

OPEN 🗟 ACCESS

Crystal structure of [3-amino-2-(phenyldiazenyl)pyridine]chlorido(η^6 -pcymene)ruthenium(II) chloride

Kanidtha Hansongnern,^a* Supojjanee Sansook,^a Thassani Romin,^a Arunpatcha Nimthong Roldan^b and Chaveng Pakawatchai^a

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and ^bDepartment of Chemistry, Youngstown State University, 1 University Plaza, 44555, Youngstown, OH, USA. *Correspondence e-mail: kanidtha.h@gmail.com

Received 9 September 2015; accepted 18 September 2015

Edited by O. Blacque, University of Zürich, Switzerland

The title compound, $[RuCl(C_{10}H_{14})(C_{11}H_{10}N_4)]Cl$ is an Ru^{II} complex in which an η^6 -*p*-cymene ligand, two N atoms of 3-amino-2-(phenylazo)pyridine and one Cl ion form a piano-stool coordination environment around the metal ion. In the crystal structure, N-H···Cl hydrogen bonds play an important role in the formation of the supramolecular zigzag chain along the *a*-axis direction. Disorder is observed for the isopropyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

Keywords: crystal structure; 3-amino-2-(phenylazo)pyridine; ruthenium complex; N—H···Cl hydrogen bonds.

CCDC reference: 1425731

1. Related literature

For anticancer activity of organometallic ruthenium complexes, see: Almodares *et al.* (2014); Stepanenko *et al.* (2011). For the use of a similar azopyridine ligand to stabilize ruthenium complexes, see: Velders *et al.* (2000). For related η^6 -*p*-cymene ruthenium complexes, see: Singh *et al.* (2002), Kumar *et al.* (2008). For the crystal structure of an η^6 -*p*-cymene ruthenium complex with an azopyridine ligand, see: Dougan *et al.* (2006).

V = 4262.8 (7) Å³

Mo $K\alpha$ radiation

 $0.44 \times 0.10 \times 0.07 \ \mathrm{mm}$

40186 measured reflections

5127 independent reflections

4242 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.00 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int}=0.069$

15 restraints

 $\Delta \rho_{\text{max}} = 0.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.61 \text{ e } \text{\AA}^{-3}$

Z = 8

2. Experimental

2.1. Crystal data [RuCl($C_{10}H_{14}$)($C_{11}H_{10}N_4$)]Cl $M_r = 504.41$ Orthorhombic, *Pbca* a = 8.9642 (8) Å b = 17.6283 (16) Å c = 26.976 (3) Å

2.2. Data collection

Bruker SMART APEX CCD Diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{min} = 0.693, T_{max} = 1.000$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.136$ S = 1.125127 reflections 265 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H4 A ···Cl2	0.86	2.34	3.200 (5)	176
N4-H4 B ···Cl2 ⁱ	0.86	2.37	3.152 (5)	151

Symmetry code: (i) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2015) and *SHELXLE* (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Acknowledgements

Financial support from the Center of Excellence for Innovation of Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, Department of Chemistry, and Graduate School, Prince of Songkla University are gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2235).

References

- Almodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). *Inorg. Chem.* 53, 727–736. Bruker (1998). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART: Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dougan, S. J., Melchart, M., Habtemariam, A., Parsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882–10894.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281– 1284.
- Kumar, K. N., Venkatachalam, G., Ramesh, R. & Liu, Y. (2008). *Polyhedron*, **27**, 157–166.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, A., Singh, N. & Pandey, D. S. (2002). J. Organomet. Chem. 642, 48–57. Stepanenko, I. N., Novak, M. S., Mühlgassner, M., Roller, A., Hejl, M., Arion,
- V. B., Jakupec, M. A. & Keppler, B. K. (2011). *Inorg. Chem.* **50**, 11715–11728.
- Velders, A. H., Kooijman, H., Spek, A. L., Haasnoot, J. G., de Vos, D. & Reedijk, J. (2000). *Inorg. Chem.* 39, 2966–2967.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, m185-m186 [doi:10.1107/S2056989015017466]

Crystal structure of [3-amino-2-(phenyldiazenyl)pyridine]chlorido(η^6 -p-cymene)ruthenium(II) chloride

Kanidtha Hansongnern, Supojjanee Sansook, Thassani Romin, Arunpatcha Nimthong Roldan and Chaveng Pakawatchai

S0.1. Synthesis and crystallization

3-amino-2-(phenylazo)pyridine (*3aazpy*) was prepared by condensation of 2,3-diamino-pyridine (14 mg, 2 mmol) with nitrosobenzene (217 mg, 2.1 mmol) in a mixture of 30 M NaOH (3 mL) and 35 mL of benzene solution. The reaction mixture was stirred and heated under reflux for 14 h. The product was extracted many times with benzene to obtain the brown solution. Then the volume was reduced to 3 mL. The residue was purified by column chromatography. The red-orange band was collected and evaporated to dryness (yield : 37%).

The title compound was obtained by the following procedure: $[(\eta^6-p\text{-}cym)\text{RuCl}_2]_2$ (0.05 mmol) was added to a THF solution of *3aazpy* (0.1 mmol); the solution color change from red to purple. The solution was stirred at ambient temperature for 2 h. The precipitate was collected by filtration, washed with a small amount of THF. Monocrystals were obtained by diffusion of ether into a dichloromethane solution of the complex (yield: 82%).

S0.2. Refinement

H atoms bonded to C and N atoms were included in calculated positions and were refined with a riding model using distances of 0.93 Å (aryl H), and $U_{iso}(H) = 1.2U_{eq}(C)$; 0.98 Å (CH) and $U_{iso}(H) = 1.5U_{eq}(C)$; 0.96 Å (CH₃) and $U_{iso}(H) = 1.5U_{eq}(C)$; 0.86 Å (NH₂), and $U_{iso}(H) = 1.2U_{eq}(N)$. A disorder is observed for the isopropyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

S1. Results and discussion

Organometallic ruthenium complexes have gained much interest due to promising anticancer activity (Almodares *et al.*, 2014; Stepanenko *et al.*, 2011). These arene complexes consist of a chelating ligand and one chloride ion. In this work, a new ruthenium(II) complex of this type is reported.

The title complex exists as a half sandwich complex with the neutral arene ring bonded to the ruthenium center along with two N atoms from 3-amino-2-(phenylazo)pyridine (*3aazpy*) and one chloride ion (Fig. 1). The *3aazpy* ligand contains the -N=N-C=N linkage which is similar to 2-(phenylazo)pyridine (*azpy*). Azo ligands of this type can stabilize metals in their lower oxidation states (Velders *et al.*, 2000). The ruthenium atom is π -bonded to the *p*-cymene ligand with an average Ru—C bond length of 2.215 (6) Å (range 2.185 (6) - 2.243 (5) Å) similar to those observed in related η^6 -*p*-cymene ruthenium complexes (Singh *et al.*, 2002, Kumar *et al.*, 2008). The *p*-cymene ring is almost planar and the C—C bond lengths within the ring are in the range 1.376 – 1.435 Å. The ruthenium center is also coordinated to N1 (azo moiety, 2.078 (4) Å) and to N3 (pyridine, 2.077 (4) Å) of *3aazpy*. These Ru—N bond lengths are longer than those in $[(\eta^6-p-cymene)Ru(azpy)Cl](PF_6)$ (Dougan *et al.*, 2006). It indicates that *azpy* is a better ligand to stabilize the ruthenium(II) center than *3aazpy*. Meanwhile, the bite angle of 75.6 (2)° of the chelate ligand and the Ru—Cl bond

distance of 2.3938 (15) Å are comparable to those in $[(\eta^6-p-cym)Ru(azpy)Cl](PF_6)$. In the crystal structure, chloride ions are linked with the complex molecule through N4—H4*A*···Cl2ⁱ and N4—H4*B*···Cl2 hydrogen bonds leading to the formation of a 1-D zigzag chain along the *a*-axis (see Table 1 and Fig. 2). A disorder is observed for the isopropyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5).

Figure 1

The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Crystal packing of the title compound showing the N—H…Cl hydrogen bonds along the *a* axis.

[3-Amino-2-(phenyldiazenyl)pyridine]chlorido(η^6 -p-cymene)ruthenium(II) chloride

Crystal data

[RuCl(C ₁₀ H ₁₄)(C ₁₁ H ₁₀ N ₄)]Cl $M_r = 504.41$ Orthorhombic, <i>Pbca</i> a = 8.9642 (8) Å b = 17.6283 (16) Å c = 26.976 (3) Å V = 4262.8 (7) Å ³ Z = 8 F(000) = 2048	$D_x = 1.572 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7302 reflections $\theta = 2.3-27.9^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.44 \times 0.10 \times 0.07 \text{ mm}$
Data collection	
Bruker SMART APEX CCD Diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003) $T_{\min} = 0.693, T_{\max} = 1.000$ 40186 measured reflections	5127 independent reflections 4242 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -23 \rightarrow 23$ $l = -35 \rightarrow 35$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.136$ S = 1.12 5127 reflections 265 parameters 15 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0276P)^2 + 25.095P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.71$ e Å ⁻³ $\Delta\rho_{min} = -1.61$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates an	d isotropic or	equivalent isotropic	e displacement	parameters ($(Å^2)$)
----------------------------------	----------------	----------------------	----------------	--------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.62601 (5)	0.03668 (2)	0.38760 (2)	0.03006 (13)	
Cl1	0.73313 (19)	-0.03312 (8)	0.45488 (5)	0.0473 (4)	
Cl2	0.98928 (17)	-0.30554 (8)	0.21404 (6)	0.0434 (4)	
N1	0.5259 (5)	-0.0663 (2)	0.37034 (16)	0.0298 (9)	
N2	0.5993 (5)	-0.1133 (2)	0.34347 (16)	0.0310 (10)	
N3	0.7791 (5)	-0.0169 (2)	0.34159 (16)	0.0283 (9)	
N4	0.7774 (5)	-0.2032 (3)	0.28221 (19)	0.0450 (13)	
H4A	0.8322	-0.2296	0.2625	0.054*	
H4B	0.6955	-0.2218	0.2935	0.054*	
C1	0.3803 (6)	-0.0944 (3)	0.3838 (2)	0.0352 (12)	

C2	0.3052 (7)	-0.0609(3)	0.4228 (2)	0.0410 (14)	
H2	0.3527	-0.0249	0.4423	0.049*	
C3	0.1594 (7)	-0.0812(4)	0.4325 (3)	0.0511 (17)	
H3	0.1065	-0.0564	0.4574	0.061*	
C4	0.0923 (8)	-0.1376 (4)	0.4057 (3)	0.0571 (19)	
H4	-0.0057	-0.1514	0.4125	0.069*	
C5	0.1712 (8)	-0.1743 (4)	0.3684 (3)	0.0542 (18)	
H5	0.1273	-0.2140	0.3510	0.065*	
C6	0.3139(7)	-0.1520(3)	0.3573 (2)	0.0413 (14)	
H6	0.3658	-0.1757	0.3318	0.050*	
C7	0.7341 (6)	-0.0871(3)	0.32750 (18)	0.0270 (10)	
C8	0.8194 (6)	-0.1338(3)	0.2952(2)	0.0311(11)	
C9	0.9527 (6)	-0.1018(3)	0.2774(2)	0.0389(13)	
H9	1 0131	-0.1291	0.2558	0.047*	
C10	0.9932(7)	-0.0306(3)	0.2921(2)	0.0477(15)	
H10	1 0801	-0.0090	0.2796	0.057*	
C11	0.9061 (6)	0.0096(3)	0.2750 0.3252(2)	0.0396(14)	
UП H11	0.9388	0.0568	0.3261	0.0390 (14)	
C12	0.6938 (7)	0.1496 (3)	0.3301 0.4186(2)	0.048 0.0374(13)	
C12 C13	0.0538(7) 0.5524(8)	0.1490(3) 0.1272(3)	0.4100(2) 0.4388(3)	0.0374(13) 0.0495(17)	
U13	0.5324 (8)	0.1272 (3)	0.4388 (3)	0.0495 (17)	
C14	0.3439	0.1095 (3)	0.4743 0.4089(3)	0.055	
U14 H14	0.4329 (8)	0.1093 (3)	0.4039 (3)	0.0505 (19)	
C15	0.3450	0.0855	0.4240	0.003	
C15	0.4403(8) 0.5835(7)	0.1082(3)	0.3303(3)	0.0349(18)	
U16	0.3833 (7)	0.1301 (3)	0.3303 (2)	0.0447(13) 0.054*	
П10 С17	0.0012	0.1225	0.3008	0.034°	
U17	0.7038(7)	0.1510 (5)	0.3009 (2)	0.0382 (13)	
П1/ С19	0.8028	0.1308	0.3318	0.040°	
	0.3198 (8)	0.0843 (5)	0.3244 (3)	0.081 (3)	
HIAA	0.3575	0.0070	0.2929	0.121*	
HI8B	0.2536	0.1264	0.3195	0.121*	
HI8C	0.2667	0.0436	0.3401	0.121*	0.70 (5)
C19	0.8212 (9)	0.1721 (4)	0.4513 (3)	0.0580 (19)	0.78(5)
H19	0.7999	0.1522	0.4845	0.0/0*	0.78(5)
C20	0.9/35 (12)	0.1408 (13)	0.4358 (7)	0.066 (4)	0.78(5)
H20A	0.9682	0.0865	0.4335	0.099*	0.78 (5)
H20B	1.04/1	0.1547	0.4600	0.099*	0.78(5)
H20C	1.0006	0.1614	0.4041	0.099*	0.78 (5)
C21	0.824 (3)	0.2586 (7)	0.4555 (12)	0.111 (8)	0.78 (5)
H21A	0.9016	0.2735	0.4781	0.167*	0.78 (5)
H21B	0.7298	0.2763	0.4675	0.167*	0.78 (5)
H21C	0.8437	0.2802	0.4234	0.167*	0.78 (5)
C19B	0.8212 (9)	0.1721 (4)	0.4513 (3)	0.0580 (19)	0.22 (5)
H19B	0.8245	0.1339	0.4777	0.070*	0.22 (5)
C20B	0.974 (4)	0.169 (4)	0.426 (2)	0.066 (4)	0.22 (5)
H20D	0.9845	0.1215	0.4094	0.099*	0.22 (5)
H20E	1.0504	0.1738	0.4510	0.099*	0.22 (5)
H20F	0.9819	0.2098	0.4030	0.099*	0.22(5)

supporting information

C21B	0.791 (9)	0.247 (3)	0.477 (3)	0.111 (8)	0.22 (5)
H21D	0.8799	0.2637	0.4939	0.167*	0.22 (5)
H21E	0.7125	0.2405	0.5011	0.167*	0.22 (5)
H21F	0.7618	0.2844	0.4533	0.167*	0.22 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0334 (2)	0.02129 (19)	0.0355 (2)	0.00223 (18)	0.00250 (19)	-0.00160 (17)
Cl1	0.0641 (10)	0.0363 (7)	0.0414 (8)	0.0089 (7)	-0.0093 (7)	0.0017 (6)
Cl2	0.0424 (8)	0.0322 (7)	0.0558 (9)	-0.0014 (6)	0.0150 (7)	-0.0051 (6)
N1	0.033 (2)	0.024 (2)	0.032 (2)	-0.0030 (19)	0.0057 (19)	-0.0007 (17)
N2	0.030 (2)	0.023 (2)	0.040 (2)	0.0006 (18)	0.0072 (19)	-0.0019 (18)
N3	0.028 (2)	0.021 (2)	0.036 (2)	-0.0013 (17)	-0.0003 (19)	-0.0040 (17)
N4	0.039 (3)	0.031 (3)	0.065 (3)	-0.004 (2)	0.019 (3)	-0.011 (2)
C1	0.032 (3)	0.032 (3)	0.041 (3)	-0.002 (2)	0.009 (3)	0.006 (2)
C2	0.043 (3)	0.036 (3)	0.044 (3)	0.002 (3)	0.011 (3)	0.001 (3)
C3	0.049 (4)	0.050 (4)	0.054 (4)	0.006 (3)	0.023 (3)	0.009 (3)
C4	0.036 (4)	0.069 (5)	0.066 (5)	-0.005 (3)	0.006 (3)	0.020 (4)
C5	0.047 (4)	0.047 (4)	0.069 (5)	-0.016 (3)	0.002 (3)	0.001 (3)
C6	0.038 (3)	0.037 (3)	0.049 (4)	-0.008 (3)	0.009 (3)	-0.004 (3)
C7	0.025 (2)	0.024 (2)	0.032 (3)	-0.001 (2)	0.000 (2)	0.000 (2)
C8	0.034 (3)	0.025 (3)	0.035 (3)	0.004 (2)	0.004 (2)	0.002 (2)
C9	0.031 (3)	0.040 (3)	0.046 (3)	0.008 (2)	0.010 (3)	-0.004 (3)
C10	0.036 (3)	0.045 (3)	0.062 (4)	-0.011 (3)	0.014 (3)	-0.006 (3)
C11	0.032 (3)	0.034 (3)	0.053 (4)	-0.004 (2)	0.010 (3)	-0.011 (3)
C12	0.060 (4)	0.015 (2)	0.037 (3)	0.001 (2)	0.004 (3)	0.002 (2)
C13	0.076 (5)	0.021 (3)	0.052 (4)	0.006 (3)	0.020 (4)	-0.004 (3)
C14	0.050 (4)	0.026 (3)	0.093 (6)	0.011 (3)	0.019 (4)	-0.005 (3)
C15	0.048 (4)	0.030 (3)	0.087 (5)	0.011 (3)	-0.014 (4)	0.002 (3)
C16	0.055 (4)	0.031 (3)	0.049 (4)	0.010 (3)	-0.007 (3)	0.008 (3)
C17	0.045 (3)	0.024 (3)	0.045 (3)	0.003 (3)	0.002 (3)	0.006 (2)
C18	0.053 (5)	0.064 (5)	0.126 (8)	0.007 (4)	-0.038 (5)	0.020 (5)
C19	0.089 (6)	0.036 (3)	0.049 (4)	-0.013 (4)	-0.013 (4)	-0.012 (3)
C20	0.066 (6)	0.064 (10)	0.068 (8)	-0.018 (6)	-0.016 (5)	-0.002 (7)
C21	0.147 (15)	0.048 (6)	0.14 (2)	-0.010 (8)	-0.054 (14)	-0.032 (9)
C19B	0.089 (6)	0.036 (3)	0.049 (4)	-0.013 (4)	-0.013 (4)	-0.012 (3)
C20B	0.066 (6)	0.064 (10)	0.068 (8)	-0.018 (6)	-0.016 (5)	-0.002 (7)
C21B	0.147 (15)	0.048 (6)	0.14 (2)	-0.010 (8)	-0.054 (14)	-0.032 (9)

Geometric parameters (Å, °)

Ru1—N3	2.077 (4)	C10—H10	0.9300	
Ru1—N1	2.078 (4)	C11—H11	0.9300	
Ru1—C16	2.185 (6)	C12—C17	1.398 (8)	
Ru1—C15	2.210 (6)	C12—C13	1.435 (9)	
Ru1—C13	2.211 (6)	C12—C19	1.498 (9)	
Ru1—C17	2.215 (5)	C13—C14	1.376 (10)	

Ru1—C14	2.231 (6)	C13—H13	0.9800
Ru1—C12	2.243 (5)	C14—C15	1.419 (10)
Ru1—Cl1	2.3938 (15)	C14—H14	0.9800
N1—N2	1.283 (6)	C15—C16	1.398 (9)
N1—C1	1.442 (7)	C15—C18	1.489 (10)
N2—C7	1.363 (6)	C16—C17	1.411 (8)
N3—C11	1.307 (7)	С16—Н16	0.9800
N3—C7	1.356 (6)	С17—Н17	0.9800
N4—C8	1.327 (7)	C18—H18A	0.9600
N4—H4A	0.8600	C18—H18B	0.9600
N4—H4B	0.8600	C18—H18C	0.9600
C1—C6	1.376 (8)	C19—C21	1.529 (12)
C1—C2	1.381 (8)	C19—C20	1.531 (12)
C2—C3	1.381 (8)	C19—H19	0.9800
C2—H2	0.9300	C20—H20A	0.9600
C3—C4	1.368 (10)	C20—H20B	0.9600
C3—H3	0.9300	C20—H20C	0.9600
C4—C5	1 389 (10)	C_{21} H21A	0.9600
C4—H4	0.9300	C21—H21B	0.9600
C5—C6	1 371 (8)	C_{21} H21C	0.9600
C5—H5	0.9300	C_{20B} H20D	0.9600
C6—H6	0.9300	C20B—H20E	0.9600
C7—C8	1 422 (7)	C20B—H20F	0.9600
C8—C9	1 406 (8)	C_{21B} H21D	0.9600
C9—C10	1 365 (8)	C21B—H21E	0.9600
C9—H9	0.9300	C21B—H21F	0.9600
C10—C11	1.382 (8)		0.0000
	(0)		
N3—Ru1—N1	75.80 (16)	C9—C10—C11	120.6 (5)
N3—Ru1—C16	94.5 (2)	С9—С10—Н10	119.7
N1—Ru1—C16	116.2 (2)	C11—C10—H10	119.7
N3—Ru1—C15	120.9 (2)	N3—C11—C10	121.8 (5)
N1—Ru1—C15	95.7 (2)	N3—C11—H11	119.1
C16—Ru1—C15	37.1 (2)	C10-C11-H11	119.1
N3—Ru1—C13	153.9 (2)	C17—C12—C13	116.3 (6)
N1—Ru1—C13	129.9 (2)	C17—C12—C19	122.2 (6)
C16—Ru1—C13	78.4 (2)	C13—C12—C19	121.5 (6)
C15—Ru1—C13	66.9 (3)	C17—C12—Ru1	70.6 (3)
N3—Ru1—C17	93.25 (19)	C13—C12—Ru1	70.0 (3)
N1—Ru1—C17	151.50 (19)	C19—C12—Ru1	131.4 (4)
C16—Ru1—C17	37.4 (2)	C14—C13—C12	121.9 (6)
C15—Ru1—C17	67.1 (2)	C14—C13—Ru1	72.7 (4)
C13—Ru1—C17	65.9 (2)	C12—C13—Ru1	72.4 (3)
N3—Ru1—C14	158.2 (2)	C14—C13—H13	118.6
N1—Ru1—C14	103.0 (2)	С12—С13—Н13	118.6
C16—Ru1—C14	66.1 (3)	Ru1—C13—H13	118.6
C15—Ru1—C14	37.3 (3)	C13—C14—C15	121.3 (7)
C13—Ru1—C14	36.1 (3)	C13—C14—Ru1	71.2 (4)

C17—Ru1—C14	77.5 (2)	C15—C14—Ru1	70.6 (4)
N3—Ru1—C12	116.54 (19)	C13—C14—H14	118.5
N1—Ru1—C12	167.39 (19)	C15—C14—H14	118.5
C16—Ru1—C12	67.3 (2)	Ru1—C14—H14	118.5
C15—Ru1—C12	80.3 (2)	C16—C15—C14	117.4 (7)
C13—Ru1—C12	37.6 (2)	C16—C15—C18	121.3 (7)
C17—Ru1—C12	36.5 (2)	C14—C15—C18	121.2 (7)
C14—Ru1—C12	66.6 (2)	C16—C15—Ru1	70.5 (3)
N3—Ru1—C11	87.39 (12)	C14—C15—Ru1	72.2 (4)
N1—Ru1—Cl1	83.92 (13)	C18—C15—Ru1	127.9 (5)
C16— $Ru1$ — $C11$	159 70 (18)	$C_{15} - C_{16} - C_{17}$	1211(6)
C15— $Ru1$ — $C11$	150.8 (2)	C15 - C16 - Ru1	72.4 (4)
C13— $Ru1$ — $C11$	91.00(19)	C17 - C16 - Ru1	72.5(3)
C17— $Bu1$ — $C11$	122 36 (16)	C15-C16-H16	119 1
C14— $Ru1$ — $C11$	114 3 (2)	C17 - C16 - H16	119.1
C12—Ru1—C11	93 73 (15)	Ru1-C16-H16	119.1
$N_2 N_1 C_1$	112.6(4)	C_{12} C_{17} C_{16}	121.9 (6)
N2 N1 Bu1	112.0(4) 118.0(3)	$C_{12} = C_{17} = C_{10}$	72.8(3)
C1 N1 Ru1	129.4(3)	$C_{12} = C_{17} = R_{u1}$	72.0(3)
N1_N2_C7	129.4(3) 114.5(4)	C_{12} C_{17} H_{17}	118 3
11 - 12 - C7	119.4(4)	$C_{12} = C_{17} = H_{17}$	118.3
C11 N3 Pu1	119.4(4) 128.0(4)	Ru1 C17 H17	118.3
$C7$ _N3_Ru1	112 7 (3)	C_{15} C_{18} H_{18A}	109.5
$C_{8} = N_{4} = H_{4} = A_{4}$	120.0	C_{15} C_{16} H_{18B}	109.5
$C_8 N_4 H_4 B$	120.0	$H_{18A} = C_{18} = H_{18B}$	109.5
H4A NA H4B	120.0	C_{15} C_{18} H_{18} C_{15} C_{18} H_{18} C_{15} C_{18} H_{18} C_{15} H_{18} H_{18} C_{15} H_{18} H_{18} C_{15} H_{18} H	109.5
C6-C1-C2	120.0 (5)	$H_{18} - C_{18} - H_{18} C$	109.5
$C_{0} - C_{1} - C_{2}$	120.0(5)	H18B - C18 - H18C	109.5
$C_2 - C_1 - N_1$	120.9(5)	(12-(19-(21)))	109.5
$C_{2} - C_{1} - C_{1}$	119.8 (6)	$C_{12} = C_{13} = C_{21}$	100.7(9)
C_{3} C_{2} H_{2}	120.1	C_{21} C_{19} C_{20}	113.0(7)
C_{1} C_{2} H_{2}	120.1	C_{12} C_{19} C_{20} C_{10} H_{19}	107.2
$C_1 = C_2 = H_2$	120.1	$C_{12} - C_{19} - H_{19}$	107.2
$C_4 = C_3 = C_2$	110.0	$C_{21} = C_{10} = H_{10}$	107.2
C2_C3_H3	119.9	C_{19} C_{19} H_{204}	107.2
$C_2 = C_3 = C_5$	119.8 (6)	C19 - C20 - H20R	109.5
$C_3 - C_4 - H_4$	120.1	H_{20}^{-} $H_{$	109.5
$C_5 = C_4 = H_4$	120.1	1120A - C20 - 1120B	109.5
C6-C5-C4	120.1 120.0(7)	H_{20}^{-} $H_{$	109.5
C6-C5-H5	120.0 (7)	$H_{20}^{-}R_{-}C_{20}^{-}H_{20}^{-}C_{-}H_{20}^{-$	109.5
C_{4} C_{5} H_{5}	120.0	$C_{10} C_{21} H_{21A}$	109.5
$C_{4} = C_{5} = C_{5}$	120.0 (6)	$C_{19} = C_{21} = H_{21R}$	109.5
$C_{5} = C_{6} = H_{6}$	120.0 (0)	$H_{21A} = C_{21} = H_{21B}$	109.5
C_{1} C_{6} H_{6}	120.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
N3_C7_N2	110.0 (4)	$H_{21} = C_{21} = H_{21}C$	109.5
$N_3 - C_7 - C_8$	122.7 (5)	$H_{2}H_{-}C_{2}I_{-}H_{2}I_{C}$	109.5
$N_2 - C_7 - C_8$	122.7(3) 118 2 (4)	$H_{2}D_{-}C_{2}D_{-}H_{2}D_{-}C_{2}D_{-}H_{2}D_{-}D_{-}D_{-}D_{-}D_{-}D_{-}D_{-}D_{-$	109.5
$N_{2} = C_{1} = C_{0}$	121 4 (5)	H20D - C20B - H20E	109.5
117-00-07	141.7(2)	1120D-020D-1120I	102.3

N4—C8—C7 C9—C8—C7 C10—C9—C8 C10—C9—H9 C8—C9—H9	123.0 (5) 115.7 (5) 119.8 (5) 120.1 120.1	H20E—C20B—H20F H21D—C21B—H21E H21D—C21B—H21F H21E—C21B—H21F	109.5 109.5 109.5 109.5
C1-N1-N2-C7	176.3 (4)	C19—C12—C13—C14	177.3 (6)
Ru1-N1-N2-C7	-3.0 (6)	Ru1—C12—C13—C14	-55.7 (5)
N2-N1-C1-C6	-19.8 (7)	C17—C12—C13—Ru1	55.0 (4)
Ru1-N1-C1-C6	159.5 (4)	C19—C12—C13—Ru1	-127.0 (5)
N2-N1-C1-C2	162.6 (5)	C12—C13—C14—C15	3.7 (9)
Ru1-N1-C1-C2	-18.2 (7)	Ru1—C12—C13—C14—C15	-51.8 (5)
C6-C1-C2-C3	-5.1 (9)	C12—C13—C14—C15	55.5 (5)
N1-C1-C2-C3	172.7 (5)	C13—C14—C15—C16	-3.7 (9)
C1-C2-C3-C4	4.1 (10)	Ru1—C14—C15—C16	-55.8 (5)
C2-C3-C4-C5	-0.3 (10)	C13—C14—C15—C18	176.1 (6)
C3-C4-C5-C6	-2.5 (11)	Ru1—C14—C15—C18	124.0 (6)
C4-C5-C6-C1	1.5 (10)	C13—C14—C15—Ru1	52.1 (5)
C2-C1-C6-C5	2.3 (9)	C14—C15—C16—C17	0.7 (9)
N1C1C6C5	-175.4 (6)	C18—C15—C16—C17	-179.1 (6)
C11N3C7N2	-177.9 (5)	Ru1—C15—C16—C17	-55.9 (5)
Ru1N3C7N2	1.0 (6)	C14—C15—C16—Ru1	56.6 (5)
C11N3C7C8	-0.1 (8)	C18—C15—C16—Ru1	-123.2 (6)
Ru1—N3—C7—C8	178.8 (4)	C13—C12—C17—C16	$\begin{array}{c} -2.3 \ (8) \\ 179.7 \ (5) \\ 52.4 \ (5) \\ -54.7 \ (4) \end{array}$
N1—N2—C7—N3	1.3 (7)	C19—C12—C17—C16	
N1—N2—C7—C8	-176.6 (4)	Ru1—C12—C17—C16	
N3—C7—C8	178.4 (5)	C13—C12—C17—C16	
N3-C7-C8-N4 N2-C7-C8-N4 N3-C7-C8-C9 N2-C7-C8-C9	-3.8(8) -1.8(7) 176.0(5)	C13—C12—C17—Ru1 C19—C12—C17—Ru1 C15—C16—C17—C12 Ru1—C16—C17—C12	-54.7(4) 127.4 (5) 2.3 (9) -53.6(5)
N4—C8—C9—C10	-179.2 (6)	C15—C16—C17—Rul	55.9 (5)
C7—C8—C9—C10	0.9 (8)	C17—C12—C19—C21	81.0 (17)
C8—C9—C10—C11	1.6 (10)	C13—C12—C19—C21	-96.8 (16)
C7—N3—C11—C10	2.9 (9)	Ru1—C12—C19—C21	172.9 (15)
Ru1—N3—C11—C10	-175.8 (5)	C17—C12—C19—C20	-44.5 (14)
C9—C10—C11—N3	-3.7 (10)	C13—C12—C19—C20	137.7 (12)
C17—C12—C13—C14	-0.7 (8)	Ru1—C12—C19—C20	47.4 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N4—H4 <i>A</i> …Cl2	0.86	2.34	3.200 (5)	176
N4—H4 B ···Cl2 ⁱ	0.86	2.37	3.152 (5)	151

Symmetry code: (i) x-1/2, y, -z+1/2.