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State-of-the-art computer vision systems use frame-based cameras that sample

the visual scene as a series of high-resolution images. These are then processed

using convolutional neural networks using neurons with continuous outputs.

Biological vision systems use a quite different approach, where the eyes

(cameras) sample the visual scene continuously, often with a non-uniform res-

olution, and generate neural spike events in response to changes in the scene.

The resulting spatio-temporal patterns of events are then processed through

networks of spiking neurons. Such event-based processing offers advantages

in terms of focusing constrained resources on the most salient features of the

perceived scene, and those advantages should also accrue to engineered

vision systems based upon similar principles. Event-based vision sensors,

and event-based processing exemplified by the SpiNNaker (Spiking Neural

Network Architecture) machine, can be used to model the biological vision

pathway at various levels of detail. Here we use this approach to explore struc-

tural synaptic plasticity as a possible mechanism whereby biological vision

systems may learn the statistics of their inputs without supervision, pointing

the way to engineered vision systems with similar online learning capabilities.
1. Introduction
1.1. Artificial and biological neural networks
Over the last decade there has been an explosion of interest in the application of

deep neural networks [1] and convolutional networks [2] in a wide range of

machine learning applications, including computer vision [3]. In parallel, the

last decade has seen the development of a number of large-scale neuromorphic

computing platforms [4], which support event-based or spiking neural net-

works. Both of these advances come under the generic heading of neural

networks, but the two strands have progressed largely independently from

each other. Are there things they can learn from each other?

While all neural networks take a degree of inspiration from biology, those

used in today’s machine learning have followed a divergent path for some

time. They are based upon the multilayer perceptrons of the 1980s, using neurons

with continuous-variable outputs, and trained using error back-propagation [5].

The networks themselves are predominantly feed-forward, although some feed-

back techniques such as long short-term memory (LSTM [6]) are coming into

wider use.

Neuromorphic systems have been developed largely to support investigations

into the operational principles of biological neural systems and have, therefore,

naturally stayed closer to the biology. They use spiking neurons and are trained

through local learning rules such as spike timing-dependent plasticity

(STDP) [7]. They support strongly recurrent connectivity; in biological systems,

feedback connections are as numerous as feed-forward connections.

These differences between the artificial neural networks, that have taken the

world of machine learning by storm, and neuromorphic systems, that have
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stayed much closer to biology, demand further consideration.

It is the objective of this paper to explore event-based sensing

and processing in the context of computer vision systems

and to suggest ways that biological approaches may offer

advantages in areas such as rapid and online learning.

The potential advantages of neuromorphic computing are

not just of academic and scientific interest; they have also

attracted interest and investment from industry, both large

and small. The highest profile development has been that

of the IBM TrueNorth digital spiking neuron platform [8],

joined recently by the Intel Loihi chip [9]. Alongside these

established companies there have been several start-up com-

panies, particularly in event-based vision, such as iniVation

in Zurich, Switzerland, Chronocam in Paris, France, and

MindTrace in Manchester, UK. So there is a growing expec-

tation that event-based systems will play a role in future

machine learning applications.
180007
1.2. Event-based vision
Nearly all of today’s computer vision systems use frame-

based vision sensors. These sensors record the entire

image that falls upon them many (typically 25–50) times

each second. Each image is recorded at uniform resolution.

These sensors are highly developed, having evolved from tel-

evision cameras through various forms of video recording

device to the remarkable sensors built into today’s mobile

phones. The rationale for sensing the visual world in this

way is that the transmission or recording is intended to be

viewed by a human observer who may be looking closely

at any part of the moving image. The frame rate, too, is

tuned to the physiology of the human visual system. From

the earliest days of movies it has been understood that if a

sequence of still images is shown at a suitable rate a human

observer will perceive a continuously moving scene.

Biological vision sensors are quite different from frame-

based cameras. They do not sample the incident image at a

uniform rate, nor at uniform resolution. Different species

have differing configurations, but the human eye has a small

high-resolution region—the fovea—in the centre of the field

of vision, and a much larger vision periphery which has

much lower resolution combined with an increased sensitivity

to movement. If some unexpected movement is detected in the

periphery, the eye is quickly moved to point the fovea at the

area of interest for more detailed analysis. In this way, limited

resources are deployed to extract the most salient information

from the scene without wasting energy capturing the entire

scene at the highest resolution. Furthermore, the human eye

is primarily sensitive to changes in the luminance falling on

its individual sensors. These changes are processed by layers

of neurons in the retina through to the retinal ganglion cells

that generate action potentials, or ‘spikes’, that propagate

through the optic nerve to the brain whenever a significant

change is detected. This approach focuses resource on the

areas of the image that convey maximum useful information

such as edges and other details.

Since the primary goal of computer vision systems is to

enable the computer to extract information from the scene,

and not simply to record the scene for later human consump-

tion, does it not seem logical to start with a sensor that is

more like the biological system than the TV camera?

The frame-based approach to computer vision can, of

course, exploit the highly developed state of sensors intended
primarily for recording images. The frame-based output con-

tains a huge amount of redundant data and requires ferocious

computational power to process, though such power is now

readily available. The more biological event-based approach

can access event-based sensors, which exist, albeit at a much ear-

lier stage of development. The outputs of event-based devices

have lower computational requirements where resources

can be focused on salient aspects of the image that are

embedded in spatio-temporal patterns of events [10], where

again processing algorithms are much less-well developed.

1.3. Paper structure
In the remainder of this paper, we continue to make the case for

event-based vision. First, we present examples of event-based

image processing and motion detection (§2), followed by a

brief overview of SpiNNaker, the large-scale machine we have

developed for event-based processing (§3). Section 4 describes

an algorithm whereby synaptic rewiring can be used to learn

the features of visual input, and §5 proposes a speculative

approach based on information theoretic principles to model

the mechanism whereby individual dendritic branches in corti-

cal pyramidal cells may use rewiring to learn the statistics of

their visual inputs. Some suggestions for future work are offered

in §6 and our conclusions are discussed in §7.
2. Event-based visual processing
Energy efficiency and biological inspiration are characteristics

of neuromorphic hardware [11]. Event-based vision sensors

(EVSs) take inspiration from vertebrate eyes [12], in particular

from the function of photoreceptors which react to changes in

illumination [13]. EVSs are cameras whose common feature is

to emit events only when they sense sufficient change in

the log-luminance [14–16]. These computations are done

per-pixel at the transistor level, making them highly efficient;

moreover, since events are only generated when a pixel

considers the environment changed, transmission energy cost

is also low. (This is a simplification of the biological retina,

where the outputs from the photoreceptors go through signifi-

cant processing before they reach the ganglion cells that

generate spikes that propagate along the optic nerve.) By

having each pixel compute its changes independently, EVSs

have a high dynamic range, allowing them to capture everyday

scenes better than conventional cameras.

In this section, we consider the processing of event-based

visual information. We show how the number of events may

be reduced by using a multiscale representation and describe

an approach to detect motion in an event-based spatio-temporal

stream of visual data.

2.1. Image encoding
Although change sensing reduces the number of events the

sensor transmits, there may still be too many to send further

down the visual pipeline, given bandwidth and energy con-

straints. Mammalian retinas encode visual information into

multiple representations using distinct features [17], likely fol-

lowing the principle of encoding as much information as

possible with the fewest signals [18]. There is evidence that

some cells in the retina encode luminance information using

relative spike times—of the rank-order variant [19]—for

which there are models [20,21].
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Figure 1. Overview of image-encoding retinal path.
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The main mechanism for this encoding is competition

between different representations through lateral inhibition.

We took this principle, and circuits similar to those in the

retina, to create our spiking neural network for image encoding.

In the first layer of our network (figure 1), bipolar cells

sample the input in a nearby region. Synaptic weights are com-

puted according to a two-dimensional Gaussian distribution

and stored in a convolution kernel (WB). Incoming weights

are then normalized, so that they sum to one, and scaled by

the required weight so that a single spike will activate the

characterized bipolar neuron; this has the effect of distributing

the required activity across the entire receptive field. Each bipo-

lar cell excites a ganglion cell and an amacrine inter-neuron,

the latter enforcing competition as it inhibits ganglion cells con-

nected to neighbouring bipolar cells. The weights for inhibitory

connections—from amacrine to ganglion cells—are computed

by the cross-correlation of the bipolar input kernels,

WA ¼WB1 w WB2, ð2:1Þ

these will also be normalized and scaled as described above. By

computing weights in this manner, neighbours will be inhibited

proportionally to how similar are the regions they represent.

Amacrine cells are inhibitory neurons so their weights (WA)

can be considered negative, which means that the total

computation ( fG) of the circuit can act as a centre-surround filter:

fG / fB(WB)�WA: ð2:2Þ

Images are usually composed of elements whose spatial

frequency varies, so a single size of input kernel for bipolar

cells is not sufficient to encode them efficiently. A bipolar

cell whose receptive field has a close fit to an input region

should fire sooner than those that fit less well; similarly, its

associated ganglion cell will be the first to emit a spike for

that region. Additionally, this bipolar cell should suppress

activity from neighbouring ganglion cells—at every scale—

that might be attempting to represent the input, but with a

worse fit.

The competition between different bipolar cells produces

a temporal code in which each spike represents a region of

the input whose activity matches the receptive field of the

spiking neuron quite closely. The receptive fields can be

viewed as bases of a vector space; although the bases are
not orthogonal, competition will push the representation

towards orthogonality. Additionally, the inhibition of neur-

ons representing similar inputs, and the consequent

reduction of output spike activity, creates a sparse represen-

tation that should provide subsequent stages of the visual

pipeline with patterns that are easier to separate.

An example of the effects produced by the network is

shown in figure 2. Incoming events are accumulated and

shown in figure 2b, where positive (ON) changes are shown in

yellow and negative (OFF) changes in purple. These events are

processed by a version of the image-encoding network, coded

in the PyNN neural description language [23,24], with a

two-scale configuration. The high-resolution scale uses a 3 � 3

pixel Gaussian kernel with a standard deviation of sH ¼ 0.57

and a spatial sampling frequency of 1. The low-resolution

scale uses a 7 � 7 kernel with sL ¼ 0.87 and a stride of 2

pixels. Standard deviation values were selected to cover 3

and 5 pixel diameter regions. Figure 2c,d shows an accumu-

lation of spikes produced by the high- and low-resolution

output units.
2.2. Motion sensing
We continue to take inspiration from biological circuits to

design a motion-sensing network (figure 3a). Bipolar cells

integrate regions of the input in an orderly manner (either hori-

zontally or vertically) which then communicate to a motion

detector. Motion-detecting neurons usually require two neuro-

transmitters, one of which has slow dynamics (low-pass or

delayed) while the other is present for a brief time. If both

signals reach the detector at a similar time, they will induce

activation [25].

Delays are inherent to spiking neural networks. If the

appropriate delays are applied, the inputs will arrive at the

target neuron at the same time [26]. This allows a particular

spatio-temporal pattern to be recognized through coincidence

detection (figure 3b). In our model, slow–fast dynamics are

combined with axonal delays to reduce false positives.

The accumulation of two input events using the slow neu-

rotransmitter (figure 4) opens a 20 ms window (the

chequered area) for the fast input to reach its threshold. If

the fast-decaying input is received within that window, the

detector will fire (figure 4b). As only the right sequence of

events produces output activity, it is safe to assume that the

output indicates apparent motion.

To test this, a (5 � 5 pixel) bouncing ball is simulated in a

64 � 64 pixel environment; speed is chosen randomly to be 1

or 2 pixels per dimension per time step. The simulation is ren-

dered into a series of images, which are then converted into

events through an EVS emulator [22]. These events are pro-

cessed by a single-scale centre-surround network using a

Gaussian input kernel with s ¼ 0.9, giving a diameter of 5

pixels, and the input is sampled with a frequency of 4 pixels.

This processing reduces resolution but provides stability to

the input of the motion sensing units by reducing the

number of events per region. Figure 5 shows the results of

the simulation in terms of motion detection. The left half of

the figure corresponds to the ball moving in a northeasterly

direction, and the corresponding easterly motion detection

events (red-dashed vertical lines). The right half of the figure

shows the ball moving southwest with westerly detection

activity (green vertical lines).
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Figure 2. Image processing. (a) The input image; this is converted into an event-based representation through an EVS emulator [22] on a host computer. (b) An
accumulation of events. Events are then processed using the retinal model (on SpiNNaker). (c) Accumulated events from the higher resolution filter. (d ) Accumulated
events from the lower resolution filter.
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Figure 3. Motion detection architecture. (a) Activity from a particular region (cyan) is collected by integrator units (blue circles) and then passed to a detector
( purple) through decreasingly delayed lines. (b) Spikes are delayed so that they arrive at the same time; this causes a large input to the detector which is then
activated. (a) Motion detection unit and (b) coincidence through delays.
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Figure 4. Motion-detection post-synaptic potentials, showing the accumulated slow (500 ms; green) and fast (2 ms; blue-dotted) inputs. If both are above their
respective thresholds within a short temporal vicinity (shown by the chequered area), the detector will spike. (a) Inverse sequence of events and (b) correct sequence
of events.
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3. Event-based processing: SpiNNaker
The event-based visual processing networks described above

are suitable for running (and, indeed, have been run) on a neu-

romorphic platform. SpiNNaker (Spiking Neural Network

Architecture [27]) is one example of a large-scale neuromorphic

system. It is based upon a bespoke many-core chip; neuron and

synapse models are implemented in software, in contrast to

most other neuromorphic systems where those models are

implemented using analogue or digital hard-wired circuits.

The software approach has strengths and weaknesses: its

major strength is flexibility, as new models and learning

rules may readily be added to the software libraries; the down-

side of this approach is that software inevitably incurs an

energy-efficiency overhead of around one order of magnitude.

This makes SpiNNaker well suited to use as a research and
development platform, whereas hardware algorithms are

more efficient as the basis of an application delivery platform.

The neuromorphic aspect of SpiNNaker is the way the pro-

cessors are connected. Biological neural networks display very

high degrees of connectivity, with neurons often having many

thousands of inputs, sometimes as many as quarter of a million.

Here SpiNNaker borrows the well-established neuromorphic

technique of address event representation (AER [28,29]),

wherein each neuron is given a unique numerical ‘address’,

but instead of employing AER on a broadcast fabric it is

mapped onto a packet-switched fabric, thereby improving

system scalability.

SpiNNaker hardware has been delivered at a number of

scales, from the small 4-node (72-core) board that can model

networks of a scale equivalent to a pond snail brain, through

the 48-node (864-core; figure 6) board that can model networks
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Figure 5. Motion-sensing results. Input events are presented as blue dots; in the first half (until approx. 500 ms), the ball is moving northeast, then the ball
bounces off a corner and moves southwest. East motion detection is depicted with red-dashed lines and west detection events are shown as green lines.

Figure 6. The 48-node, 864-core SpiNNaker circuit board. (Online version in
colour.)
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of small insect scale, up to the 500 000-core machine that

forms the basis of the SpiNNaker platform offered openly

under the auspices of the European Union Human Brain

Project (figure 7). Each processor core can be used to model a

few hundred spiking neurons and around a million synapses

forming the inputs to those neurons.

SpiNNaker has support software [24] which maps a spiking

neural network written in PyNN [23] onto the machine. A sim-

plified PyNN description of the multiscale image processing

network described in §2.1 is shown in figure 8 to illustrate the

style of the description. The complete PyNN model can be

found in the data repository associated with this paper.
4. Structural plasticity for classification
With an event-based vision stream, pre-processing based upon

a retinal model, and a suitable neuromorphic platform such
as SpiNNaker, we can then proceed to perform additional

processing to achieve outcomes such as object recognition

and classification. In the following sections, we discuss some

of the principles of visual processing in the brain, and some

experimental work to develop object classification systems

based upon those principles.
4.1. Topographic maps
A widely observed principle in biological brains is the use of

topographic maps, wherein two-dimensional topological

(though not necessarily scale) relationships are preserved in

projections from one brain region to another.

Neural topographic maps consist of layers of neurons

whose reaction to afferent stimuli changes with area (figure 9).

Such an organization is characterized by the preservation of

neighbour activity from the source to the target layer and pro-

vides several advantages in terms of wiring and information

processing and integration. Wiring is optimized since neurons

generally have limited receptive fields and tend to be interested

in spatially clustered locations. As an example, orientation-

selective neurons, such as those present in primary visual

cortex, are required to have afferents from small regions of the

total visual receptive field, thus a topographic organization

ensures that neurons only connect to their immediate neigh-

bours and have limited interaction with those which are

further away. More importantly, when neurons form multiple

aligned maps, each receiving information from a different

modality, they exhibit multisensory facilitation; their response

is supra-linear if they receive synchronous stimuli from the

same area of space arriving from different modalities. This is

the case in the superior colliculus, a brain structure which inte-

grates signals from multiple senses and also guides adaptive

motor responses [30].

Topographic projections are widespread in the mammalian

cortex [31]. Their development has been explored through

simulation, with and without spiking neurons, and involving

both synaptic plasticity [32–34] and synaptic rewiring [35].

The latter example has been modelled on SpiNNaker.

It is with that model we suggest an architecture capable of

handwritten digit classification through supervised learning.



Figure 7. The 500 000-core SpiNNaker Human Brain Project platform. (Online version in colour.)

Figure 8. Multi-scale image representation PyNN code. (Online version in colour.)
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In short, the suggested model involves the cooperation

of two types of mechanisms: activity-independent and

activity-dependent. The former is represented by the for-

mation rule: it relies on the distance between potential

partnering neurons in order to create a new synapse—

neurons which are spatially clustered will tend to form

more connections than neurons which are spatially distant.

The latter is composed of two mechanisms: STDP, and a

removal rule for the synaptic rewiring mechanism. STDP,

using local spiking information, modifies the weights of

synapses connecting neurons together, while the elimination

rule preferentially removes those synapses which are

depressed—synapses which carry ‘useful’ patterns or sub-

sets of patterns to neurons will tend to be reinforced,

thus are more stable in the long term, conversely, synapses

which usually transmit what amounts to noise will be silenced

and more likely to be pruned. All of the aforementioned
mechanisms operate continuously, at a fixed rate, on a

population of neurons.

The model we use differs from the one suggested by

Bamford et al. [35] in several salient respects:

— it is simulated in real-time on the SpiNNaker neuro-

morphic hardware;

— more realistic input (MNIST digits) at larger spatial scales

is provided to each target layer;

— connections are generally static (weights are not modified

by STDP);

— lateral connections (target-target) are inhibitory, rather

than excitatory;

— simulation of mechanisms for different purposes: Bam-

ford et al. proposed the model as a mechanism for

topographic map refinement; here we suggest a different

use: digit classification.



source layer

target layer
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2

Figure 9. Topographic maps. Neuron (2) in the target layer has a receptive
field formed by connections from the source layer (feed-forward) as well as
connections from within the target layer (lateral). These connections are
centred around the spatially closest neuron, i.e. neuron (1) in the case of
feed-forward connections. Connections from more distant neurons are likely
to be weaker (indicated by a darker colour). (Online version in colour.)
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4.2. Network architecture
In the context of spiking neural networks, learning is usually

associated with the longer term increase or decrease in the effi-

cacy of synapses. Such an increase could occur because a

synapse has detected a pre-synaptic action potential followed

closely by a post-synaptic one. Conversely, a post-synaptic

action potential followed by a pre-synaptic one is considered

anti-causal and the synapse processing the events decreases

its efficacy. STDP is the mechanism most usually modelled to

induce long-term potentiation or depression [7,36].

However, a network can learn even without a change in the

efficacy or weight of a synapse. Using structural plasticity on

SpiNNaker, a network can solve the task of classifying hand-

written digits either using only static synapses, or STDP can

be used to modulate the synaptic rewiring. The synaptic rewir-

ing model includes two probabilistic rewiring rules [35]: one

for synaptic formation, the other for elimination. Formation is

a probabilistic, activity-independent process dependent on

the distance between candidate neurons. A new synapse is

formed with maximum weight gmax if

r < pforme�d
2=2s2

form , ð4:1Þ

where r is a random number sampled from a uniform distri-

bution in the interval [0, 1), pform is the peak formation

probability, d is the distance between the two cells and s2
form

is the variance of the receptive field. The result is a Gaussian

distribution of formed synapses around the ideal target site,

i.e. around the target neuron where d ¼ 0.

Removal is either carried out with a fixed probability

pelim-pot when weights are static, or with a choice of pelim-pot

or pelim-dep when applied in conjunction with STDP. Thus, a

synapse is removed if

r , pelim where pelim ¼
pelim-dep for wsyn , ug

pelim-pot for wsyn � ug,

�
ð4:2Þ

where r is a random number sampled from a uniform distri-

bution in the interval [0, 1), pelim-dep is the elimination

probability used when a synapse is depressed, pelim-pot is the

elimination probability used when a synapse is potentiated,
wsyn is the weight of the synapse under consideration for

removal and a weight threshold ug is selected as half of the

maximum allowed weight (ug ¼ 1
2 gmax). If STDP is not pre-

sented in the simulated network, only pelim-pot is used as all

synapses would have a fixed weight, namely gmax.

The model is equivalent to the supervised learning para-

digm in artificial neural networks. Data are labelled using a

dedicated projection from a source layer to the corresponding

target layer. A layer of neurons providing examples belong-

ing to a class connects exclusively to a population which

learns to recognize members of that class. Figure 10 shows

the network architecture of the training regime, where each

source in a source-target population pair displays a digit

for 200 ms for a total of 300 s; the initial connectivity between

each source–target pair is 1%.

To generate the input, each original digit is filtered via

convolution using a 3 � 3 centre-surround kernel, mimicking

the response of the highest resolution retinal ganglion cells.

The kernel is normalized to sum to zero with an auto-

correlation equal to one. Finally, a threshold is applied after

the convolution operation, resulting in edge-detection. Trans-

mission within the network is achieved through the use of

neurons which generate Poisson spike trains; each pixel

within the 28 � 28 image is mapped to two Poisson neurons,

one for the on and one for the off channel. Figure 11 shows

examples of input digits before adding background noise;

all of the feed-forward connections are excitatory.

Neurons within each target layer also receive lateral con-

nections. These are inhibitory and their main purpose in this

network is to limit the spiking activity within the target layer.

While connections within each target layer abound, there are

none between the layers.

The network is described using the PyNN [23] simulator-

independent network description language. The SpiNNaker,

simulator-dependent, implementation of PyNN (sPyNNaker

[24]) has been extended to perform synaptic rewiring.

Table 1 (mirroring, with only slight modifications, table 1

from [35]) contains the parameters used in the simulations

presented in this section. The wiring parameters affect the

synaptic rewiring mechanism and its operation, from the

rate at which rewiring occurs ( frew) and the size of each

neural layer (Nlayer), to the individual formation and elimin-

ation probabilities used ( pform and pelim) and the maximum

number of possible afferents that an individual neuron can

have (Smax); we distinguish between feed-forward (ff ) and

lateral (lat) connections. The Poisson neurons which, in con-

junction, transmit the digits to the target layers (after a

delay of 1 ms), fire with an overall mean firing rate of

fmean ¼ 5 Hz, and display each digit for tstim ¼ 200 ms.

Finally, the behaviour of individual leaky integrate-and-fire

neurons and conductance-based synapses is controlled by

the membrane and STDP parameters, respectively. The be-

haviour and choice of these parameters is further explained

by Bamford et al. [35].
4.3. Classification
Figure 12 shows that it is possible to identify visually what each

target layer has learnt; time-averaged digits from each class are

embedded into the connectivity of the network. It is then poss-

ible to test the quality of classification. For this, we make use of a

single source layer, or a single pair of source layers in the case

of the filtered digits: one represents ‘ON’ events, the other



Figure 10. Network architecture used for training. A source layer displays a series of examples of handwritten digits; each example from a particular class is
projected to the target layer corresponding to that class. (Online version in colour.)
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Figure 11. Example inputs presented from each source layer to the corresponding target layer before transformation into a rate-based representation and adding
noise. (a) Digit shape before the application of the centre-surround filter. (b) Edge information transmitted as ‘ON’ pixels (a positive change in brightness, lighter
colour) and ‘OFF’ pixels (a negative change in brightness, darker colour). The network has been tested with both types of input. (Online version in colour.)
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represents the ‘OFF’ events. The previously learnt connectivity is

used to connect all of the target layers to the source layer, and all

plasticity is disabled. The source layer now displays class-

randomized examples, each for 200 ms. The classification

decision is made off-line, based on which target layer has the

highest average firing rate within the 200 ms period.
This is not a state-of-the-art MNIST classification network

(it achieves a modest accuracy of 78% and an RMSE of 2.01

with non-filtered inputs, performance drops when filtered

inputs are used: an accuracy of 71% and an RMSE of 2.38) as

each input digit class is represented only as an average for

that class, but it serves here to demonstrate that synaptic
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Figure 12. After training, an average representation of each input digit class can be reconstructed from the individual source population fan-out patterns when
presented with filtered (a) and non-filtered (b) inputs. In the filtered input case, the image is built from summing together the reconstructed connectivity from the
‘ON’ and ‘OFF’ source layers. Brighter colours equate to more connections originating from that pixel. The current plot shows only the effect of synaptic rewiring;
weights are not included. (Online version in colour.)

Table 1. The parameters used in the simulations presented throughout this section.

wiring inputs membrane STDPa

Nlayer ¼ 28 � 28 fmean ¼ 5 Hz vrest ¼270 mV Aþ ¼ 0.1

Smax ¼ 96 tstim ¼ 200 ms eext ¼ 0 mV B ¼ 1.2

sform-ff ¼ 2.5 — vthr ¼254 mV tþ ¼ 20 ms

sform-lat ¼ 2 — gmax ¼ 0:1 nS t2 ¼ 20 ms

pform-ff ¼ 0.16 — tm ¼ 20 ms —

pform-lat ¼ 1 — tex ¼ 5 ms —

pelim-dep ¼ 0.0245 — — —

pelim-pot ¼ 1.36 � 1024 — — —

frew ¼ 10 kHz — — —
aThe STDP parameters are only used when synaptic plasticity is used in conjunction with the rewiring.
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rewiring can enable a network to learn, unsupervised, the stat-

istics of its inputs. Moreover, with the current network and

input configuration, the quality of the classification is critically

dependent on the sampling mechanism employed in the

formation of new synapses. Random rewiring, as opposed
to preferentially forming connections to neurons that have

spiked recently, could achieve accurate classification only if

operating in conjunction with STDP or some other mechanism

to prevent the pruning of useful synapses; such a mechanism is

discussed in §5.
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5. Dendritic branches and information theory
An alternative view of the same problem is to consider how

the visual system (and cortex more generally) could adapt

most efficiently to the inputs that it receives so that it can

use limited resources to span and represent the input space

of most interest. One can see this as a classical unsupervised

learning problem where, in this context, it would mean build-

ing a representation of the input distribution, or perhaps a

prior distribution for a Bayesian inference mechanism.

In the last 15 years, it has become increasingly clear that

the point neuron model which has dominated artificial spik-

ing neural networks does not paint the whole picture of how

neurons learn and respond to the inputs on their dendritic

tree [37–41]. The term for this area of study is dendritic com-
putation and there is ample evidence from these references, in

particular, which suggests, among other things, that

— synapses tend to cluster on dendritic branches;

— these clusters can operate as independent processing

elements;

— they demonstrate potentially useful properties such as

adaptation, nonlinear response to sparsely coded synaptic

input, homeostasis and the generation of NMDA poten-

tials (electrogenesis mediated by NMDA receptors)

which travel along the dendritic branch.

If this is the case—which now seems likely—it means that

the input to the soma is heavily pre-processed, with the

implication that any firing of the neuron is in response to a

far more nuanced spatio-temporal pattern at the synapses

than is possible with a simple linear sum, whether or not a

sigmoidal or other nonlinearity is applied. So the implication

is that a neuron is a more sophisticated processor than

previously thought, with each action potential produced

containing a higher ‘information content’.

Stepping back from the detail, a more general view of

the cortical mechanism under consideration here is that of a

hierarchical inference system which uses sparse codes for

learning and applying spatio-temporal patterns robustly in

the presence of noise and component failure or variation.

The lower layers of the hierarchy deal with features that are

faster-moving and more detailed and, as one goes higher in

the hierarchy, they become temporally more stable and

‘spatially’ more abstract. Arguably, the great recent success

of Deep Learning as described by LeCun et al. [42] is at least

partly due to this hierarchical conception.

A further speculation is that individual neurons use a

combination of unsupervised learning for building prior

models of likely input in the dendritic branches—perhaps

especially so in the apical tuft where a backpropagating

action potential (bAP) will rarely be present in the human

pyramidal neuron—and supervised learning in or near the

soma where a bAP signal is available to incorporate targets,

training signals and rewards, which are either immediate,

or delayed in the case of reinforcement learning.

5.1. Assumptions and a simple test
A clear opportunity from the above perspective is to under-

stand how each dendritic branch can recognize and adapt to

input, and then potentially send on information, in the form

of an NMDA potential, when certain spatio-temporal patterns

are recognized. Simplifying the problem further in order to
provide analytical tractability, one can see the inputs as

binary variables where an action potential from the retinal sub-

system (itself significantly pre-processed as described in earlier

sections) is either present or absent in any given time step.

A natural choice of time step could be the refractory period

of a neuron, i.e. � 3 ms which would ensure binary output

codes, but this is by no means a requirement. This set of simpli-

fying assumptions means that one can then view the

information transfer mechanism in cortex as binary codes,

and there is both evidence from neuroscience and tangible

computational benefit if these codes are sparse [18,43–48].

We recognize that the approximations and mechanisms

described in this section are partly speculative but they are

based upon a consideration of results and patterns seen in

the references provided. We do not claim the mechanisms to

be exact, although it is interesting to note that the Maximum

Entropy sampling algorithm described below is replicated

exactly in a recent paper providing arguably the most rigorous

and comprehensive application of information theory to

brain function (Parr & Friston [49], 3rd element of the full

Generalized Free Energy equation in appendix A).

To assess the unsupervised mechanisms suggested above,

the original MNIST binary dataset has been used as a test

problem to see how simple but biologically plausible homeo-

stasis and learning mechanisms in dendritic branches would

adapt to their input distributions. Work is ongoing to extend

these ideas using similar information theoretic principles to

judge the classification performance of a supervised learning

mechanism which uses the output from these dendritic

branches. As far as possible, it is desirable that this mechan-

ism should be feed-forward and online, i.e. without the need

to resort to neurally implausible mechanisms such as error

backpropagation using chain rule derivatives and many

repeated epochs of batch learning.

The input to the sampling subsystem is 60 000 binary input

patterns across the 28 � 28 input raster plot with each digit

accounting for approximately 6000 examples. The global

input density of this dataset is shown in figure 19a.

The processing elements are individual dendritic branches

containing a cluster of related synapses. Mel [37] give evidence

that clusters of five to nine synapses have certain desirable

properties and they use eight in their more detailed study.

With our aim (described later) of achieving a firing probability

p � 0.5 for each branch we have chosen n � 20 somewhat arbi-

trarily—it may be that a smaller number is more effective. Let

us consider one dendritic branch, which will be defined as a

section of dendrite structure with some number of ‘local’

synaptic connections. It has been shown that both memory

and computation are potentially available within a branch, as

well as the possibility of communication between local

branches. Such locality is of great benefit—perhaps even essen-

tial—for realistically large networks of synapses and neurons

to be able to learn. We are going to further assume binary be-

haviour, i.e. at any given point in time a synapse is either 1

(firing) or 0 (silent). If a branch has 20 synapses, it can therefore

provide a binary code with 220 possible states. This can be seen

as a sparse code as it samples a much larger input space (in

MNIST 784 pixels) leading to a 20-of-784 code as described

by Furber et al. [44].

The distribution of the behaviour of synapses in the

branch will be multivariate Bernoulli. As shown by Dai et al.
[50], this distribution is a member of the exponential family

of distributions and hence a Maximum Entropy distribution
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[51,52] with attendant advantages in terms of both analytical

simplicity and when one wishes to reason about the infor-

mation-theoretic behaviour of the branch. Some interesting

properties of this distribution are

(1) independence and uncorrelatedness are equivalent—which

is not generally true of multivariate distributions;

(2) variance and entropy of the distribution are either exactly

or approximately equivalent in the sense of being similar

convex functions of p from 0 to 1 (figure 13);

(3) both marginal and conditional distributions of subsets of

the distribution are still multivariate Bernoulli.

Points 1 and 2 above make calculations with variances

(and covariances) essentially equivalent to calculations

about entropy, but much easier to carry out.

Each branch should sample the input receptive field ‘most

effectively’ in some well-defined sense. Some desirable

properties could be

— focusing on the input distribution so that more resources

are allocated where input is more likely—this can be seen

as importance sampling, density estimation or unsupervised
learning depending upon your point of view;

— extracting the most ‘signal’ in the presence of inevitable

‘noise’, i.e. maximizing the signal-to-noise ratio;

— capturing ‘features’ in the input signal.

An approach that combines these desirable features is

described in the experimental design community as Optimal
Design [53] where a mathematically tractable criterion is

maximized by the choice of input samples.

The original thinking about such optimal sampling mech-

anisms was in the context of Variance- or Alphabetic-optimal

experimental design for regression modelling (e.g. [53,54]

and for an insightful practical analysis ch. 14 of [55]). A

nice generalization of the ideas to other models called Maxi-
mum Entropy Sampling incorporates information-theoretic

principles more explicitly [56].

Much work has been done on algorithms for finding the

best sampling design in these problems [57]. Usually, these

are formulated as exchange algorithms where a candidate

point in the current sample is dropped and a different can-

didate point is added to see if the chosen criterion is

improved. This continues until convergence. In some

cases, the problem is convex and converges quickly and

robustly, in others a global optimization method such as
simulated annealing is required in order to avoid the

many local optima. In almost all cases, matrix computations

are required with the criterion usually being some function

(e.g. the determinant) of a covariance matrix of the posterior

parameter distribution in the case of a linear or nonlinear

regression model, or perhaps of the posterior conditional

Gaussian Process.

As indicated in point 2 above and the comment after-

wards, for a multivariate Bernoulli distribution the entropy

of the distribution of joint probabilities is equivalent to the

generalized variance which—as in the multivariate Gaussian

case—is a scalar monotonic function of the determinant of

the covariance matrix (jCovj), reducing to a simple variance

in the univariate case. So a first idea to investigate is to find

out what would happen if we choose synaptic connections

so that our dendritic branch samples from the input in

order to maximize the source entropy. This would be equiv-

alent to maximizing the determinant of the covariance matrix

of samples from the training set. The best possible outcome is

for all the variances on the diagonal to be their maximum

value (0.25 for a Bernoulli variable implying a probability

of 0.5) and all off-diagonal entries to be zero indicating no

correlations between any of the sampled points. This is unli-

kely to be feasible in practice but for reference with n ¼ 20 the

value of lnjCovj in this case is 227.73. The most direct intui-

tion for this is the measurement of a hypervolume in 20D

space. One can compare this to the values attained in figures

15 and 17. For example, the maximum value found in figure

17 is �233. Comparing the two hypervolumes gives a ratio

of exp (33� 27:73) � 194 times smaller which sounds huge

until considering that in 20D space one would only need

to reduce each axis by
20 ffiffiffiffiffiffiffiffi

194
p

� 30% to make this reduction

in hypervolume.

In terms of computational neuroscience this is structural
plasticity, i.e. we are altering synaptic connectivity in order

to improve the sampling properties of the dendritic

branch. In this context, the covariance matrix of input

samples over the training set will capture binary, ternary

and higher-order relationships between pixels that relate

to features that are present and of direct interest in the

training data. It should be noted that, for the moment,

all input connections to one branch must represent

different pixels.
5.2. Some results
A first look at the problem required computation of the full

784-dimensional covariance matrix of the 60 000 MNIST

training inputs. The original unaliased formulation is used,

i.e. a pixel is either present or absent. In the dataset available,

where 8-bit greyscales have been generated, a cut-off point of

80 has been chosen, above which a pixel is on and below

which it is off.

Now a simple algorithm was used to choose a 20 � 20

covariance submatrix by extracting the appropriate rows

and columns from the full matrix, in order to maximize its

determinant. A simple random search retaining ‘best

found so far’ was used and as expected a slow progression

towards better values was seen. Figure 14 shows the best

point set selected after 1M random choices. Clearly, they

are in the higher density region and show some clustering.

A second approach is like a simple exchange algorithm

where the pixel k to be removed is the one with the smallest
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value of a summation of absolute values of the covariance

matrix of the current input connectivity thus

X20

i¼1

Abs(Cov[i, k]): ð5:1Þ

The reasoning behind this choice is simplicity; more soph-

isticated ways of choosing a point for removal are available in

the literature and these are likely to have better ultimate per-

formance, but this is not our goal here. A side-effect of this

choice mechanism is that a sample with lower values off

the diagonal (i.e. lower covariances) will tend to be chosen

for removal, which is not ideal.

Replacing the rejected connection this way with another ran-

domly chosen pixel provides an apparently effective approach,

with figure 15 showing a fast rise to a close-to-optimal value

for the determinant after something like 30–70 exchanges, fol-

lowed by a slow and gentle fall to a stable value that is still

significantly higher than the random search mechanism was

able to find after 1M random draws.

It did not seem to matter whether one started with a good

randomly chosen starting set or not, which bodes well for the

robustness of such an algorithm.

Figure 16 shows the final pixel sampling positions after 69

exchanges (the one leading to the highest jCovj value) and

after 1000 exchanges when the algorithm has presumably

‘bedded in’ and done some wandering around a solution

space where the jCovj value is sacrificed to some extent by

competing aspects of the algorithm—this is discussed below.

Figure 16a looks similar to the randomly generated sol-

ution above but with a significantly better jCovj value and

probably with more clustering; figure 16b is clearly very clus-

tered and in fact generates something that looks very much

like two randomly oriented Gaussian patches. This is food

for thought considering the amount of work on such recep-

tive fields in the visual input system [58], because here they

have arisen entirely from a Maximum Entropy sampling

exchange algorithm applied to realistic input.

5.3. A more biologically plausible algorithm
As far as we know, the brain is not designed to carry out the

type of computation required for replicating the above result
and even if it has evolved mechanisms for calculating simple

linear algebra operations such as vector–matrix multiplication,

it is highly unlikely that complex and numerically sensitive

operations such as matrix determinants and inverses are feas-

ible with the computing machinery available. So it would be

useful to find a simpler and more biologically plausible mech-

anism that could be used to produce a similar result. It seems

that such mechanisms do exist if we allow some very simple

computation and storage to be carried out within the dendritic

branch. The following mechanism was chosen that we believe

is simple enough to be biologically plausible. Each synapse is

given an integer value; this does not relate to its effect on the

branch computation but defines its longevity, and when it

gets too small it means the synapse has atrophied and will be

replaced by another randomly chosen connection. This

makes sense in terms of how structural plasticity has been

observed, and something similar has been suggested by

Numenta in their HTM implementation [46].

At any time step then, some number of the synapses in

the branch will receive input from their receptive field and

fire. If this number is above an adaptive homeostatic

threshold, an NMDA potential is generated and the synaptic

longevity is increased by 1 if the synapse was involved in the

latest spike generation or reduced by 1 if not. A lower limit is

established in advance so that the synapse with smallest long-

evity (i.e. the most atrophied one) is only replaced if the

longevity falls below this limit. This is the only ad hoc

tuning parameter in the mechanism so far and adjusts the

balance between stability and the number of synapses

recycled. This parameter could itself be stochastic and/or

adaptive to aim for a target stability. Fortunately, the mech-

anism does not appear to be sensitive to any of these

choices which bodes well for robust performance.

This simple mechanism has a number of sensible

properties:

— from neuroscience—it resembles Hebbian plasticity in

that those synapses which fire together are strengthened;

— from information theory—it tends to promote a maxi-

mum generalized variance by choosing samples with

individually high information content (though see

below for a caveat);

— one can make arguments for biological plausibility from

the dendritic computation literature via local processes

within the branch;

— it is to a certain extent self-stabilizing as there will always

be synapses that do and do not fire from changing input.

For ease of programming, the results in figures 17 and 18

are generated using the entire training set for making a

change in synapse quality but it is simple enough that an

online incremental version will be easy to implement. They

are, therefore, equivalent to the results above from the

direct matrix computations.

Comparing the plots generated from this very simple

algorithm to the earlier ones, a few things can be noted:

— the jCovj values are uniformly better;

— the trend over replacements is very similar;

— the structure of the sampling points after the early finish

at maximum jCovj and after 1000 replacements are both

very similar.
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Figure 16. Position of sampled inputs after (a) 69 and (b) 1000 replacements using jCovj. (Online version in colour.)
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So this version of the algorithm seems to perform at least

as well as the matrix version, arguably better.

As mentioned above, one caveat needs to be noted. A true

Maximum Entropy sampling algorithm (or D-optimal exper-

imental design which is conceptually equivalent) would

maximize the diagonal variances and minimize the off-

diagonal covariances in order to maximize the generalized

variance—which in the multivariate Gaussian case is equival-

ent to a hypervolume defined by the covariance matrix and

measured by its determinant. The closest that we get to this

in the above experiments are the samples where the jCovj
value is highest, i.e. figures 14, 16a, 18a. In these cases,

the off-diagonal terms will tend to be smaller promoting

independence between the individual synaptic samples.

However, due to how we choose samples for removal in

the first algorithm using equation (5.1) and how the synaptic

replacement mechanism is formulated in the second, the

samples move away from this local maximum. This is

because both of these mechanisms will tend not to penalize
samples that are correlated, i.e. they will allow the off-diag-

onal terms in the covariance matrix to increase. This may

well be useful in terms of finding features in the input

sample (in itself a valuable outcome), but it moves away

from a pure Maximum Entropy sampling method. Two

intriguing questions are then:

— would a small change to the algorithms stay closer to a

true Maximum Entropy sampling method?

— can one identify and exploit the trade-off between

maximizing generalized variance and finding features?

Figure 19b shows the combined density of 2500

branches after training. Clearly, the input density is related

to the known input density in figure 19a, focusing on

populated input pixels and ignoring unpopulated—one

important feature of unsupervised learning. It does not

sample the less populated areas as much as the real

input density.
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Figure 18. Position of sampled inputs after (a) 69 and (b) 1000 replacements using simple dendritic branch computation. (Online version in colour.)
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5.4. Properties of the branch outputs
In the dendritic computation literature, a widespread view is

that when a large enough number of the local synapses fire,

an NMDA plateau potential is generated. Ignoring for a

moment the timing issues (these plateau potentials are much

longer than somatic action potentials) we can then choose

how and when such a dendritic branch output should be gen-

erated. Following the information-theoretic rule that the

maximum information available from a binary variable is

when p ¼ 0.5 (see, e.g., [47] and figure 13), and also bearing

in mind the very important issue of homeostasis which is

likely to be a crucial property for any neural processing

system, a simple adaptive thresholding mechanism has been

built into the branch to ensure that p � 0.5 indefinitely. Of

course, this is not necessarily neurally plausible and some

trade-off in biological systems is almost certainly required in

order to reduce energy consumption by biasing the firing

probability towards 0 from this optimal value. There are also

arguments about sparsity of coding that would suggest a
firing probability lower than 0.5. This is a potentially important

issue that requires further investigation.

It will also be important to confirm that each branch does

not converge onto the same input sample, as multiple

branches are only of use if they incorporate different infor-

mation. This may require some thought, but the literature

does suggest that communication between local branches is

possible and hence some simple inhibitory mechanism

could be fashioned if necessary. To test the simple and cur-

rently independent set-up we look at the correlations

between NMDA potentials from 50 independently generated

branches after training is complete. A perfect choice of orthog-

onal features would of course have 1 on the diagonal and 0

elsewhere. Here all of the off-diagonals are in the range

20.1 to 0.6 which is surprisingly good considering that (i)

no mechanism at all has been used to keep them apart and

(ii) they are all sampling from a limited region of the input

as shown in figure 19b. A few different views of this result

are given in figure 20 where the plots in figure 20a,c are



25

5

10

15

20

25

5

5 10 15 20 25 5 10 15 20 25

10

15

20

(a) (b)

Figure 19. (a) Input density from 60 k MNIST binary training data. (b) Sampled input density using the simplified online algorithm and 2500 branches. (Online
version in colour.)

1 1.0

400

0

100

200

300

0

0 50 0 1.00.80.60.4

1.0

0.2

40
40

20

0

0.5

1.0

20

0
0.4

0.6

0.8

0.240302010

0.2

0.4

0.6

0.8

50

40

30

20

10

(a) (b)

(c)

Figure 20. Some views of the correlations between outputs from 50 independently generated branches. (a) Two-dimensional view of correlations, (b) histogram of
correlations and (c) three-dimensional view of correlations. (Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
8:20180007

15
two- and three-dimensional views, respectively, of all the

individual branch correlations and the plot in figure 20b
shows a histogram of the same data to make the distribution

of correlations more apparent.
It is worth mentioning that these results are gathered

from branches that were allowed to continue replacing

synapses for 1000 iterations. It is highly likely that terminat-

ing earlier (e.g. closer to the maximum of jCovj as shown
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for one branch after 79 iterations in figure 18a) would pro-

duce smaller correlations between the branches. This is also

a fruitful direction for future study.
 royalsocietypublishing.org
Interface
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6. Future work
Vision sensors have been built with embedded per-pixel

processing units [59], which allow parallel, real-time feature

computation in the sensor itself. Embedding retina-like compu-

tation in the sensor would further reduce redundancy whilst

retaining information and producing custom representations

(for motion, orientation, saliency, luminance, etc.).

Mammalian retinas send multiple representations of the

environment down the visual pathway, how these are com-

bined and affect learning of abstract versions of objects is

still an open question. For example, motion signals could pro-

vide a hint to cortical regions so they have a less difficult job

predicting how the environment will appear.

Different signals may affect learning in different ways,

‘slow’ neurotransmitters could provide windows for neurons

to spike given sufficient ‘fast’ input (see §2.2). This interaction

directly affects learning algorithms, such as STDP, since the

‘slow’ transmitter essentially supervises the time at which a

post-synaptic neuron should spike. In this way, higher

regions of cortex could drive learning of lower regions’ out-

puts; or neurons in the same abstraction level, which react

to the same input, could form bindings even if their receptive

fields are far from each other.

The network architecture presented in §4 can be

expanded with the addition of a winner-takes-all network

connected to the output of the target layer. This would

allow online classification with connectivity pre-trained

using supervised learning.

We are also currently working on the addition of super-

vised learning mechanisms to the sparse-coded dendritic

branches described in §5. We know that bAPs are generated

in those parts of the dendritic tree closest to the soma when

the associated neuron fires, and it has already been shown

that these bAP signals can act as a modification or gating

mechanism for synaptic plasticity [60,61]. Trying to stay

close to these observations, a mechanism for gating the

sampling process described in §5 would allow the dendritic

branches to converge on features with good signal to noise

on only a subset of the inputs received—perhaps, those

associated with a training signal. This could, therefore, act

as a fully local supervised learning mechanism and initial

results on the same MNIST data are encouraging. We are

still investigating the options for converting neuroscience
observations into feasible computational mechanisms and

hope to report in more detail soon.
7. Conclusion
Event-based vision offers a number of prospective advan-

tages over conventional frame-based computer vision due

to its inherent ability to focus limited computing resources

on salient areas of the scene. Processing the spatio-temporal

patterns of events that emerge in event-based vision is at an

early development stage, but biology offers ample evidence

that such systems can work well in practice.

Neuromorphic platforms are well-suited to large-scale

event based processing, and SpiNNaker offers the flexibility

of software to implement a range of neural (and non-neural)

event processing models. These models may closely mimic

biological processing, or be much more abstract in their biologi-

cal inspiration. Event-based cameras are a good match to

SpiNNaker’s real-time spike processing capabilities.

Information theoretic approaches such as Maximum

Entropy sampling can be emulated in event processing sys-

tems, and techniques such as synaptic rewiring open the

possibility of achieving online unsupervised learning in near-

optimal ways, a result that it is difficult to deliver using

frame-based approaches due to the very high computational

cost of training such networks.
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