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Objective: Metabolic associated fatty liver disease (MAFLD) affects nearly a quarter 

of the world’s population. Our study aimed to characterize the gut microbiome 

and overall changes in the fecal and serum metabolomes in MAFLD patients.

Methods: Thirty-two patients diagnosed with MAFLD and 30 healthy 

individuals (control group, CG) were included in this study, the basic clinical 

characteristics and laboratory test results including routine biochemistry, etc. 

were recorded for all, and their serum and fecal samples were collected. A 

portion of the fecal samples was subjected to 16S rDNA sequencing, and 

the other portion of the fecal samples and serum samples were subjected to 

non-targeted metabolomic detection based on liquid chromatography-mass 

spectrometry (LC–MS). Statistical analysis of clinical data was performed using 

SPSS software package version 25.0 (SPSS Inc., Chicago, IL, United States). The 

analysis of 16S rDNA sequencing results was mainly performed by R software 

(V. 2.15.3), and the metabolomics data analysis was mainly performed by CD 

3.1 software. Two-tailed p value < 0.05 was considered statistically significant.

Results: The 16S sequencing data suggested that the species richness and 

diversity of MAFLD patients were reduced compared with controls. At the 

phylum level, the relative abundance of Bacteroidota, Pseudomonadota, and 

Fusobacteriota increased and Bacillota decreased in MAFLD patients. At the 

genus level, the relative abundances of Prevotella, Bacteroides, Escherichia-

Shigella, etc. increased. 2,770 metabolites were detected in stool samples 

and 1,245 metabolites were detected in serum samples. The proportion of 

differential lipid metabolites in serum (49%) was higher than that in feces (21%). 

There were 22 differential metabolites shared in feces and serum. And the 

association analysis indicated that LPC 18:0 was positively correlated with 

Christensenellaceae_R-7_group, Oscillospiraceae_UCG-002; neohesperidin 

was also positively correlated with Peptoniphilus, Phycicoccus, and 

Stomatobaculum.

Conclusion: Microbial sequencing data suggested decreased species richness 

and diversity and altered β-diversity in feces. Metabolomic analysis identified 
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overall changes in fecal and serum metabolites dominated by lipid molecules. 

And the association analysis with gut microbes provided potentially pivotal 

gut microbiota-metabolite combinations in MAFLD patients, which might 

provide new clues for further research on the disease mechanism and the 

development of new diagnostic markers and treatments.

KEYWORDS

metabolic associated fatty liver disease, intestinal microflora, metabolomics, 
non-alcoholic fatty liver disease, lipid metabolites

Introduction

Metabolic associated fatty liver disease (MAFLD), a new 
definition of fatty liver officially proposed by an international 
expert group in 2020 after the non-alcoholic fatty liver disease 
(NAFLD; Eslam et al., 2020a), affects at least one-quarter of the 
adult population worldwide (Powell et  al., 2021). MAFLD is 
closely associated with metabolic disease and its complications, 
and it has rapidly become one of the leading causes of 
hepatocellular carcinoma and cirrhosis in Western countries 
(Younossi et al., 2019). The main complication causing death in 
patients with MAFLD is CVD. However, liver-related 
complications are more common in patients with advanced 
fibrosis or cirrhosis and account for the majority of deaths (Lin 
et  al., 2021). The currently widely accepted treatment 
recommendations for MAFLD are lifestyle changes aimed at 
weight loss, and there are no drugs approved for the therapy of 
MAFLD at this stage (Eslam et al., 2020b; Fouad et al., 2022). 
Therefore, it is crucial to continue to explore the mechanisms 
associated with MAFLD and develop new treatments.

In the process of hepatic steatosis and its progression to liver 
inflammation and liver fibrosis, MAFLD involves the interaction 
of multiple metabolic, environmental, genetic, and microbial 
factors (Friedman et al., 2018; Lin et al., 2020). Altered gut-liver 
axis, increased susceptibility to hepatic triglyceride accumulation, 
altered lipid metabolism, dyslipidemia, and insulin resistance are 
key components of the pathophysiology of MAFLD. Notably, 
multiple studies have shown that the gut-liver axis is closely 
related to metabolic syndrome, obesity, and type 2 diabetes (Leung 
et al., 2016; Mardinoglu et al., 2019; Yuan et al., 2019). A high-fat, 
high-sugar diet and a sedentary lifestyle promote adipogenesis 
and subclinical inflammation in the intestines, adipose tissue, and 
liver. Furthermore, this metabolic inflammation in adipose tissue 
and intestine can promote hepatic adipogenesis and aggravate 
inflammation through cytokines, fatty acids, dysbiosis of gut flora, 
and gut barrier disruption (Friedman et al., 2018). The intestinal 
microbiota is considered to be a new metabolic organ involved in 
the regulation of host metabolism. The association between 
microbiota and the pathogenesis of MAFLD has placed those 
small organisms as a critical focus in MAFLD research. However, 
the relationship between the gut microbiome and metabolism in 
MAFLD patients has not been established. Therefore, a 

comprehensive analysis of the gut microbiome and metabolome 
may help us uncover the complexity of MAFLD.

Here, we  performed 16S gut microbiome sequencing and 
untargeted metabolomics studies in MAFLD patients and healthy 
volunteers. We revealed the disruption of gut microbiota homeostasis 
and the changes in fecal and serum metabolism in patients with 
MAFLD. In addition, we constructed a map showing the correlation 
of gut microbiota with fecal and blood metabolism, revealing 
possible key gut microbe-metabolite combinations, and laying a 
foundation for further study of the disease mechanism of MAFLD.

Materials and methods

Subject enrollment

Thirty-two NAFLD patients and 30 healthy volunteers were 
recruited from July 2019 to February 2020 at the West China 
Hospital of Sichuan University (Sichuan Province, China). 
NAFLD patients were newly diagnosed outpatients and were 
diagnosed according to the clinical diagnostic criteria 
recommended by the Chinese Association for the Study of Liver 
Diseases and the American Association for the Study of Liver 
Diseases (Fan et al., 2011; Chalasani et al., 2018). The detailed 
inclusion and exclusion criteria of the case and control groups 
can be  found in the Supplementary material. Patients’ basic 
clinical characteristics and relevant laboratory test results were 
recorded, including age, sex, height, weight, body mass index 
(BMI), and routine biochemical test results (TBIL, DBIL, IBIL, 
ALT, AST, TP, ALB, GLB, fasting glucose, UREA, CREA, eGFR, 
URIC, TG, CHOL, HDL-C, LDL-C, ALP, and GGT), thyroid 
function test results (TSH, FT3, and FT4), etc. This study was 
approved by the Institutional Review Board of West China 
Hospital, Sichuan University, exempted from informed consent, 
and conducted following the Declaration of Helsinki.

Sample processing

Fecal and serum samples from each volunteer were collected 
on the same day. Volunteers self-collected samples after defecation 
in the hospital and immediately transferred the samples to a 
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laboratory freezer at −80°C for cryopreservation. Blood samples 
were collected from fasting venous blood, placed at room 
temperature to stratify, and centrifuged at 3,000 rpm for 10 min. 
Serum samples were collected and frozen in a −80 freezer.

DNA extraction from stool samples was performed using the 
sodium dodecyl sulfate (SDS) method. Before amplification, check 
the purity and concentration of DNA by electrophoresis, and 
dilute the sample DNA with sterile water to obtain the 
amplification template (target concentration was 1 ng/μl). The 16S 
V3-V4 region was selected as the amplified region in this study 
(Abellan-Schneyder et al., 2021). The PCR was completed using 
specific primers with “barcode short sequences” (used to 
distinguish each sample), buffers that provide GC bases (Phusion® 
High-Fidelity PCR Master Mix, New England Biolabs), and high-
efficiency, high-fidelity enzymes. The samples were mixed in the 
same volume according to the PCR product concentration. 
Purification was carried out using 2% agarose gel electrophoresis, 
and finally, the target band was recovered with a gel recovery kit 
(Qiagen). The PCR-free library was constructed using the TruSeq® 
DNA PCR-Free Sample Preparation Kit based on the Illumina 
Nova sequencing platform, followed by paired-end sequencing 
(Caporaso et  al., 2012). And Qubit and Q-PCR quantitative 
detection were used to judge whether the library was qualified or 
not before running on the computer (NovaS eq6000).

For metabolomics sample processing, firstly 100 mg of liquid 
nitrogen-ground fecal samples were placed in an EP tube, and 
500 μl of 80% methanol in water was added. 100 μl of serum 
sample was placed in an EP tube, and 400 μl of 80% methanol in 
water was added. Vortex and shake, stand in an ice bath for 5 min, 
centrifuge at 15,000 rpm and 4°C for 10 min, take a certain 
amount of supernatant and add mass spectrometry-grade water 
to dilute to 53% methanol, and place it in a centrifuge tube at 
15,000 g and centrifuge at 4°C 10 min. The supernatant was 
collected and analyzed by liquid chromatography-mass 
spectrometry technology (LC–MS; Alseekh et  al., 2021). In 
addition, an equal volume of samples was taken from each 
experimental sample and mixed well as a quality control sample 
for equilibrating the chromatography-mass spectrometry system 
and monitoring the instrument status, and evaluating the system 
stability throughout the experimental process. At the same time, 
a blank sample was set, which was a 53% methanol aqueous 
solution containing 0.1% formic acid. The pretreatment process 
was the same as that of the experimental sample and was mainly 
used to remove background ions.

Statistical analysis

Statistical analysis of clinical data was performed using the 
SPSS software package version 25.0 (SPSS Inc., Chicago, IL, 
United States). The continuous variables were tested for normality 
first. Variables with homogeneity of normal variance were 
expressed as mean ± SD, and a t-test was used for comparison 
between groups; variables that were normal but with unequal 

variance were expressed as mean ± SD, and the Wilcoxon 
rank-sum test was used for comparison between groups; 
non-normal variables were expressed as medians (upper and 
lower quartiles), and the Wilcoxon rank-sum test was used for 
comparison between groups. Categorical variables were expressed 
as frequency (percentage), and the chi-square test was used for 
comparison between groups. Two-tailed value of p < 0.05 was 
considered statistically significant.

The analysis of the results of 16S rDNA sequencing was 
mainly done using R software (V. 2.15.3). Using Uparse v7.0.1001 
software to cluster effective sequences into operational taxonomic 
units (OTUs) with 97% consistency, and then performed species 
annotation analysis according to the SILVA132 SSUrRNA 
database. The data with the least amount of data in the sample 
were used as the standard to normalize the data to obtain the 
relative abundance value of the species. Using Qiime software 
(V. 1.9.1) to calculate the alpha diversity index (including 
Observed species, Good’s coverage, Chao1, ACE, Shannon, and 
Simpson index) and beta diversity index (Unifrac distance and 
Bray-Curtis distance). T-test and Wilcox test were used for inter-
group difference analysis of diversity index. Using R software for 
principal component analysis (PCA) and principal coordinates 
analysis (PCoA). Finally, R software was used for a routine t-test 
to obtain taxons with significant differences between groups 
(value of p < 0.05); Furtherly, using LEfSe software, taxons with 
significant differences between the two groups [linear discriminant 
analysis (LDA) index > 4] were screened.

Data analysis of non-targeted metabolic results used CD 3.1 
software, combined with the mzCloud, mzVault, and MassList 
database for identification and processing to obtain metabolite 
qualitative and quantitative results. The final identification results 
were selected from the compounds with a coefficient of variation 
value of less than 30% in the quality control samples. Compounds 
were functionally and taxonomically annotated with the KEGG, 
Human Metabolome Database (HMDB), and LIPID MAPS 
databases. The partial least squares discriminant analysis model 
(PLS-DA) was obtained by multivariate statistical analysis. In 
order to evaluate the reliability of the model, the PLS-DA model 
of each group was first established, and the model evaluation 
parameters (R2, Q2) were obtained through 7-fold cross-
validation. The closer the values of R2 and Q2 were to 1, the more 
stable and reliable the model was. Then, the grouping marks of 
each sample were randomly scrambled, and further modeling and 
prediction were performed to determine whether the model was 
“overfitting.” Each modeling corresponded to a set of R2 and Q2 
values, and their regression lines were drawn based on the Q2 and 
R2 values after 200 scrambles and modeling. When R2 was greater 
than Q2 and the Q2 regression line and the Y-axis intercept were 
less than 0, it could indicate that the model was not “overfitting.” 
By calculating the variable importance in projection (VIP) value 
and fold change (FC) of the first principal component, and 
combining it with a T-test to find differentially expressed 
metabolites, setting the screening threshold to VIP > 1.0, FC > 1.5, 
or FC<0.667, and value of p < 0.05. The correlation analysis of 
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differential metabolites and differential flora was performed using 
Pearson correlation analysis. Based on the RandomForest analysis, 
the genus-level taxons and metabolome data were separately 
divided into a test set and validation set (7:3), and then the test 
set  was used to build a random forest model. Important 
taxons  or  metabolites were screened out according to 
MeanDecreaseAccuracy and MeanDecreaseGin, and then each 
model was cross-validated (10-fold) and ROC curves were drawn.

Results

Characterization of participants

A total of 30 healthy controls (control group, CG) and 32 
MAFLD volunteers (MAFLD group) were included in this study. 
The two groups had comparable ages [MAFLD group, 38.50 
(33.00–51.75) years; CG, 35.33 (32.50–51.25) years], and the 
difference was not statistically significant. The basic screen of the 
participants showed that the BMI of the MAFLD group 
(26.21 ± 3.80) was significantly higher than that of the CG 
(23.83 ± 3.28), and the difference was statistically significant 
(p < 0.05). Among laboratory indicators, serum AST, ALT, ALP, 
GGT, fast glucose, TG, and URIC levels in the MAFLD group were 
higher than those in the CG, and HDL-C was lower than that in 
the CG, and the differences were statistically significant. In 
addition, the serum levels of TB, TP, ALB, and CREA in the 
MAFLD group were higher than those in the CG, and the 
difference was not statistically significant. We  calculated the 
Fibrosis-4 index (FIB-4) of all people, and the results showed that 
the results of the MAFLD group [1.25 (0.70–1.92)] were higher 
than those of the control group [0.65 (0.33–0.85)], but the 
difference was not statistically significant. In the MAFLD group, 
FIB-4 < 1.3 and FIB-4 between 1.3 and 2.67 each accounted for 
50%. The results of the serum thyroid function test showed that 
compared with the CG, the MAFLD patients had increased TSH 
and decreased FT4 and FT3, but the differences were not 
statistically significant (Supplementary Table S1; 
Supplementary Figure S1).

Altered gut microbiota diversity in 
MAFLD patients

An average of 104,138 tags was detected per sample by splicing 
reads. After quality control, an average of 97,013 pieces of effective 
data was obtained, and the effective rate of quality control was 
61.89%. 1,882 OTUs were obtained by clustering the sequences 
with 97% identity. According to the rarefaction curve (Figure 1A) 
and species accumulation boxplot (Supplementary Figure S2A), 
the current amount of sequencing data and the sample size were 
reasonable. In addition, the rank abundance curve 
(Supplementary Figure S2B) and the analysis results of alpha 
diversity indices (Shannon index, Simpson index, etc.) showed 

that the species richness and diversity of MAFLD patients were 
reduced compared with the CG (Figures 1C,D). The difference in 
beta diversity was observed by PCoA analysis of unifrac distance 
(Figures 1E,F). In addition, the results of MRPP analysis (p < 0.001) 
and ANOSIM analysis (p < 0.001) indicated significant differences 
in community structure between the MAFLD group and the CG.

The number of OTUs that could be  annotated into the 
database was 1,866 (99.15%). The proportions of annotations at 
the kingdom level, phylum level, class level, order level, family 
level, genus level, and species level were 99.15, 91.29, 90.12, 85.44, 
79.17, 54.89, and 18.07%, respectively. At the phylum level, 
we  found that the dominant taxa included Bacillota (previous 
name: Firmicutes), Pseudomonadota (previous name: 
Proteobacteria), Actinomycetota (previous name: Actinobacteria), 
and Bacteroidota (previous name: Bacteroidetes; 
Supplementary Figure S3A); The dominant genera were 
Escherichia-Shigella, Bifidobacterium, and Prevotella et  al. 
(Figure  1B); the dominant species were Escherichia_coli, 
Raoultella_ornithinolytica, and Bacteroides_vulgatus et  al. 
(Supplementary Figure S3B). Through LEfSe analysis, there were 
39 taxa (including six grading levels) with LDA value > 4 between 
the two groups (Figure  2A), and their evolutionary branch 
diagram was shown in Figure 2B. At the phylum level, the relative 
abundance of Bacteroidota, Pseudomonadota, and Fusobacteriota 
increased and Bacillota decreased in MAFLD patients. At the 
genus level, the relative abundances of Prevotella, Bacteroides, 
Escherichia-Shigella, Megamonas, Fusobacterium, and 
Lachnoclostridium increased, while Clostridium_sensu_stricto_1, 
Agathobacter, Romboutsia, Faecalibacterium, Blautia decreased. 
Species with increasing relative abundance were Escherichia_coli, 
Bacteroides_vulgatus, and species with decreasing relative 
abundance were Romboutsia_ilealis.

Serum and fecal metabolite profiling in 
MAFLD patients

A total of 2,770 metabolites were identified in fecal samples, 
and a total of 1,245 metabolites were identified in serum samples. 
The classification results of 997 metabolites in fecal samples and 
400  in serum samples were obtained through the HMDB 
(Supplementary Figures S4A,B, S5A,B), of which Lipids and lipid-
like molecules were the most classified. Then, we obtained the 
classification and annotation results of 305 lipid metabolites in 
fecal samples and 212 in serum samples through the LIPID MAPS 
database (Supplementary Figures S6A,B, S7A,B), among which 
Fatty Acids metabolites accounted for the most.

For differential metabolites screening, we  performed 
PLS-DA on the resulting data (Figures  3A,B; 
Supplementary Figures S8A,B), and the ranking validation 
results show that the PLS-DA model was not “overfit” 
(Supplementary Figures S9A–D). Then, we  screened out 
differential metabolites with VIP > 1.0, FC > 1.5 or FC < 0.667, 
and value of p < 0.05 (Table 1). 34% of differential metabolites in 
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fecal and 40% in serum were classified in HBDM and/or LIPID 
MAPS database, which mainly included: amino acids, peptides, 
and analogs; Lipids and lipid-related molecules; Nucleotides and 
analogs; carbohydrates and carbohydrate conjugates; Benzene 
and substituted derivatives, etc. Notably, lipids accounted for a 
large fraction of the significantly variable metabolites in serum 
and feces, especially in serum, which suggested a disruption of 
lipid homeostasis in MAFLD patients (Figure  3C). KEGG 

pathway enrichment results showed that fecal differential 
metabolites were more enriched in the biosynthesis of amino 
acids, purine metabolism, pantothenate and CoA biosynthesis, 
pyrimidine metabolism, nicotinate, and nicotinamide 
metabolism pathway (Figures  3D,E); serum differential 
metabolites were more enriched in purine metabolism, 
pyrimidine metabolism, bile secretion, and pentose phosphate 
pathway (Supplementary Figures S8C,D). Further analysis found 

A B

C D

E F

FIGURE 1

Altered gut microbiota diversity in metabolic associated fatty liver disease (MAFLD) patients. (A) Rarefaction curve based on OUT count in control 
groups (CGs) and MAFLD patients. (B) The relative abundance of dominant taxa at the genus level in each group. (C,D) The analysis results of alpha 
diversity indices (Shannon index and Simpson index), both p < 0.05. (E,F) Principal coordinates analysis (PCoA) analysis based on weighted unifrac 
distance and unweighted unifrac distance.
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that there were 22 common differential metabolites in feces and 
serum (Supplementary Table S2), which mainly included 
purines and purine derivatives: hypoxanthine; amino acids, 
peptides, and analogues: methionine, gamma-glu-leu, and 
tyrosylalanine; fatty esters: propionylcarnitine; 
glycerophosphocholines: lysophosphatidylcholine (LPC 16:0, 
LPC 18:0); and flavanones: hesperetin and neohesperidin. In 
particular, during the differential metabolite analysis, we found 
some bile acids and derivatives: lithocholic acid and taurocholic 
acid decreased in the serum of MAFLD patients; glycocholic 
acid increased in the serum of MAFLD patients; and 
taurodeoxycholic acid, 7-Ketolithocholic acid, allolithocholic 
acid, and dehydrocholic acid were decreased in the feces of 
MAFLD patients.

Correlation between differential bacteria 
and differential metabolites

Pearson correlation analysis was performed between the 
top 10 differential bacterial genera in relative abundance and the 
top  20 differential metabolites in relative abundance, and the 
differential species-metabolite combinations satisfying |rho| ≥ 0.5 
and p ≤ 0.05 were screened out (Table 2). Then, we performed a 
correlation analysis between the common differential metabolites 
in serum and feces (number = 22) and all differential species in 
feces (number = 74), and the differential species-metabolite 
combinations satisfying |rho| ≥ 0.5 and p ≤ 0.05 were screened out 
(Supplementary Table S3). In addition, we  correlated the 
differential bile acids and derivatives with all differential bacterial 
genera (Supplementary Table S4). Among them, 
Erysipelotrichaceae_UCG-003 had a weak positive correlation with 
serum taurocholic acid (rho = 0.563, p < 0.05); allolithocholic acid 
in feces was associated with Prevotellaceae_NK3B31_group 
(rho = 0.723, p  < 0.05) and unidentified_Ruminococcaceae 
(rho = 0.797, p < 0.05). Finally, we also correlated all differential 
lipids and lipid-related molecules (number = 44) in serum with 
fecal differential bacteria (Supplementary Table S5). Among them, 
the metabolite-genus combinations with strong correlation were: 
L-Leucyl-L-alanine Hydrate-Lachnoanaerobaculum (rho = 0.889, 
p  < 0.05), 6-Keto-prostaglandin f1alpha-Fusicatenibacter 
(rho = 0.743, p  < 0.05), and 6-Keto-prostaglandin f1alpha-
Anaerostipes (rho = 0.730, p < 0.05). The Random Forest analysis 
results of the genus-level taxons and metabolome data were shown 
in Supplementary Figures S10–S12.

Discussion

Evidence accumulated from many preclinical and clinical 
studies had indicated that the communication between the gut 
microbiota, its metabolites, and the liver plays a crucial role in the 
pathogenesis of MAFLD. Here, we  recruited 32 patients with 
MAFLD and investigated overall changes in the gut microbiome 
in feces and the metabolome in serum and feces. In addition, 
we  identified alterations in several gut microbiota-produced 
metabolites that may influence the pathogenesis of MAFLD.

The human gut microbiota are mainly composed of four 
phyla—Bacteroidota, Bacillota, Pseudomonadota, and 
Actinomycetes, of which Bacteroidota and Bacillota dominate the 
gut (Eckburg et al., 2005; Mokhtari et al., 2017). In the present 
study, we observed decreased species richness and diversity and 
altered β-diversity in the feces of MAFLD patients, confirming the 
development of dysbiosis. Specifically, the relative abundance of 
Bacteroidota and Pseudomonadota increased and Bacillota 
decreased in MAFLD patients, which is consistent with previous 
reports (Boursier et  al., 2016; Wang et  al., 2016). Under 
Bacteroidota, differential taxa analysis showed that the relative 
abundance of Prevotella and Bacteroides increased in MAFLD 
patients, and the relative abundance of Bacteroides_vulgatus, 

A

B

FIGURE 2

Linear discriminant analysis (LDA) effect size analysis. 
(A) Histogram of the LDA scores for different abundant taxa. 
Green, enriched in MAFLD patients; red, enriched in CG. 
(B) Cladogram of LEfSe linear discriminant analysis. Red and 
green circles represent the differences of the most abundant 
microbiome class. The diameter of each circle is proportional to 
the relative abundance of the taxon.
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which belonged to Bacteroides at the species level, was also 
increased. Among the increased Pseudomonadota, the relative 
abundances of Escherichia coli-Shigella and Escherichia_coli 
increased. Among the reduced Bacillota, the taxa with decreased 
relative abundance at the genus level include: 

Clostridium_sensu_stricto_1, Agathobacter, Faecalibacterium, 
Blautia, and Romboutsia, and the increased ones include: 
Megamonas and Lachnoclostridium. The changes in some genera 
were consistent with the statistical results of a recent meta-analysis 
that included 1,265 NAFLD patients (from eight countries; 

A

C

D E

B

FIGURE 3

(A,B) are the Scatter plot of partial least squares discriminant analysis model (PLS-DA) scores in positive and negative ion mode for fecal 
metabolites, respectively. The abscissa is the score of the sample on the first principal component, and the ordinate is the score of the sample on 
the second principal component. R2Y represents the interpretation rate of the model, Q2Y is used to evaluate the predictive ability of the PLS-DA 
model, and when R2Y is greater than Q2Y, the model is well established. (C) The proportion of fecal/serum differential metabolite classification. 
(D,E) are bubble plots of fecal differential metabolite pathway enrichment in positive and negative ion modes, respectively. The abscissa in the 
figure is the number of differential metabolites in the corresponding metabolic pathway/the total number of metabolites identified in the pathway. 
The larger the value, the higher the enrichment of differential metabolites in the pathway. The color of the dots represents the value of p of the 
hypergeometric test, and the smaller the value, the greater the reliability of the test. The size of the dots represents the number of differential 
metabolites in the corresponding pathway.
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Li et  al., 2021b). In addition, the relative abundance of 
Romboutsia_ilealis (belonging to Romboutsia) also decreased at 
the species level. In particular, among the differential phyla, 
we also observed an increase of Fusobacteriota in MAFLD patients 
and an increase of Fusobacterium below it.

Previous studies have shown that gut dysbiosis usually led to 
elevated levels of SCFAs in the gut, with acetate and propionate 
mainly produced by Bacteroidota and butyrate by Bacillota 
(Morrison and Preston, 2016; Feng et al., 2018). Elevated SCFAs 
promoted the transport of monosaccharides to the liver, while 
increased hepatic acetate (substrate for fatty acid synthesis) led to 

the accumulation of triglycerides, and elevated hepatic propionate 
promoted gluconeogenesis, eventually leading to weight gain (den 
Besten et  al., 2013; Alves-Bezerra and Cohen, 2017). Further, 
supplementation with SCFAs could also alter the composition of 
the gut microbiome and prevent the occurrence and progression 
of NAFLD through multiple mechanisms (Zhou et al., 2017; Zhai 
et al., 2019; Deng et al., 2020). On the other hand, our study found 
that the decrease of serum taurocholic acid content was related to 
Erysipelotrichaceae_UCG-003, and the decrease of fecal 
taurodeoxycholic acid, allolithocholic acid, and dehydrocholic 
acid content was related to Subdoligranulum, Prevotellaceae_
NK3B31_group, and Parvibacter, respectively. The gut microbiota 
has a direct impact on bile acid composition and concentration 
and contributes to NAFLD progression (Ridlon et al., 2014). It was 
found that NAFLD patients with advanced fibrosis had elevated 
serum glycocholic acid and fecal deoxycholic acid concentrations, 
which were associated with increased abundances of Bacteroidota 
and Lachnospiraceae, compared with non-NAFLD controls 
(Adams et al., 2020). Increased secondary bile acid production in 
the NAFLD gut was associated with Escherichia and Bilophila (Jiao 
et  al., 2018). Bacteroides, Bifidobacterium, Clostridium, 
Lactobacillus, and Listeria can convert bound bile acids to free bile 
acids via bile salt hydrolases, which are subsequently converted to 
secondary bile acids by Clostridium and Eubacterium under 
Bacillota via 7αdihydroxylation (Gérard, 2013). Furthermore, 
Eggerthella and Ruminococcus were also directly involved in bile 
acid metabolism (Jia et al., 2018). Thus, our findings suggested 
that the increase of underlying pathological Fusobacteriota and 
Pseudomonadota in MAFLD patients may contribute to the 
occurrence and development of the disease.

Gut microbiota-related metabolites, such as choline and 
tryptophan metabolites, SCFAs, bile acids, endogenous ethanol, 
and lipopolysaccharides, were involved in the pathogenesis of 
MAFLD (Vallianou et al., 2021). In this study, we performed an 
overall analysis of fecal and serum metabolites in MAFLD 
patients, and we identified more metabolites in feces. Although 
lipid molecules were the most abundant in both, the proportion 
of differential lipid metabolites in serum (49%) was higher than 
that in feces (21%), which further confirmed that lipid 
homeostasis in MAFLD patients was disrupted. At the same time, 
we also found some other metabolites that may be associated with 
the pathogenesis of MAFLD. We  found that the following 
metabolites were simultaneously decreased in feces and serum of 
MAFLD patients: hypoxanthine, propionylcarnitine, 
tyrosylalanine, hesperetin, methionine, gamma-Glu-Leu, 
propylparaben, and neohesperidin. However, LPC 16:0, which 
belongs to glycerophosphocholine, increased in fecal and serum; 
LPC 18:0 decreased in feces and increased in serum. Studies have 
shown that the increased concentrations of hypoxanthine and 
uric acid in hepatocytes contribute to the accumulation of 
intracellular lipids, which in turn causes the occurrence of 
oxidative stress associated with the establishment of fatty liver-
related diseases, laying the foundation for the development of 
fibrosis (Stirpe et al., 2002; Taylor et al., 2020). Accumulation of 

TABLE 1 Metabolite differential screening results.

Sample 
type

Number of 
Total 
Ident.

Number of 
Total Sig.

Number of 
Sig. Up

Number of 
Sig. down

faeces_pos. 1,888 362 47 315

faeces_neg. 882 138 34 104

serum_pos. 731 143 36 117

serum_neg. 414 82 13 69

(1) pos.: positive ion mode; neg.: negative ion mode; (2) Num of Total Ident: Total 
identification results of metabolites; (3) Num of Total Sig: The total number of 
metabolites with significant differences; (4) Num of Sig Up: The total number of 
metabolites significantly upregulated; and (5) Num of Sig down: The total number of 
metabolites significantly downregulated.

TABLE 2 Correlation analysis results of fecal differential bacteria and 
differential metabolites (feces and serum).

Differential 
bacteria

Differential 
metabolites

rho p

Faeces Cutibacterium Adenosine 0.584 <0.05

Intestinibacter YMK 0.514 <0.05

Intestinibacter tert-Butyl N-[1-

(aminocarbonyl)- 

3-methylbutyl]

carbamate

0.562 <0.05

Intestinibacter L-Alanyl-L-proline 0.521 <0.05

Intestinibacter 3’-Hydroxystanozolol 0.601 <0.05

Intestinibacter FQH 0.521 <0.05

Monoglobus tert-Butyl N-[1-

(aminocarbonyl)- 

3-methylbutyl]

carbamate

0.538 <0.05

Intestinibacter 1,5-Anhydro-D-glucitol 0.525 <0.05

Intestinibacter N-(1-benzothiophen-3-

yl)- N′-(1-benzyl-4-

piperidinyl)urea

0.560 <0.05

Lachnospiraceae_

UCG-004

3’-Dephospho-CoA 0.525 <0.05

Serum Neisseria Cnidioside A 0.540 <0.05

Lachnospiraceae_

FCS020_group

PA (16:0/18:2) 0.503 <0.05

Staphylococcus LPA 18:2 0.507 <0.05
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hypoxanthine in the liver established a link between 
hyperuricemia and NAFLD (Toledo-Ibelles et  al., 2021). 
Hesperetin is a citrus flavonoid found mainly in citrus fruits 
(oranges, grapefruits, and lemons) with various pharmacological 
properties, including anticancer, anti-Alzheimer’s disease, and 
antidiabetic effects (Rekha et al., 2019). Hesperetin can alleviate 
hepatic steatosis, oxidative stress, inflammatory cell infiltration, 
and fibrosis in a high-fat diet (HFD)-induced rat model of 
NAFLD (Li et al., 2021a). Another flavonoid, neohesperidin, can 
reduce body weight, low-grade inflammation, and insulin 
resistance by altering the composition of the gut microbiota in 
mice fed a high-fat diet (Lu et al., 2020). Another study found that 
neohesperidin enhanced PGC-1α-mediated mitochondrial 
biosynthesis to alleviate hepatic steatosis in high-fat diet-fed mice 
(Wang et  al., 2020). It was worth noting that our association 
analysis results suggested that LPC 18:0 was positively correlated 
with feces Christensenellaceae_R-7_group, Oscillospiraceae_
UCG-002; Propylparaben was correlated with Erysipelotrichaceae_
UCG-003; neohesperidin was also positively correlated with 
Peptoniphilus, Phycicoccus, and Stomatobaculum 
(Supplementary Table S2). However, the discovery and 
confirmation of the specific role relationship and related 
mechanisms require further follow-up research. For multi-omics 
data obtained through designed experiments, the ANOVA 
simultaneous component analysis (ASCA) and the group-wise 
ANOVA-simultaneous component analysis (GASCA) were 
considered to have certain advantages for analyzing the variations 
ascribable to the main experimental factors and their interactions 
(Saccenti et al., 2018; Raimondi et al., 2021).

Where we fall short is that due to the inherent worldwide 
variability in the composition of the gut microbiota (inter-
individual and inter-population) it is unclear if our data apply 
to other areas of the world. Furthermore, previous studies have 
shown that diet was essential for gut microbial composition 
and function, and diet, gut microbiome, and metabolome were 
all interconnected (David et  al., 2014; Tang et  al., 2019). 
Although our study excluded patients with “abnormal” dietary 
habits (e.g., vegetarian food) within the past 12 months, we did 
not strictly require all participants to adjust their diets but 
retained their daily dietary habits. Therefore, while our study 
suggests differences in microbiota and metabolome due to the 
disease, the study cannot positively tell whether the findings 
were actually due to disease or diet. Further studies based on 
the patient’s dietary structure are needed, which may help 
promote the development of individualized treatments. Finally, 
there was no significant difference in the FIB-4 index between 
the MAFLD group [1.25 (0.70–1.92)] and the control group 
[0.65 (0.33–0.85)], which may be due to the limitation of the 
sample size. Second, FIB-4 may not be  sensitive enough to 
reflect differences between MAFLD patients and healthy 
controls when MAFLD patients are in an early stage of the 
disease. This suggests that we may be able to discover patients 
with MAFLD in more sensitive ways, such as gut microbiota 
and metabolites.

In conclusion, the human metabolome consists of interactions 
of host and microbiota-produced metabolites, and current 
functional metabolomics studies have focused on determining the 
role of individual metabolites or individual microbial taxa in 
MAFLD progression. Characterizing the complex interplay 
between the gut microbiota, its metabolites, and NAFLD 
progression remains a challenge. Our data provided a profile of 
alterations in gut microbes and metabolites in MAFLD patient 
systems, which may contribute to further studies of MAFLD 
disease mechanisms and the development of new diagnostic 
markers and therapeutics.
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