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Abstract: Pelvic floor muscle training (PFMT) has been recommended as the first choice as one
of the effective methods for preventing and improving urinary incontinence (UI). We aimed to
determine whether pressure biofeedback unit training (PBUT) improves short term and retention
performance of pelvic floor muscle contraction. The muscle activities of the external oblique (EO),
transversus/internal oblique (TrA/IO), multifidus (MF) and the bladder base displacement were
measured in the verbal feedback group (n = 10) and PBU group (n = 10) three times (baseline, post-
training, and at the 1-week follow-up). Surface electromyographic activity was recorded from the
EO, TrA/IO, and MF muscles. The bladder base displacement was measured using ultrasound. The
results were analyzed using two way mixed ANOVA. The bladder base displacement may have
elevated more in the PBU group than in the verbal feedback group due to decreased TrA/IO activity.
These findings indicate that PBUT is a better method than verbal feedback training.

Keywords: pelvic floor muscle training; pressure biofeedback; trunk muscles; verbal feedback

1. Introduction

Urinary incontinence (UI) is defined as any complaint of involuntary leakage of
urine [1]. UI has major effects on a woman’s quality of life and health, as it results in
mental-social disorders, such as depression, lack of self-confidence, limitations in daily
life activities, and feelings of worthlessness [1,2]. The main UI treatments are surgical and
conservative [3]. Conservative treatments are more common due to the risk of recurrence
of stress UI, which ranges from 10 to 40% after surgical intervention, and the high cost and
potential for side effects of surgery [4]. Among the conservative methods for treating UI,
pelvic floor muscle training (PFMT) has been recommended as the first choice method to
prevent and improve UI [3].

Teaching clients how to contract their pelvic floor muscles (PFMs) is one of the most
difficult tasks for a physical therapist [4]. Verbal instruction is commonly used for PFMT
in a clinical setting because it is easy, safe, and cost-effective [5]. Previous studies have
suggested that biofeedback (vaginal cones, ultrasound, and electrical stimulation) restores
continence better than verbal only instruction during PFMT [6–8]. However, these methods
are invasive, unfavorable, and require expensive equipment and practical experience.

Pressure biofeedback unit (PBU) provides a cost-effective, readily available clinical
tool to objectively assess abdominal muscle function, including transverse abdominis (TrA)
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activation, during the abdominal drawing-in maneuver (ADIM) [9,10]. The device is placed
between the perineal region and a solid chair, on which the patient sits, to assess PFM
function, and a pressure gauge that detects movement of the PFMs via changes in pressure
applied to an air-filled bladder. Correct performance of PFMT results in decreased pressure,
indicating the elevation of the pelvic floor. Individuals with high intra-abdominal pressure
(IAP) and insufficient PFM activity can increase pressure by a descent of the pelvic floor.
Thus, changes in pressure are used to determine PFM activity indirectly.

Previous studies have suggested differences in PFM activity in healthy women de-
pending on the lumbar curve [11,12]; PFM activity is greater when sitting in lumbar lordosis
than when sitting in a slumped position [11]. Trunk muscle activity is also affected by
lumbo-pelvic posture. Trunk muscle activity decreases in lumbar flexion [11]. Capson
et al. [12] examined the activation of the PFMs in neutral, exaggerated, and diminished
lumbar lordosis postures and found the highest activation of the PFMs when the patient
assumed a neutral position. However, whether the PFMs and trunk muscles are affected by
a neutral sitting posture with pressure biofeedback training has not been studied.

Therefore, the objectives of this study were to examine whether pressure biofeedback is
effective for teaching pelvic floor muscle contraction (PFMC) using ultrasound; to confirm
with pressure biofeedback that TrA/IO, external oblique (EO), and multifidus (MF) muscle
activity results in PFM contraction; and to determine whether pressure biofeedback training
improves the short-term and retention performance of PFMC.

2. Materials and Methods
2.1. Participants

Twenty healthy women (age 18–65 years), who had no history of stress urinary incon-
tinence, were not pregnant or had not given birth in the previous 12 months, and were in
good general health, were invited to participate. Participants were recruited from recruit-
ment advertisements posted on the FM pilates center bulletin board. The women were
randomly allocated to one of two groups by selecting a sealed envelope containing either
the number 1 or 2. Group 1 (verbal feedback) contained 10 women (mean ± standard devia-
tion [SD], 36.4 ± 3.5 years; 162.8 ± 4.3 cm; 50.3 ± 4.6 kg) and group 2 (pressure biofeedback)
contained 10 women (mean ± SD, 31.7 ± 3.9 years; 162.5 ± 4.1 cm; 51 ± 4.1 kg). Exclusion
criteria included being pregnant or less than 3 months postpartum, having systemic neuro-
muscular disease, previous surgery or intensive PFMT, or severe low back pain or pelvic
pain. All subjects provided informed consent. This study was approved by the institutional
review board of Inje University in the Republic of Korea (No. INJE 2020-01-044-001).

The sample size was estimated using G*Power 3.1.9.7 for Windows (G*Power©, Uni-
versity of Dusseldorf, Dusseldorf, Germany). A power analysis determined that at least a
total 16 subjects were required to obtain a power of 0.8 at an α level of 0.05. This analysis
was based on an estimated effect size derived from the previous literature [13]. Allowing for
a dropout rate, we decided to recruit at least 10 participants per group (a total of 20 subjects)
in order to provide sufficient power to detect significant group differences.

2.2. Procedure and Interventions

Subjects were randomly assigned to 2 groups using a table of random numbers created
by online software (www.randomization.com, accessed on 23 October 2021): a verbal
feedback group, who received only verbal feedback training; a pressure biofeedback group,
who received pelvic floor muscle training with pressure biofeedback. The verbal feedback
training was performed as follows: The subject was seated in a lumbo-pelvic upright
position (anterior rotation of pelvis, lumbar lordosis and relaxation of the thorax). The
subjects were instructed to contract their pelvic floor muscle by the description “squeeze
and lift your pelvic floor muscles as if trying to stop the flow of urine” (Figure 1). For
the pressure biofeedback training, the subject was seated in the lumbo-pelvic upright
position. The pressure biofeedback unit was placed between the pad of the chair and
the subject’s perineal region to monitor PFM contraction. The subject was instructed to
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squeeze and lift pelvic floor muscle maximally and hold the position. The subjects were
asked to maintain the changed pressure by visual feedback from a digital pressure gauge
during pelvic floor muscle contraction (Figure 1). Approximately 5 min of biofeedback
was provided to optimize the performance of the PMFC. Five minutes was selected based
on research by Dietz et al. [14] in the use of biofeedback for the instruction of pelvic floor
contractions and clinical feasibility. Each subject was held for 3 s with a resting break of 10 s
between each contraction. All outcome measures including bladder base displacement and
trunk muscle activities (TrA/IO, EO, MF) were carried out 3 times during the study: before
the training period, 3 min after the training period and 1 week after the training period.

Figure 1. Performing pelvic floor muscle contraction with different feedback methods. (A) Pressure
biofeedback. (B) Verbal feedback.

2.3. Measurements

Displacement of the bladder base was assessed by transabdominal ultrasound imaging
using a portable ultrasonography device (SONON 300L, Healcerison, Seoul, Korea) with a
curved transducer (3.5 MHz). A bladder-filling protocol was implemented before testing
to ensure that subjects had sufficient fluid in their bladders to allow clear imaging. This
protocol involved subjects consuming 450–500 mL of water in a 1 h period, which was
completed 30 min before testing time. The assessment of PFM thickness was conducted by
ultrasound (Dornier Medtech 7.5-MHz straight linear array transducer). The ultrasound
transducer was placed in a transverse orientation, across the middle of the abdomen, im-
mediately superior to the pubic symphysis for transverse plane transabdominal ultrasound
imaging of the bladder base. The angle of the transducer was manipulated until it was
approximately 60◦ from the vertical and aimed towards the bladder base (Figure 2). The
angle of the ultrasound transducer was adjusted until there was a clear image of the bladder
and midline pelvic floor structures (urethra, perineal body, and rectum). An “X” mark
was placed on the bladder base at rest. The subject was then asked to perform a voluntary
PFMC, and the image was captured at the point of maximal displacement, and this point
was marked with an “X”. Displacement of the pelvic floor elevation from the resting
position at the end of each contraction was measured. Displacement was measured as the
distance between the two “X” points in millimeters (mm).
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Figure 2. Ultrasound probe and electromyographic (EMG) electrode displacement.

A Trigno wireless EMG system (Delsys, Inc., Boston, MA, USA) was used to assess
the electromyographic (EMG) activity of the bilateral TrA/IO, EO, and MF muscles. The
sampling rate was 1000 Hz, with a 20–450 Hz bandpass filter. All raw EMG data were
converted into root mean square data for analysis. The electrodes for the TrA/IO, EO, and
MF muscles were placed according to Criswell [15]. The site for each electrode was shaved
and then cleaned with cotton and alcohol to reduce skin impedance. To normalize the EMG
activity of the IO, EO, and MF muscles, the maximum voluntary isometric contraction
(MVIC) of the muscles was measured using maneuvers suggested previously [16].

The MVIC trials for each muscle were performed twice with a rest period of 1 min
between trials, and the mean EMG value of the middle 3 s of three trials was used to
normalize the value for each muscle. All EMG data during pelvic floor muscle contraction
are expressed as percentages of MVIC (%MVIC).

2.4. Statistical Analysis

The independent t-test was used to evaluate group differences at baseline. The one-
sample Kolmogorov–Smirnov test was employed to ensure a normal distribution of the
measurement data. A two-factor, mixed-model analysis of variance (ANOVA) (2 groups
× 3 time-points) was used to compare outcome measures between groups over time.
This analysis was repeated for muscle activities (TrA/IO, EO, and MF) and bladder base
displacement. If a significant interaction was found, independent t-tests were used to
compare the between-group differences for the bladder base displacement and muscle
activities at each of three time-points (pre-, post-, and retention-testing). Additionally,
paired t-tests were performed for comparison of those parameters between time points
(pre-testing vs. post-testing, pre-testing vs. retention-testing) within each of the groups. All
statistical analyses were conducted with SPSS Statistics version 18 (SPSS Inc., Chicago, IL,
USA). A p-value < 0.05 was considered significant.

3. Results

The demographic characteristics, muscle activities (TrA/IO, EO, and MF), and bladder
base displacement were comparable between the groups at baseline. All subjects completed
the post test and retention test.

The ANOVA evaluating bladder base displacement between groups across the three
times revealed a significant group × time interaction (F = 3.54, p = 0.04). Within-group
post hoc testing demonstrated that the pressure biofeedback group exhibited a significant
elevation in the bladder base from pre-test to post-test (t = 5.783, p < 0.001) and from pre-test
to retention-test (t = 5.261, p = 0.001). The verbal feedback group exhibited a significant
elevation in the bladder base from pre-test to post-test (t = 3.199, p = 0.013) and from



Healthcare 2022, 10, 570 5 of 10

pre-test to retention-test (t = 3.049, p = 0.016). Between-group post hoc testing revealed that
the bladder base was elevated in the pressure biofeedback group compared to the verbal
feedback group on the post-test (t = 3.153, p = 0.006) and retention-test (t = 2.933, p = 0.014)
(Table 1).

The ANOVA evaluating the activities of the TrA/IO muscles between groups across
the three time points revealed a significant group × time interaction (Rt. TrA/IO; F = 4.623,
p = 0.017, Lt. TrA/IO; F = 3.934, p = 0.03). Within-group post hoc testing showed that
TrA/IO activity in the pressure biofeedback group decreased significantly from pre-test
to post-test (Rt. TrA/IO; t = −3.436, p = 0.007, Lt. TrA/IO; t = −2.686, p = 0.025) and
from pre-test to retention-test (Rt. TrA/IO; t = −3.492, p = 0.007, Lt. TrA/IO; t = −2.864,
p = 0.019). However, the verbal feedback group demonstrated no significant difference
across the three time points. Between-group post hoc testing revealed that TrA/IO muscle
activity was lower in the pressure biofeedback group than in the verbal feedback group on
the post test (Rt. TrA/IO; t = 2.240, p = 0.04, Lt. TrA/IO; t = 3.329, p = 0.004) and retention
test (Rt. TrA/IO; t = 2.617, p = 0.022, Lt. TrA/IO; t = 3.165, p = 0.006) (Table 2).

The ANOVA evaluating the activity of the EO muscle (Rt. EO; F = 2.594, p > 0.05,
Lt EO; F = 2.896, p > 0.05) and MF muscle (Rt. MF; F = 0.947, p > 0.05, Lt. MF; F = 0.1,
p > 0.05) between groups across the three time points revealed no significant group ×
time interaction.
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Table 1. Results of bladder base displacement (mm) in response to intervention.

Group Pre-
Testing

Post-
Testing
(3 min)

Retention-
Testing

(1 Week)

Time Group

3 min-Pre-Testing 1 Week-Pre-Testing At Pre-Testing At Post-Testing At Retention-Testing

95%CI p Cohen’s
d 95%CI p Cohen’s

d 95%CI p Cohen’s
d 95%CI p Cohen’s

d 95%CI p Cohen’s
d

Verbal
feedback

group

−2.18
± 4.14

−0.21
± 3.30

0.23 ±
3.26

−3.34,
−0.55 0.013 * 0.526 −4.22,

−0.59 0.016 * 0.647 −5.39,
1.53 0.254 0.558

−7.42,
−1.45 0.006 ** 1.486

−6.04,
−0.85 0.014 ** 1.382

Pressure
biofeedback

group

−0.25
± 2.61

4.23 ±
2.64

3.67 ±
1.33

−6.26,
−2.69 0.000 * 1.707 −5.63,

−2.20 0.001 * 1.892

Data are mean ± SD, CI, confidence interval, * Paired t test significantly different from pre-testing at p < 0.05, ** Independent t test significantly different between groups at p < 0.05.
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Table 2. Muscle activity (%MVIC) in response to intervention.

Group Pre-Testing Post-Testing
(3 min)

Retention-
Testing

(1 Week)

p

Time Group

3 min-Pre-Testing 1 Week-Pre-Testing at Pre-Testing at Post-Testing at Retention-Testing

95%CI p Cohen’s
d 95%CI p Cohen’s

d 95%CI p Cohen’s
d 95%CI p Cohen’s

d 95%CI p Cohen’s
d

Verbal feedback group

Rt. TrA/IO 43.14 ± 12.81 45.09 ± 16.48 ** 47.80 ± 16.83 ** −9.65,
5.76 0.576 0.132 −15.12,

5.81 0.335 0.312 −6.57,
16.22 0.382 0.424 0.76,

27.50 0.040 ** 1.055 2.85,
30.62 0.022 ** 1.234

Lt. TrA/IO 42.23 ± 10.11 43.51 ± 12.11 ** 39.75 ± 7.64 ** −7.29,
4.72 0.635 0.115 −2.53,

7.49 0.286 0.277 −2.16,
15.86 0.127 0.759 6.29,

28.33 0.004 ** 1.569 4.29,
21.67 0.006 ** 1.491

Rt. EO 40.72 ± 9.64 38.92 ± 9.95 44.07 ± 12.75 −0.16,
3.77 0.067 0.184 −11.29,

4.59 0.359 0.296 −5.87,
12.19 0.469 0.350 −7.70,

11.20 0.700 0.185 −4.06,
17.51 0.205 0.623

Lt. EO 36.95 ± 10.60 36.36 ± 10.64 40.88 ± 8.12 −2.67,
3.84 0.688 0.056 −10.38,

2.53 0.198 0.416 −7.19,
10.69 0.684 0.196 −5.79,

13.16 0.422 0.388 0.63,
15.05 0.069 0.920

Rt. MF 25.41 ± 15.13 21.18 ± 9.53 24.03 ± 12.55 −2.69,
11.14 0.196 0.335 −1.84,

4.59 0.353 0.099 −2.28,
22.02 0.093 0.843 −0.88,

16.21 0.075 0.897 −0.92,
16.25 0.072 0.906

Lt. MF 24.63 ± 14.15 21.17 ± 9.56 24.62 ± 15.01 −1.61,
8.53 0.154 0.287 −3.94,

3.96 0.996 0.001 −6.02,
16.80 0.331 0.472 −4.01,

13.42 0.270 0.535 −7.89,
16.56 0.463 0.354

Pressure biofeedback group

Rt. TrA/IO 38.31 ± 9.80 30.96 ± 9.32 31.06 ± 9.21 2.72,
13.23 0.007 * 0.769 2.62,

12.24 0.007 * 0.762

Lt. TrA/IO 35.38 ± 7.78 26.21 ± 9.83 26.77 ± 9.65 1.25,
14.60 0.025 * 1.034 1.56,

13.31 0.019 * 0.982

Rt. EO 37.56 ± 8.38 37.17 ± 8.94 37.35 ± 8.38 −1.17,
1.21 0.969 0.045 −1.32,

1.08 0.822 0.025

Lt. EO 35.20 ± 6.89 32.68 ± 8.17 33.67 ± 7.55 −2.77,
6.66 0.376 0.333 −3.32,

5.45 0.596 0.212

Rt. MF 15.54 ± 6.74 13.51 ± 7.45 14.99 ± 6.44 −1.25,
4.22 0.250 0.286 −1.72,

2.08 0.839 0.083

Lt. MF 19.24 ± 7.78 16.47 ± 7.93 20.29 ± 8.61 −0.48,
4.80 0.097 0.353 −6.73,

4.21 0.615 0.128

Data are mean ± SD, CI, confidence interval, * Paired t test significantly different from pre-testing at p < 0.05, ** Independent t test significantly different between groups at p < 0.05.
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4. Discussion

Both verbal feedback and pressure biofeedback training elevated the bladder base.
Improvements in both groups were maintained at the 1-week follow-up. The mean post-
training change in the bladder base in the verbal feedback group was 1.97 mm, whereas the
change for the pressure biofeedback group was 4.48 mm. Despite these improvements, the
increase in the bladder base was greater in the pressure biofeedback group at the 1-week
follow-up. Pressure biofeedback training significantly decreased TrA/IO muscle activity,
which was maintained at the 1-week follow-up, but verbal feedback training did not at
either the post-training or 1-week follow-up. The decrease in TrA/IO muscle activity was
significantly greater in the pressure biofeedback group than in the verbal feedback group
and it was the same at the 1-week follow-up, suggesting that reduced TrA/IO activity
contributed to improving selective contraction of the PFMs. However, the EO and MF
muscle activities of the groups across the three time-points revealed no significant group ×
time interaction.

Both verbal feedback and pressure biofeedback training elevated the bladder base, and
the improvements in both groups were maintained at the 1-week follow-up. Augmented
feedback might contribute to enhancing motor learning. There are two broad types of
feedback, intrinsic (via sensory systems within the body) and extrinsic (augmented), which
is supplementary feedback about the movement in addition to what is provided through
intrinsic feedback. Typical types of augmented feedback used to improve motor perfor-
mance include auditory, visual, verbal, and somatosensory. Augmented sensory feedback
facilitates muscle activation during the early stages of learning [17]. Furthermore, motor
learning is characterized by a lasting increase in performance that is assessable on short-
and long-term retention tests when augmented feedback is withdrawn [18]. Therefore,
augmented feedback, including verbal and pressure biofeedback training, may elevate the
bladder base for 1 week by automatization, which is the final stage of motor learning.

Despite the improvements realized in both groups, the increase at the bladder base
was greater in the pressure biofeedback group, suggesting that the pressure biofeedback
unit is useful as a biofeedback tool. There are several reasons why pressure biofeedback
may be more useful than verbal feedback for improving PFM motor learning. The first
is that pressure biofeedback, in addition to tactile and visual feedback, provides multi-
modal learning compared to verbal feedback. Previous studies have suggested that the
threshold of neural activation is reached earlier by multimodal learning than by unimodal
learning [19]. Particularly in the early attention-demanding learning phase, concurrent
augmented feedback may help the novice to understand the new structure of the movement
faster and prevent cognitive overload, which accelerates the learning process [18]. Pressure
biofeedback might have a greater effect on motor learning because of concurrent feedback
compared to verbal feedback. A second reason is that pressure biofeedback training, which
is externally focused feedback, facilitates automatic control of movement as well as move-
ment efficiency compared to verbal feedback training, which is internally focused feedback.
Verbal feedback is focused on the performer’s body movements (internal focus), while
pressure biofeedback is focused on the movement effect (external focus) [20]. Instructions
or feedback promoting an external focus enhance learning, compared to those inducing an
internal focus. Adopting an external focus has been shown to facilitate automatic move-
ment control [20] as well as movement efficiency [21]. Wulf and Lewthwaite [22] proposed
that internal focus instruction promotes self-awareness and excessive concerns about own
movements. Such a phenomenon was described as “micro-choking”. Therefore, pressure
biofeedback training (external focus) is a more useful method to train the PFMs than verbal
feedback training (internal focus) because it increases the automaticity of movement control
and movement efficiency.

The reason why pressure biofeedback training is more useful than verbal feedback
training to elevate the bladder base is explained by the decrease in TrA/IO muscle activity.
The reason for the decrease in TrA/IO muscle activity in the pressure biofeedback training
group may be attributable to surround inhibition (SI). SI within the primary cortex is
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expressed as a selective reduction in motor-evoked-potential amplitudes in surrounding
muscles before and during contraction of the target muscle compared to a resting condi-
tion [23]. Furthermore, Kuhn et al. [24] demonstrated an efficient way to modulate SI by
changing the attentional focus in healthy subjects; they found that better motor perfor-
mance was associated with an external focus. In light of these previous studies, pressure
biofeedback training should inhibit the surrounding TrA/IO muscles by the SI mechanism
along with elevation of the bladder base. In addition, the decrease in TrA/IO muscle
activity could reduce IAP, which would contribute to further elevation of the bladder base
as a result of resistance to PFM elevation. However, no significant change in TrA/IO muscle
activity occurred in the verbal feedback training group, possibly because those muscles
may not be able to fully recruit all motor units to change the muscle activation patterns
during maximal force production.

Our results confirm that the EO and MF muscles did not have a predictable pattern of
activation in response to the PFM biofeedback training. Our EMG findings are consistent
with those of Neumann and Gill [25] suggested that strong PFMC results in strong and
simultaneous recruitment of the TrA and IO muscles but not of the EO muscle in asymp-
tomatic subjects. The activation levels of the EO and MF muscles were sufficiently high
(approximately 20% MVIC) to suggest that they may play a role in posture during PFMC.
O’Sullivan et al. [26] reported that co-activation of trunk muscles, including the EO and MF
muscles, increases spinal stability and is necessary to maintain sitting in the lumbo-pelvic
position. These findings suggest that the EO and MF muscles may act more as postural
muscles to maintain the lumbo-pelvic sitting posture than as co-activators with the PFMs
during pelvic floor training.

A possible limitation of the study is that our subjects were urinary continent based
on self-report. It is not possible to rule out that some participants had bladder neck
incompetence or other pathologies, as urodynamic studies were not performed. Another
area of concern is that our sample was sufficiently small and did not include incontinent
women. Finally, TA ultrasound may be criticized because of the lack of a fixed bony
landmark as a reference point. Measures of displacement are expressed only relative to a
chosen starting point rather than an anatomical landmark. In this study, similar to others,
the distinct edge of the endopelvic fascia in the region of its greatest observed displacement
that was observable during the movement was selected for measurement.

5. Conclusions

The use of pressure biofeedback for teaching PFMC to subjects without incontinence
is a beneficial teaching tool to facilitate consistent PFMC compared to verbal feedback. The
effect of pressure biofeedback on retention of PFMC performance was inconclusive in this
study. More research is needed to determine whether subjects with UI would also benefit
from the use of pressure biofeedback to learn how to contract the PFMs.
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