/6) 83.3% (0/6) 0.0%
P-valuea 0.32 0.69 0.62
lM (2/38) 5.3% (35/38) 92.1% (1/38) 2.6%
P-valuea 0.62 0.42 0.48
Ms (2/52) 3.8% (49/52) 94.2% (1/52) 1.9%
P-valuea 0.27 0.11 0.23

Note: achi-squared test with P-value <0.05 is considered significant.
Abbreviation: p-VnTr, promoter variable number tandem repeat.

Table 8 association of CYP2C9 p-VnTr polymorphism with inr treatment outcome

Polymorphism Genotype Initiation 
INR

95% CI P-valuea Overall 
P-valuea

Maintenance  
INR

95% CI Upper 
bound

Overall 
P-valuea

Lower 
bound

Upper 
bound

Lower 
bound

Upper 
bound

CYP2C9/p-VNTR ss 2.32 1.2613 3.3787 0.477 0.598 2.85 –5.4090 11.1090 0.997 0.466
MM 2.34 2.1444 2.5454 0.969 2.7 2.5625 2.8464 1
ll 3.16 2.0133 4.3009 0.083 2.5 2.0450 2.9550 0.825
lM 2.48 2.3006 2.6649 0.253 2.64 2.4986 2.7762 0.998
Ms 2.48 2.3138 2.6496 0.232 2.73 2.6447 2.8245 0.934

Note: aOne-way anOVa with P-value <0.05 is considered significant, mean INR.
Abbreviations: p-VnTr, promoter variable number tandem repeat; inr, international normalized ratio.

 warfarin, resulting in an effect in the clearance of S-active 

warfarin metabolite and, therefore, alter the dose required 

to reaching the therapeutic INR.31 It has been extensively 

demonstrated that VNTRs affect gene expression23,24,26 and 

are associated with the risk of diseases such as Alzheimer’s 

disease.27,28

To our knowledge, although several SNP/haplotype stud-

ies of the CYP2C9 promoter have been identified, none of 
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them demonstrate the CYP2C9 p-VNTR polymorphism and 

its effect on warfarin clearance, except Wang et al study.20,32–34 

Similarly, we evaluated the frequency of p-VNTR polymor-

phisms and their genetic associations with cardiovascular 

diseases, and this study revealed a significant association 

between these polymorphisms and the risk of developing 

cardiovascular disease. Allelic and genotypic frequencies 

differ significantly between patients and controls. We found 

the frequency of L allele was 17.1% (72/422) in patients com-

pared with 7.8% (32/410) in controls (P<0.001) (Table 2).

To our knowledge, no studies demonstrate the relation 

between these polymorphisms and the risk of cardiovas-

cular disease. Wang et al demonstrated that the p-VNTR-S 

allele reduces promoter activity of the CYP2C9 enzyme 

in human liver.20 It has also been reported that p-VNTR-S 

allele is associated with a 25%–60% reduction in CYP2C9 

mRNA expression compared with p-VNTR-M or p-VNTR-L 

alleles.20 Consistent with these results, our results indicate 

that the p-VNTR genotype significantly affected warfarin 

sensitivity during the initiation of therapy, which could be 

the result of enzyme deactivation activity. We found that 

20% of the warfarin-sensitive patients were homozygous for 

the short p-VNTR-S allele and 12.2% were heterozygous, 

p-VNTR-M/p-VNTR-S; therefore, these patients required 

a lower dose to achieve a therapeutic INR. Homozygous 

p-VNTR-S genotypic frequency in our population (2.4%) 

is lesser than that in African–American population (5.1%).20 

Finally, during the stabilization phase of therapy, no signifi-

cant differences were found between these groups and their 

genotype frequencies (Tables 4 and 5).

To our knowledge, no studies have evaluated the asso-

ciation between CYP2C9 p-VNTR polymorphism and the 

response to warfarin using the INR outcome measures. In the 

current study, no association between this polymorphism and 

the response to warfarin during the initiation and maintenance 

phases confirmed the therapy (Tables 6 and 7). Wang et al 

demonstrated that the p-VNTR-S polymorphism is present 

in high linkage disequilibrium with the CYP2C9 * 3 loss-

of-function allele, so the effect of p-VNTR-S on warfarin 

metabolism appears to be restricted. Therefore, p-VNTR-S is 

not assessed as a biomarker for warfarin dosing and further 

studies are required to confirm its independent effects on 

warfarin metabolism.20

Conclusion
Our data show a significant association between the CYP2C9 

p-VNTR polymorphism and the risk of cardiovascular dis-

ease as well as the association between this polymorphism 

and the sensitivity to warfarin during the initiation phase of 

treatment. However, no association was found between this 

polymorphism and warfarin responsiveness or between the 

INR result and the required warfarin dose to reach the thera-

peutic INR, either during the initiation or the maintenance of 

therapy. To confirm our results, further analyses with a larger 

number of samples and different populations are required.
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