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Metabolic balance in colorectal cancer is
maintained by optimal Wnt signaling levels
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Abstract

Wnt pathways are important for the modulation of tissue home-
ostasis, and their deregulation is linked to cancer development.
Canonical Wnt signaling is hyperactivated in many human colorec-
tal cancers due to genetic alterations of the negative Wnt regula-
tor APC. However, the expression levels of Wnt-dependent targets
vary between tumors, and the mechanisms of carcinogenesis con-
comitant with this Wnt signaling dosage have not been under-
stood. In this study, we integrate whole-genome CRISPR/Cas9
screens with large-scale multi-omic data to delineate functional
subtypes of cancer. We engineer APC loss-of-function mutations
and thereby hyperactivate Wnt signaling in cells with low endoge-
nous Wnt activity and find that the resulting engineered cells have
an unfavorable metabolic equilibrium compared with cells which
naturally acquired Wnt hyperactivation. We show that the dosage
level of oncogenic Wnt hyperactivation impacts the metabolic
equilibrium and the mitochondrial phenotype of a given cell type
in a context-dependent manner. These findings illustrate the
impact of context-dependent genetic interactions on cellular phe-
notypes of a central cancer driver mutation and expand our under-
standing of quantitative modulation of oncogenic signaling in
tumorigenesis.
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Introduction

Colorectal cancer (CRC) is among the most common types of cancer

worldwide, and the patients’ survival rates remain poor, especially

for advanced stages (Bray et al, 2018). Major effort has been under-

taken to explore the heterogeneity of this disease to understand the

mechanisms of tumorigenesis and identify personalized treatment

strategies. The classification of tumors into consensus molecular

subtypes (CMS; Guinney et al, 2015; Dienstmann et al, 2017) has

been an important step toward this goal. The CMS classification is

based on transcriptome profiling and has been enabled by genome

and transcriptome profiling studies of large patient cohorts (Cancer

Genome Atlas Network, 2012). The four CMSs differ in their muta-

tional profile, their infiltration by immune and stromal cells, as well

as in their metabolic profile (Guinney et al, 2015; Dienstmann

et al, 2017; Rodriguez-Salas et al, 2017; Soldevilla et al, 2019).

Spatial and temporal modulation of Wnt signaling is important

for stem cell maintenance and tissue regeneration in the human

colon. As such, aberrant activation of the canonical Wnt pathway is

the initiating event of the classical model of Wnt-dependent colorec-

tal tumorigenesis (reviewed in Polakis, 2012). Oncogenic Wnt

hyperactivation is highly context-dependent and can be initiated by

different mechanisms including mutations in Wnt pathway compo-

nents, epigenetic modifications, or alteration of Wnt ligand secretion

(reviewed in Flanagan et al, 2019). According to the “just-right”

hypothesis, these oncogenic events select for an optimal dosage

level of Wnt signaling that is sufficient for cell transformation, but

not excessive or cytotoxic (Albuquerque et al, 2002). In human col-

orectal cancer, the most frequent genetic alteration leading to Wnt

hyperactivation is an allelic loss or a loss-of-function mutation in

the Wnt-regulator APC (> 50 percent of tumors; Cancer Genome

Atlas Network, 2012; Zhan et al, 2017). The truncations in the APC

protein occur most frequently before or within the first few repeats

that mediate binding to CTNNB1, which is the key transcriptional

regulator of Wnt signaling (Polakis, 1995). The truncated APC pro-

teins have a reduced capacity to stabilize the CTNNB1 destruction

complex which results in higher CTNNB1-mediated transcription.

The level of Wnt activation and subsequent transcriptional activa-

tion is dosage dependent on the number of CTNNB1 binding repeats

that remain in the truncated APC protein (Voloshanenko
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et al, 2013). The length distribution of truncated APC proteins in

CRC, where the total number of CTNNB1 binding repeats remaining

in both APC alleles trends toward an optimum, is one of the stron-

gest indications for the “just-right” hypothesis (Albuquerque et al,

2002).

One of the hallmarks of cancer is the reprogramming of energy

metabolism (Hanahan & Weinberg, 2011). Tumors are frequently

subject to the Warburg effect (reviewed in Hsu & Sabatini, 2008),

which is the relative shift from mitochondrial respiration and oxida-

tive phosphorylation (OXPHOS) toward glycolysis as a source of

energy. Increasing evidence indicates an intricate interplay between

Wnt signaling, metabolism, and mitochondria in colorectal cancer

development. On the one hand, mitochondrial pyruvate metabolism

plays an essential role in controlling intestinal stem cell prolifera-

tion (Schell et al, 2017), and several studies report a direct role

of Wnt signaling in biogenesis, maintenance, and physiology of

mitochondria (Yoon et al, 2010; Brown et al, 2017; Bernkopf

et al, 2018). On the contrary, Wnt signaling maintains increased

glucose metabolism (Lee et al, 2012) and directly regulates the

transcription of important mediators of glycolysis and pyruvate

metabolism such as PDK1 and MCT1 (Pate et al, 2014). As such,

Wnt signaling is needed to maintain a beneficial metabolic equilib-

rium in tumors with Wnt hyperactivity (Pate et al, 2014; Yang et al,

2014). A recent study in mice showed that the loss of APC and the

resulting Wnt hyperactivation leads to an increased glucose uptake

not only in tumors, but also in intestinal tissue (Najumudeen

et al, 2021).

Different levels of Wnt hyperactivation and metabolic dysregula-

tion have been reported for the CMS of CRC (Guinney et al, 2015;

Fessler & Medema, 2016). However, the role of these different levels

of Wnt signaling activity during tumorigenesis and how they influ-

ence other CMS characteristics such as metabolism or immune infil-

tration remains unclear. In this study, we explored the role of Wnt

signaling in the development of tumors of the different CMS classes.

We performed an integrative multi-omic analysis of transcriptomic,

proteomic, and large-scale genetic perturbation data from tumor tis-

sue and colorectal cancer cell lines to investigate functional hetero-

geneity of colorectal cancer. We showed that tumor development

that involves strong Wnt hyperactivation leads to a different meta-

bolic state than tumor development that only involves low Wnt

activity. To explore the context-dependent effects of Wnt signaling,

we introduced APC loss-of-function mutations in APCWT colorectal

cancer cells and performed whole-genome perturbation screens in

these genome-engineered model systems. We show that cells with

engineered Wnt hyperactivation have a different metabolomic state

than cells that naturally acquired Wnt hyperactivation. In summary,

our data indicate that the effect of Wnt signaling activation is depen-

dent on the baseline metabolic state of a cell and thereby exempli-

fies context-dependency in genetic networks.

Results

Distinct molecular features of Wnt-low and Wnt-high CRC

To gain a detailed understanding of the role of different levels of

classical Wnt signaling in CRC, we first explored the transcriptomic

and proteomic Wnt signatures in tumor and normal tissue samples

from the TCGA-COAD, TCGA-READ, and CPTAC-COAD cohorts

(Guinney et al, 2015; Vasaikar et al, 2019). The expression of clas-

sical CTNNB1-dependent transcriptional Wnt targets such as AXIN2

and NKD1 was elevated in a large fraction of tumor samples com-

pared with normal tissue (Fig 1A–C). As expected, elevated AXIN2

expression levels correlated with elevated CTNNB1 protein levels,

indicating a stabilization of CTNNB1 in agreement with hyperactiva-

tion of Wnt-dependent transcription (Fig 1C). In accordance with

▸Figure 1. Distinct molecular and clinical features of Wnt-low and Wnt-high colorectal cancers.

A Heatmap of the expression of CTNNB1 target genes (MsigDb pathway HALLMARK_WNT_BETA_CATENIN_SIGNALING) in the tumor and normal tissue samples from
TCGA-COAD and TCGA-READ cohorts (Guinney et al, 2015). Clustering into Wnt-low (light gray) and Wnt-high (dark gray) groups was performed using k-means
clustering. The bar entitled “class” indicates a normal tissue origin (black) or the result from CMS classification (tumor samples only, NA: no CMS could be assigned).
TCGA tumor samples were classified into different consensus molecular subtypes (CMS) using RNA sequencing data and the R package CMSclassifier (Guinney
et al, 2015).

B AXIN2 RNA expression in TCGA samples classified into the different CMS as well as normal colon tissue. Represented data correspond to TCGA-COAD and TCGA-
READ cohorts (Guinney et al, 2015). Individual data points and box plots are displayed. Box plots consist of the median (central line), the 25th and 75th percentiles
(box) and the highest/lowest value within 1.5 * interquartile range of the box (whiskers). Each data point corresponds to a different tumor or normal (tumor-
adjacent) tissue sample.

C Correlation between AXIN2 RNA expression and CTNNB1 protein level in samples from the 2019 CPTAC-COAD proteomics cohort (Vasaikar et al, 2019). CMS classifi-
cation is represented in color and is assigned according to the original publication. Protein level corresponds to fold change of tumor protein abundance versus
adjacent normal tissue protein abundance.

D, E Tumor samples in the different CMS were ranked according to their AXIN2 RNA expression. Panel D depicts the AXIN2 RNA expression as a function of the sample
rank. (E) Tile plot of TCGA tumor samples classified into the four CMS. Upper panel: presence of protein missense (blue) or truncating (black) mutation in different
tumor driver and suppressor genes: RNF43, KRAS, CTNNB1, BRAF, AXIN2, and APC. Lower panel: Anatomical origin (proximal or distal colon, color coded) of tumors
classified according to their DNA mismatch repair phenotype into microsatellite instability high (MSI-H), microsatellite instability low (MSI-L) or microsatellite
stable (MSS). Proximal colon: cecum, ascending colon, hepatic and splenic flexure, transverse colon. Distal colon: descending and sigmoid colon. NOS: no more pre-
cise origin specified.

F–I Frequency of cancer driver mutations in Wnt-low (n = 106 samples) and Wnt-high tumors (n = 432 samples) classified according to (A). P-values from Fisher’s
exact test for independence are indicated. (F) Relative frequency of tumors with 0, 1 or more truncating APC mutations annotated in each of the tumor groups.
Allelic loss of APC was not considered here. (G) Relative frequency of BRAF V600E (blue) or other BRAF missense mutations (black). (H) Relative frequency of mis-
sense mutations (gray), G659Vfs*41 (blue) and other truncating (black) mutations in the RNF43 protein. (I) Relative frequency of missense mutations at residues
G12 or G13 (blue) or other residues (black) of the KRAS protein.

J Frequency of tumor localization in Wnt-low (n = 106 samples) and Wnt-high tumors (n = 432 samples) classified according to (A). Colors as in (E), lower panel.
P-values from Fisher’s exact test for independence are indicated.
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previous studies, the CMS1 subtype was enriched for tumors that

lack signs of Wnt hyperactivation (Fig 1A and B). However, the

CMS classification was not sufficient to predict Wnt activation, as

average AXIN2 expression levels comparable with normal colon tis-

sue were also found in a subset of CMS4 and CMS3 tumors (Fig 1A

and B and Appendix Fig S1). We therefore classified the tumors into

Wnt-high or Wnt-low tumors based on their expression of classical

CTNNB1 target genes (Fig 1A and D). This classification also

included tumor samples for which CMS assignment was ambiguous

(annotated as “NA” in Fig 1A–C).

A

D

E

F G H I J
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C

Figure 1.
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Different frequencies of well-described CRC-driver mutation

could be observed in the Wnt-high and Wnt-low tumors, indicating

a different sequence of events leading to tumor development in the

two groups. Around 80% of Wnt-high tumors carried one or more

truncating APC mutations, whereas this was only the case for

around 30% of Wnt-low tumors (Fig 1E and F). Wnt-low tumors

had a high prevalence (40%) of the characteristic BRAF V600E

mutation, which was almost not observed in Wnt-high tumors

(Fig 1E and G). Similarly, mutations in the Wnt regulator RNF43

and in particular G659Vfs*41 mutations were enriched in Wnt-low

tumors (Fig 1E and H). The prevalence of KRAS missense muta-

tions, and specifically mutations in residues G12 and G13, was only

slightly reduced in Wnt-low tumors compared with Wnt-high

tumors (25 versus 40%, Fig 1E and I). Simultaneous existence of

BRAF missense mutation and an APC truncation was rarely

observed, which further supported the hypothesis that the most

important oncogenic driver events differed between Wnt-low and

Wnt-high tumor groups (Fig 1E). In summary, the high expression

level of Wnt-dependent targets in Wnt-high tumors seems to be

linked to alterations in APC, whereas the mutations in RNF43

observed in Wnt-low tumors do not lead to strong hyperactivation

of Wnt-dependent transcription.

Wnt-high and Wnt-low tumors also exhibited differences in

genetic stability and tumor localization. Wnt-low tumors accumu-

lated in the proximal part of the colon (Fig 1E and J) and frequently

harbored a deficiency in DNA mismatch repair (MSI, microsatellite

instability, Fig 1E). Wnt-high tumors in contrast rarely showed signs

of DNA mismatch repair deficiency and developed in both proximal

and distal parts of the colon (Fig 1E and J). In summary, our classi-

fication of tumors into Wnt-high and Wnt-low allowed us to delin-

eate two groups of tumors with distinct mutational and molecular

patterns. Differences in characteristic features such as tumor local-

ization and DNA mismatch repair deficiency adequately reflect the

idea of independent routes of tumorigenesis, also known as the ser-

rated pathway (~Wnt-low) and the canonical adenoma-carcinoma-

pathway (~Wnt-high; Nguyen et al, 2020).

Classification of CRC cell lines into Wnt-low and Wnt-high groups

We next confirmed that a similar classification into Wnt-high and

Wnt-low entities can be applied to CRC cell lines based on AXIN2

expression levels (Fig 2A). CMS classification is more difficult for

cell lines than for tumor tissues (Eide et al, 2017; Linnekamp

et al, 2018; Zhan et al, 2021), presumably due to lack of immune

and stromal infiltration in cell lines, which contribute to a certain

degree to the transcriptional signature of CMS in tumors. Neverthe-

less, cell lines with CMS1 annotation were mostly found in the Wnt-

low group, and cell lines with CMS2 annotation were exclusively

part of the Wnt-high group (Fig 2A). As expected, classical

CTNNB1-dependent Wnt target genes had a tendency to be higher

expressed in the Wnt-high cell lines compared with Wnt-low cell

lines (Fig 2B). The genes most differentially expressed in the analy-

sis of cell lines were the same genes as the ones with strong expres-

sion differences between Wnt-high and Wnt-low tumor samples,

namely GNAI1, NKD1, and TCF7 (Figs 1A and 2B).

The patterns of cancer driver mutations in Wnt-low and Wnt-

high colorectal cancer cell lines were partially comparable with the

ones observed in the tumor tissue (Fig 2C–F). RNF43 mutations

were more frequently observed in Wnt-low cell lines (Fig 2E). Wnt-

low colorectal cancer cell lines were more likely to manifest a MSI-

phenotype than Wnt-high cell lines, which was also in accordance

with our findings for the tumor tissue (Figs 2G and 1E). The differ-

ences in APC truncations, BRAF and KRAS missense mutations were

not significant (Fig 2C, D, and F).

Wnt activation in Wnt-low CRC cell lines using CRISPR-Cas9-
mediated APC truncation

We next engineered an additional cell line system to explore the

context-dependent effects of Wnt hyperactivation in CRC

(Appendix Fig S2A). We selected two cell lines with low endoge-

nous Wnt activation and without endogenous APC mutations

(HCT116 and RKO, APCWT, Fig 2A). To study the effect of Wnt

hyperactivation in these cells, we genetically engineered a truncat-

ing mutation of the APC gene in both HCT116 and RKO cell lines.

For this, we used CRISPR/Cas9 in combination with an sgRNA tar-

geting a specific region of the APC gene that frequently harbors

protein-truncating somatic mutations in colorectal cancers (Fig 2H

and Appendix Fig S2A). The engineered truncation of APC in the

resulting isogenic cell lines HCT116-APCtrunc and RKO-APCtrunc was

verified by amplicon sequencing (Fig 2H) and by Western blot analysis

(Appendix Fig S2B). The corresponding results regarding RKO-

APCtrunc cells were previously described by Zhan et al (2019), whereas

results for both cell lines are summarized in Appendix Fig S2.

As expected, HCT116-APCtrunc and RKO-APCtrunc showed a

higher level of TCF4/Wnt-reporter activity than HCT116 and RKO

cells (Appendix Fig S2C and Zhan et al, 2019). In the same lines,

the expression of classical CTNNB1-dependent Wnt target genes

was elevated in RKO-APCtrunc compared with RKO cells (Fig 2I).

However, the Wnt target genes most upregulated upon engineered

Wnt hyperactivation in RKO cells (JAG1 and RBPJ) were not the

same as the Wnt target genes with higher expression in cell lines

and tumors with endogenous Wnt hyperactivation (Figs 1A, and 2B

and I). These results highlight the context-dependent transcriptional

effects of Wnt hyperactivation. The overall molecular mechanisms

of Wnt-dependent transcription activation are comparable between

different cellular contexts, as indicated by the TCF4/Wnt-reporter

assay (Zhan et al, 2019; Appendix Fig S2C). The actual transcrip-

tional changes, however, differ due to the context-dependent genetic

interaction networks, where for example, the target genes of a given

transcription factor depend on the chromatin status in a specific

context. Indeed, our results show that the list of genes upregulated

upon endogenous Wnt hyperactivation during tumorigenesis was

partially distinct from the list of genes upregulated upon artificial

Wnt hyperactivation in cell lines without endogenous signaling

(Figs 1A, and 2B and I).

Differential genetic dependencies in natural and engineered APC
mutant cells

We next used functional genetic and gene dependency data derived

from whole-genome CRISPR/Cas9 viability screens to further

explore the context-dependent effects of Wnt hyperactivation on a

functional level. This analysis consisted of two different approaches

(Fig 3A). In the first approach, we performed four different whole-

genome CRISPR viability screens in the four isogenic cell lines
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Figure 2. CRC cell lines to model context-dependent Wnt signaling in Wnt-high and Wnt-low tumors.

A Colorectal cancer cell lines were ranked according to AXIN2 RNA expression and classified into Wnt-high and Wnt-low groups (Ghandi et al, 2019). Annotation of
CMS for cell lines according to Zhan et al (2021). The horizontal line indicates the threshold for classification into Wnt-low and Wnt-high groups.

B Volcano plot summarizing the results from differential gene expression analysis comparing Wnt-low (n = 8 cell lines) versus Wnt-high (n = 39 cell lines) CRC cell
lines. Gene expression data from RNA sequencing (Ghandi et al, 2019). Genes with higher expression in Wnt-high cell lines have positive fold changes. The horizon-
tal line indicates an adjusted P-value threshold of 0.1, which was calculated as described in the Materials and Methods section. CTNNB1 target genes (MsigDb
pathway HALLMARK_WNT_BETA_CATENIN_SIGNALING) are highlighted in blue. Gene set enrichment analysis for CTNNB1 target genes indicated a positive enrich-
ment score with an adjusted P-value < 0.01.

C–F Frequency of cancer driver mutations in Wnt-low (n = 8) and Wnt-high (n = 39) CRC cell lines classified according to (A). The different cell lines represent indepen-
dent biological replicates. P-values from Fisher’s exact test for independence are indicated. (C) Relative frequency of cell lines with 0, 1 or more truncating APC
mutations in each of the groups. (D) Relative frequency of BRAF V600E (blue) or other BRAF missense mutations (black). (E) Relative frequency of missense muta-
tions (gray), G659Vfs*41 (blue) and other truncating (black) mutations in the RNF43 protein. (F) Relative frequency of missense mutations at residues G12 or G13
(blue) or other residues (black) of the KRAS protein.

G Relative frequency of cell lines with a given microsatellite stability status in Wnt-low (n = 8) and Wnt-high (n = 39) CRC cell lines classified according to (A). The different
cell lines represent independent biological replicates. P-value from Fisher’s exact test for independence is indicated. MSI, microsatellite instable; MSI-H, microsatellite
instability high; MSI-L, microsatellite instability low; MSS, microsatellite stable. Assignment of microsatellite stability status according to Zhan et al (2021).

H Introduction of APC truncations in RKO (Zhan et al, 2019) and HCT116 cells using CRISPR/Cas9. Correct gene editing and successful APC truncation in single-cell
clones RKO-APCtrunc#5 and HCT116-APCtrunc#2 was confirmed by targeted amplicon sequencing of the edited gene locus.

I Volcano plot summarizing the results from differential gene expression analysis comparing RKO-APCtrunc#5 versus RKO cell lines. Gene expression was assessed
using microarrays in two biological replicates per cell line. The horizontal line indicates an adjusted P-value threshold of 0.05, which was calculated as described in
the Materials and Methods section. Genes with higher expression in RKO-APCtrunc#5 cells have positive fold changes. Colors as in (B). Gene set enrichment analysis
for CTNNB1 target genes indicated a positive enrichment score with a P-value < 0.01 calculated.
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HCT116, RKO, HCT116-APCtrunc, and RKO-APCtrunc (Fig 3A and

Appendix Fig S3A–C). We used the CRISPR library for screening,

which contains around 90,000 gRNAs targeting more than 17,000

genes. We calculated the differential viability effect of gene knock-

out in APCtrunc versus APCWT cell lines in both RKO and HCT116

backgrounds (Appendix Fig S3D). We used a statistical model that

accounts for skewed fold change distributions for the comparison of

gRNA abundances, so that the results would not be affected by dif-

ferences in editing efficiencies or cellular growth rates (Imkeller

et al, 2020). This first approach allowed us to explore the genetic

rewiring in Wnt-low cancer cell lines upon Wnt hyperactivation. In

the second approach, we reanalyzed gene dependency data from the

DepMap CRISPR/Cas9 screening project to assess the functional dif-

ferences between colorectal cancer cells that did or did not undergo

natural Wnt hyperactivation during tumorigenesis. In this approach,

we also calculated the differential viability effect of gene knockout

in Wnt-high compared with Wnt-low colorectal cancer cell lines

(groups as defined in Fig 2A). The combination of both approaches

allowed us to compare the functional effects of endogenous Wnt

hyperactivation to those of engineered Wnt hyperactivation in Wnt-

low cell line models.

When analyzing the differential gene dependencies within the

DepMap project, we found that Wnt-high colorectal cancer cell lines

were more dependent on CTNNB1 and other members of the Wnt

signaling pathway than Wnt-low colorectal cancer cell lines (Fig 3B

and C). In CRISPR screens in our engineered APCtrunc system, how-

ever, the dependence on components of the Wnt signaling pathway

was comparable in APCtrunc and APCWT cells in both RKO and

A

D E

F

B

C

Figure 3.
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HCT116 backgrounds (Fig 3D–F), indicating that introducing an

APC truncation in Wnt-low colorectal cancer cell lines, and thereby

hyperactivating Wnt signaling, did not lead to a new dependency on

Wnt signaling in the resulting APCtrunc cell lines. Conversely, and in

contrast to the effect of naturally occurring Wnt hyperactivation

during tumorigenesis, APC truncation did not lead to an increase in

Wnt-dependency in HCT116-APCtrunc and RKO-APCtrunc cell lines

compared with HCT116 and RKO cell lines. Of note, the overall vul-

nerability toward knockout of CTNNB1 was higher in the two

HCT116 cell line variants compared with the two RKO cell line vari-

ants, probably due to the fact that HCT116 have a low endogenous

Wnt activation resulting from a mutation in CTNNB1 (Fig 3F).

Engineered APCtrunc cells acquire vulnerability toward metabolic
and mitochondrial perturbation

In a next step, we further explored the differences in genetic depen-

dencies in the three groups of cell lines, namely endogenously Wnt-

high, endogenously Wnt-low, and endogenously Wnt-low with engi-

neered APC truncation.

We first performed gene set enrichment analysis on the differen-

tial fitness effects in the DepMap project to compare endogenously

Wnt-high and endogenously Wnt-low cell lines. Cell lines with low

endogenous Wnt signaling were more dependent on metabolic path-

way genes and genes involved in mitochondrial function than Wnt-

high cell lines (Fig 4A–C and Appendix Fig S4). Among the genes

with highest differential viability effect, we found components of the

mitochondrial transcription machinery such as MTIF2 (mitochon-

drial translation initiation factor 2), mitochondrial ribosomal pro-

teins such asMRPL13, MRPS12, and mitochondrial tRNA synthetases

such as CARS2 (Fig 4B and C). These components are encoded in the

nucleus, translated in the cytoplasm, and then imported into the

mitochondrion, where they participate in the translation of mito-

chondrially encoded proteins essential for mitochondrial function

and oxidative phosphorylation (reviewed in Kummer & Ban, 2021).

We then used the results from our CRISPR viability screens and

performed gene set enrichment analysis on the differential gene

dependencies in APCtrunc compared with APCWT cells in both

HCT116 and RKO backgrounds. HCT116-APCtrunc and RKO-APCtrunc

cell lines were more dependent on metabolic pathway genes and

genes involved in mitochondrial function than HCT116 and RKO cell

lines (Fig 4A and Appendix Fig S4). When focusing on the mito-

chondrial translation and tRNA aminoacylation pathways and com-

paring the genes with highest differential dependency, we found

that they were the same genes in both RKO and HCT116 back-

grounds, namely MTIF2, MRPL13, CARS2, and another mitochon-

drial tRNA synthetase LARS2 (Fig 4D–F).

Taken together, these results indicate that engineered Wnt hyper-

activation in Wnt-low HCT116 and RKO cell lines did not recapitulate

the metabolic phenotype of cell lines that underwent natural Wnt

hyperactivation. In fact, the three groups of cell lines that we ana-

lyzed, namely endogenously Wnt-high, endogenously Wnt-low, and

endogenously Wnt-low with engineered APC truncation, represented

three different states of metabolic and mitochondrial dependence.

Wnt-high cell lines were least affected by mitochondrial perturbation.

Wnt-low cell lines in turn had an intermediate level of mitochondrial

dependence that became even more accentuated when Wnt signaling

was artificially hyperactivated after the introduction of an APC trun-

cation (Wnt-low cells with engineered APC truncation).

It is important to note that the knockout of genes involved in

mitochondrial function induced a measurable fitness defect in all

analyzed cell lines (Fig 4D–F). However, we were able to repro-

ducibly detect differential dependency in all analyses, as described

above, which indicates different cell lines can be more or less

dependent on essential pathways such as mitochondrial function.

The increased vulnerability toward mitochondrial perturbation was

not linked to increased cellular growth rate, as in both RKO and

HCT116 backgrounds, the APCtrunc cells grew either at similar speed

or at slower than the APCWT cells (Fig 3A, figure legend).

Synthetic mitochondrial vulnerability in engineered APCtrunc cells

Among the genes involved in mitochondrial function, some had an

intermediate viability effect in all cell lines (Fig 4D and E), which

◀ Figure 3. Hyperactivation of Wnt signaling in Wnt-low cells does not recapitulate Wnt dependency of Wnt-high cells.

A (1) Schematic representation of whole-genome CRISPR screen to compare gene essentiality in APCtrunc and APCWT RKO and HCT116 cell lines. Differential gene
essentiality was assessed by comparing the gRNA abundances at T1 in APCtrunc and APCWT cell pools in both RKO and HCT116 backgrounds. The screen was con-
ducted in two replicates per cell line. Doubling times for RKO-APCWT: 23.8 h; RKO-APCtrunc#5: 23.9 h; HCT116-APCWT: 21.0 h; HCT116-APCtrunc#2: 25.7 h. (2) DepMap
data was used to assess the differential gene essentially in Wnt-high (n = 24 cell lines) versus Wnt-low (n = 5 cell lines) CRC cell lines (classification as in Fig 2A).
Created with Biorender.com.

B Differential gene essentiality in Wnt-high versus Wnt-low CRC cell lines displayed as logarithmic fold change (logFC). Negative logFC indicate genes that are more
essential in Wnt-high compared to Wnt-low cell lines. Genes involved in Wnt signaling are highlighted in black (MSigDB curated gene set WNT_SIGNALING; Liber-
zon et al, 2011). Gene set enrichment analysis using the permutation based statistical test implemented in the fgsea R package (preprint: Korotkevich et al, 2021)
and Benjamini–Hochberg correction for multiple testing indicated a positive enrichment score for absolute logarithmic fold changes (P-value < 0.01) for this path-
way. Selected genes of interest belonging to this pathway are highlighted and labeled in green.

C Dependency on CTNNB1 as a function of AXIN2 expression in Wnt-high (light gray) and Wnt-low (dark gray) CRC cell lines. The Wilcoxon-rank sum test indicated
that the dependence on CTNNB1 is different in Wnt high compared to Wnt low cells with a P-value < 0.01.

D, E Differential gene essentiality in APCtrunc versus APCWT HCT116 (D) and RKO (E) cell lines displayed as logarithmic fold change (logFC). Negative logFC indicates
genes that are more essential in APCtrunc compared with APCWT cells. Gene set enrichment analysis using the permutation based statistical test implemented in the
fgsea R package (preprint: Korotkevich et al, 2021) and Benjamini–Hochberg correction for multiple testing indicated no significant enrichment for absolute
logarithmic fold changes of genes involved in Wnt signaling. Gene set definition, color and labeling as in (B).

F Viability effects of single gRNAs targeting CTNNB1. Logarithmic fold changes of gRNA abundance in the screening endpoint compared to the plasmid library are
displayed for APCtrunc (y-axis) and APCWT (x-axis) for HCT116 (left panel) and RKO (right panel) cells. Red and blue circles indicate results for replicates 1 and 2 of
the CRISPR screen. Mean fold changes of negative control gRNAs (targeting luciferase) are displayed as black circles. Mean fold changes of positive control gRNAs
(chromosome 10 promiscuous) are displayed as black triangles.
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made them suitable for use in functional assays, where a minimum

of cell viability is necessary. We selected LARS2 as an exemplary

candidate gene to further explore the mechanisms of vulnerability

to mitochondrial perturbation.

We first used a fluorescence and flow cytometry-based competi-

tive cell growth assay to compare the growth rates of cells treated

with LARS2 targeting guide RNAs to those treated with guide RNAs

targeting the safe harbor locus AAVS1 locus (negative control).

A

D E
F

B

C

Figure 4. Different metabolic dependencies of Wnt-high and Wnt-low CRC cell lines with or without Wnt hyperactivation.

A Selection of gene set enrichment analysis results for CRISPR screening results in our engineered cell lines as well as in the DepMap datasets. Gene sets for which
the enrichment analysis indicated adjusted P-values > 0.05 are depicted in gray. Negative enrichment scores in green indicate a higher essentiality of the respec-
tive gene sets in APCtrunc compared with APCWT cell lines (HCT116 and RKO) or Wnt-high compared to Wnt-low (DepMap).

B, C Differential gene essentiality in Wnt-high versus Wnt-low cell lines (DepMap project) displayed as logarithmic fold change (logFC). Negative logFC indicates genes
that are more essential in Wnt-high cell lines compared with Wnt-low cell lines. Genes involved in mitochondrial translation (E) and mitochondrial tRNA aminoacy-
lation (F) are highlighted in black. Gene set enrichment analysis indicated a positive enrichment score for both pathways. Genes involved in mitochondrial transla-
tion (B, Reactome R-HSA-5368287) and mitochondrial tRNA aminoacylation (C, Reactome R-HSA-379726) are highlighted in black. Selected genes of interest
belonging to this pathway are highlighted and labeled in green.

D, E Correlation of differential gene essentialities in APCtrunc versus APCWT HCT116 (x-axis) and RKO (y-axis) cell lines displayed as logarithmic fold change (logFC). Nega-
tive logFC indicates genes that are more essential in APCtrunc compared to APCWT cells. Gene set definition, color and labeling as in (B, C).

F Viability effects of single gRNAs targeting LARS2, MRPL13 and MTIF2. Logarithmic fold changes of gRNA abundance in the screening endpoint compared to the
plasmid library are displayed for APCtrunc (y-axis) and APCWT (x-axis) for HCT116 (left panel) and RKO (right panel) cells. Red and blue circles indicate results for
replicates 1 and 2 of the CRISPR screen. Mean fold changes of negative control gRNAs (targeting luciferase) are displayed as black circles. Mean fold changes of pos-
itive control gRNAs (chromosome 10 promiscuous) are displayed as black triangles.
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Using sgRNA expression vectors with fluorescence markers, we

labeled LARS2 knockout cells in red and control cells in green. For

all four HCT116 and RKO cell line variants, the green and red cells

were pooled at equal proportions and the proportion of red (LARS2

knockout cells) monitored over the course of 2 weeks (Fig 5A). We

confirmed that APCtrunc cells were more vulnerable to the knockout

of LARS2 than APCWT cells in both RKO and HCT116 backgrounds

(Fig 5B). This result was reproducible using two different LARS2

targeting gRNAs (Fig 5B).

We next quantified the basal respiration in the cell lines using

oxygen consumption measurements. Knockout of the mitochondrial

tRNA synthetase LARS2 reduced the basal respiration in both

APCWT and APCtrunc cells (Fig 5C), which was likely the cause of

decreased growth rate in all cell lines. Although the reduction in

growth rate upon LARS2 perturbation was significantly stronger in

APCtrunc than in APCWT cell lines (Fig 5B), the basal respiration was

strongly reduced in both cell lines (Fig 5C). The APCtrunc cell lines

thus seemed to have a reduced capacity to compensate for the loss

of mitochondrial function.

It has previously been reported that Wnt signaling is able to

induce metabolic changes in line with the Warburg effect in col-

orectal cancer cells (Pate et al, 2014). Indeed, we observed that

APCtrunc cells had a slightly lower basal respiration than APCWT

cell lines in both RKO and HCT116 backgrounds. To investigate

whether this effect was directly dependent on Wnt signaling, we

measured basal respiration rates after external stimulation of

Wnt signaling. The addition of Wnt3a ligands into the growth

medium resulted in significant reduction in basal respiration in

both RKO cell lines (Fig 5D). For HCT116 cell lines, there was

no significant reduction in basal respiration upon Wnt3a treat-

ment, which could be due to the fact that HCT116 cells already

exhibit a low Wnt activation due to an activating mutation in

CTNNB1 (Fig 5D).

Different metabolic equilibria in Wnt-low and Wnt-high tumors

Our results suggest that engineered APCtrunc cells suffer from an

unfavorable metabolic equilibrium that is brought about by Wnt

A

C D

B

Figure 5. Perturbation ofmitochondrial tRNA synthesis affects APCtrunc cell lines stronger than APCWT cells. Themitochondrial insufficiency phenotype isWnt-
dependent.

A Experimental setup of competitive growth assay.
B Relative amount of LARS2 KO cells compared to AAVS1 KO cells, normalized to the proportions at day 3 after pooling. Pools of APCtrunc cells are shown in blue, pools

of APCWT cells are shown in black. The complete assay was repeated three times. The dots represent results from the individual replicates, whereas the line
connects the mean values over all three replicates per time point.

C, D Basal respiration derived from Seahorse oxygen consumption rate measurement. LARS2 KO samples are highlighted in orange (C). Wnt3a treated samples are
highlighted in green (D). Box plots consist of the median (central line), the 25th and 75th percentiles (box) and the highest/lowest value within 1.5 * interquartile
range of the box (whiskers). Every dot represents one technical replicate, which were performed in at least two different experimental batches.

Data information: Statistical tests in all: paired t-test corrected for multiple testing, ****: P < 0.001, ***: P < 0.01, **: P < 0.05, *: P < 0.1.
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hyperactivation due to APC truncation. During Wnt-dependent

tumorigenesis, however, Wnt hyperactivation entails a fitness

advantage that results in the development of Wnt-high tumors. To

explain this context-dependency of the effect of Wnt signaling, we

used transcriptomics and proteomics data to characterize the

metabolic equilibria in the different tumor types. The analysis

included transcriptomic and proteomic data from primary tumor tis-

sue (TCGA and CPTAC data) as well as colorectal cancer cell lines

(DepMap data). The tumors and cell lines were classified into Wnt-

high and Wnt-low entities as described in Figs 1 and 2. The

A

C D E

F

B

Figure 6.
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differential expression of transcripts and proteins between Wnt-low

and Wnt-high groups was quantified separately for tumors and

cell lines.

We first studied the phenotypic differences between Wnt-high

and Wnt-low cell lines and tumors by performing gene set enrich-

ment analysis on the results from differential transcription and pro-

tein expression analysis (Fig 6A and Appendix Fig S5). Genes and

proteins involved in mitochondrial function, respiration, and TCA

cycle were expressed at higher levels in Wnt-high compared with

Wnt-low cell lines and tumors (Fig 6A and Appendix Fig S5). In

addition, we found other metabolic pathways related to cholesterol

biosynthesis and metabolism of amino acids, which also partially

rely on mitochondrial processes, to be upregulated on transcrip-

tomic and in some instances also on proteomic level in Wnt-high

compared with Wnt-low cell lines and tumors (Fig 6A and

Appendix Fig S5). Differentially expressed genes showed a similar

pattern of either up-or downregulation in the two datasets (Fig 6B).

The fact that the gene and protein expression changes could not

only be seen in tumor tissue, but also in colorectal cancer cell lines

indicates that our findings were valid to describe the actual tumor

cells and were not artifacts resulting from tumor infiltration by stro-

mal or immune cells.

Previous studies have identified the genes and proteins whose

expression best correlates with metabolic activity of pathways such

as TCA cycle, glycolysis, and mitochondrial maintenance (Tanner

et al, 2018; Hartmann et al, 2021). We were able to confirm in our

data that important regulators of glycolytic flux (HK2, HK3, LDHA,

GAPDH, and G6PD) had lower transcript and protein levels in Wnt-

high compared with Wnt-low tumors (Fig 6B). Genes and proteins

regulating the TCA cycle (PDHA1, SUCLG2, SUCLG1, and IDH2) as

well as mitochondrial function (VDAC1, MRPS31, LARS2, OPA1,

and MTIF2) showed higher transcripts and protein levels in Wnt-

high compared with Wnt-low tumor entities (Fig 6B). Components

of the amino acid metabolism such as SLC1A5 and GOT2 showed a

similar behavior and were higher expressed in the Wnt-high tumor

entities (Fig 6B). Our classification into Wnt-high and Wnt-low

tumors was correlated with the expression of these metabolic genes

throughout different CMS subtypes (Fig 6C and D). The tumors that

were classified as CMS4 or CMS3 but belonged to the Wnt-low

tumor subgroup showed metabolic gene and protein expression

levels comparable with Wnt-low tumors classified as CMS1 (Fig 6C

and D).

The transcriptomic and proteomic profiles indicated a difference

in metabolic equilibrium between Wnt-low and Wnt-high tumors,

with a more pronounced Warburg-phenotype being observed in

Wnt-low tumors. To better understand these observations in the

context of metabolic rewiring during tumorigenesis, we next com-

pared the transcript and protein expression levels in Wnt-high and

Wnt-low tumor samples to those of normal colon tissue (Fig 6E and

F). The overall direction of expression changes was the same

between tumor and normal tissue for both tumor groups. This

means that despite the differences between Wnt-high and Wnt-low

groups described in the previous paragraph (Fig 6A–D), many genes

involved in glycolysis were upregulated in all tumor samples com-

pared with normal tissue (Fig 6E and F, purple). SLC16A1 and

PDK1, two genes which were previously reported to be responsible

for increased glycolysis upon Wnt signaling, were expressed at

higher or equal levels in Wnt-low compared with Wnt-high tumors

(Appendix Fig S6). Genes and proteins involved in mitochondrial

pyruvate metabolism and TCA cycle were reduced in all tumor sam-

ples compared with normal tissue (Fig 6E and F, pink). Genes

involved in mitochondrial translation were upregulated on tran-

script level in both tumor groups, on protein level, however, they

appeared to be increased only in the Wnt-high tumor group and not

in the Wnt-low tumor group (Fig 6E and F, green). In summary, a

metabolic transcription and protein abundance switch in line with

the Warburg effect was observed in both tumor types, but it was

more pronounced in the Wnt-low tumors.

Our results indicate that both Wnt-high and Wnt-low tumors

undergo a metabolic switch in accordance with the Warburg effect

and tumor metabolic rewiring. However, the final metabolic equilib-

rium reached in both tumor types is different (Fig 7). Wnt-

dependent tumorigenesis involves a slight shift toward glycolysis,

which is probably directly induced by Wnt hyperactivation, in

accordance with previous studies reporting the transcriptional regu-

lation of Warburg effect by Wnt signaling (Pate et al, 2014). In

Wnt-independent tumorigenesis, the shift toward glycolysis is even

more pronounced. As a consequence, Wnt activation in Wnt-low

cancer cells, as modeled in our engineered APCtrunc RKO and

HCT116 cells, leads to a metabolic imbalance because their meta-

bolic baseline does not allow for further induction of glycolysis

resulting from Wnt hyperactivation. These findings highlight that

the order of genetic alterations during oncogenic transformation

need to be tightly interwoven with metabolic rewiring.

◀ Figure 6. Transcriptomic and proteomic signatures of different metabolic equilibria in Wnt-low and Wnt-high tumors.

A Selection of gene set enrichment analysis results for transcriptomic (x-axis “RNA”) and proteomic (x-axis “protein”) differences between Wnt-high and Wnt-low col-
orectal cancer cell lines (depmap, 39 Wnt-high and 8 Wnt-low cell lines for transcriptomics and 16 Wnt-high and 6 Wnt-low for proteomic) and tumors (432 Wnt-
high and 108 Wnt-low for transcriptomics (TCGA), 31 Wnt-high and 75 Wnt-low samples for proteomic (CPTAC-COAD)). Positive enrichment scores in green indicate
a higher expression of the respective gene sets in Wnt-high compared to Wnt-low entities. Gene set annotation according to Reactome pathways and GO cellular
component, an adjusted P-value threshold of 0.05 was applied.

B Differential transcript (x-axis “RNA”) and protein (x-axis “protein”) abundance in colorectal cancer cell lines (depmap) and tumor tissues (TCGA and CPTAC-COAD).
Selected genes which play a role in amino acid metabolism, glycolysis, mitochondrial function and TCA cycle are displayed.

C, D Transcript expression (C) and protein expression (D) of HK1, MRPS31, PDHA1, and GOT2 (y-axis) compared to transcript expression of AXIN2 (x-axis in the dotplot).
Colors indicate CMS classification or normal colon tissue. Violin plots in the left panels illustrate candidate transcript and protein expression in the different CMS
and tissue groups. Each datapoint corresponds to an individual tumor. Number of tumors per CMS group for (C): CMS1 - 41, CMS2 - 88, CMS3 - 65, CMS4 - 111,
normal tissue - 51; for (D): CMS1 - 12, CMS2 - 29, CMS3 - 13, CMS4 - 21.

E, F Transcript expression (E) and protein expression (F) differences between tumor and normal colon tissue for Wnt-high (y-axis) and Wnt-low (x-axis) tumors. Colors
indicate to which functional pathway each gene belongs: purple - glycolysis, green - mitochondrial function, pink - TCA cycle and mitochondrial pyruvate
metabolism.
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Discussion

We applied an integrative multi-omics analysis to transcriptomic,

proteomic, and functional genomic data to show that a classification

of colorectal cancers into Wnt-high and Wnt-low entities function-

ally distinguishes two types of tumors. The levels of Wnt hyperacti-

vation in each tumor type are balanced to maintain cellular fitness

and a favorable metabolic state. Increasing the level of Wnt signal-

ing, especially in those tumors that have low endogenous Wnt sig-

naling, raises the tumor cells to an unfavorable energetic state in

which their metabolic balance is perturbed. These findings show-

case the context-dependent and nonlinear effects of Wnt signaling

on cellular phenotype and function during tumorigenesis.

In this study, we examined the transcriptional and protein

expression differences in metabolic pathways that are essential for

cellular energy supply. We showed that Wnt-low tumors and cell

lines are characterized by higher levels of genes and proteins

involved in glycolysis. It has been shown in previous studies that

transcript quantification and protein abundance measurements can

be used to infer glycolysis pathway activity (Tanner et al, 2018;

Hartmann et al, 2021). As the pathway components associated with

differences in metabolic flux were higher expressed in Wnt-low

compared with Wnt-high tumors, we inferred that glycolytic flux

and lactate production is higher in Wnt-low tumors. Genes and pro-

teins involved in OXPHOS as well as mitochondrial function were

higher expressed in Wnt-high tumors than in Wnt-low tumors, indi-

cating a higher level of mitochondrial activity in Wnt-high tumors.

The overall lower expression of mitochondrial ribosomes and mito-

chondrial matrix components observed in our analyses could be due

to an overall lower content of mitochondria linked to lower mito-

chondrial activity in the Wnt-low tumor cell. In line with our inter-

pretation of the data, previous studies have demonstrated a

correlation between mitochondrial respiration and expression of

specific mitochondrial components such as OPA1 or VDAC1

(Akkaya et al, 2018; Hartmann et al, 2021). In addition, Wnt-high

tumors also showed higher levels of genes involved in glutamine

metabolism, an alternative pathway for energy supply that involves

mitochondrial components (Altman et al, 2016). Taken together, these

results indicate that the metabolism of Wnt-high tumors in general

relies more on mitochondrial function than that of Wnt-low tumors.

Transcriptomic and proteomic differences in glycolysis and

OXPHOS pathways have been previously reported for MSI tumors in

comparison with MSS tumors (Vasaikar et al, 2019). As the Wnt-

low tumor group in our study is enriched for MSI-H tumors, our

results confirm these previous observations. Our study adds a new

perspective to this observation, as we provide a link between differ-

ent metabolic equilibria and dosage levels of Wnt hyperactivation

during tumorigenesis. As shown in Fig 6, our classification of

tumors according to their Wnt activation also allows us to predict

metabolic gene and protein expression beyond the CMS classifica-

tion scheme.

The metabolic phenotype of Wnt-low tumors correlated with a

higher vulnerability toward mitochondrial perturbation. Given the

statistical model that we used to compare the gRNA abundances

(Appendix Fig S3) as well as the successful validation using the

competitive cell growth assay (Fig 5B), we are confident that this

observation reflects the underlying biology and is not linked to tech-

nical artifacts that arise from differences in growth rate during the

vulnerability screen. The higher vulnerability toward mitochondrial

perturbation could potentially be explained by a saturation of

mitochondria-independent energy supply. As soon as mitochondria

are perturbed, respiratory capacity is lost and glycolysis is used as a

compensatory mechanism for energy supply. This compensatory

mechanism is less efficient in Wnt-low tumors that start with a

higher baseline level of glycolysis than Wnt-high tumors. A similar

principle could serve as an explanation for increased mitochondrial

vulnerability of Wnt-low cancer cells upon APC truncation. Wnt

hyperactivation in glycolysis-performing Wnt-low cells induced a

further shift away from mitochondrial respiration toward alternative

pathways as indicated by our oxygen consumption measurements.

This then leads to an even higher vulnerability toward mitochon-

drial perturbation due to lack of non-mitochondrial compensatory

potential (Fig 7). A similar induction of mitochondrial vulnerability

has been previously observed when introducing KRAS mutations

into colorectal cancer cell lines of both Wnt-low and Wnt-high

groups (Martin et al, 2017), indicating that Wnt signaling is not the

only pathway important for directing metabolic rewiring in cancer.

Indeed, both APC loss and KRAS mutation were shown to induce

metabolic changes and accentuate glycolysis in the mouse intestine

(Najumudeen et al, 2021).

It has been reported that Wnt signaling in Wnt-high tumors

induces Warburg effect by transcriptional activation of genes such

as MCT1 and PDK1, which are important regulators of glycolysis

and pyruvate metabolism (Pate et al, 2014). The data underlying

this conclusion stem from experiments conducted in Wnt-dependent

colorectal cancer cell lines under different levels of Wnt activation.

When we compared the expression level of MCT1 and PDK1 in our

tumor groups, we found that both genes and proteins were higher

or equally expressed in Wnt-low compared with Wnt-high tumors

(Appendix Fig S5). Moreover, the expression levels were also

higher in normal colon tissue compared with Wnt-high tumor tis-

sue. This does not contradict the previous findings, as the modula-

tion of Wnt signaling in Wnt-high colorectal cancer cell lines does

not necessarily reflect the effects of pathway activation during

Figure 7. Model of metabolic balance and tumorigenesis leading to
Wnt-high and Wnt-low colorectal cancers.
The balance is a schematic representation of the levels of glycolysis (G) and
oxidative phosphorylation/respiration (R). Created with Biorender.com.
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tumorigenesis. In fact, these data further highlight the importance of

taking into account context-dependent effects of Wnt signaling in

different cell types with different metabolic equilibria.

In our study, we describe the metabolic and functional differ-

ences between Wnt-low and Wnt-high tumors. Depending on the

cellular context and the endogenous levels of Wnt-signaling in the

initial tumor cell of origin, the sequence of oncogenic driver events

leading to tumor formation may differ. In line with the idea of the

serrated and the classical adenoma-carcinoma pathway as different

routes of tumorigenesis, our findings reflect that Wnt-high and Wnt-

low tumors originate through independent mechanisms of tumorige-

nesis that pass through distinct scenarios of metabolic rewiring.

This is indicated also by key driver mutations (APC, BRAF, and

RNF43) and other characteristics (DNA mismatch repair proficiency,

localization in the colon). Accumulation of several driver mutations

that affect components outside the Wnt pathway may actually be

necessary to drive Wnt-independent colorectal cancer development

(Han et al, 2020). Importantly, our experiments on APCWT and

APCtrunc HCT116 and RKO cell lines indicate that Wnt-low tumors

are unlikely to acquire Wnt hyperactivation, because this would

drive them into an unfavorable metabolic state. Our data challenge

previously formulated hypotheses about mechanisms of tumor eva-

sion, which were built on correlating oncogenic Wnt signaling levels

and immune infiltration (Luke et al, 2016). According to our data, if

Wnt hyperactivation was a mechanism of secondary immune eva-

sion, it would also involve substantial fitness penalties for the tumor

cells. In the same lines, our study highlights that results obtained by

manipulating Wnt signaling levels in cells need to be carefully eval-

uated when extrapolating them to general principles. The effects of

Wnt hyperactivation in a cancer cell line that is in its essence Wnt-

low are different from the effects of Wnt hyperactivation during

tumorigenesis leading to Wnt-high tumors.

The exact mechanisms behind Wnt-high as well as Wnt-low

induction of the metabolic switch will need further explorations.

Previous studies have shown that the modality of Ras pathway acti-

vation may play a role in regulating glycolytic flux levels (Tanner

et al, 2018). Depending on whether Ras activation is achieved by

KRAS or BRAF mutation, and likely also dependent on the cellular

context, the downstream effects of signaling may lead to different

metabolic phenotypes. A recent study indicates that BRAF mutant

tumors, which are enriched in our Wnt-low tumor group, elicit

lower levels of mitochondrial respiration than KRAS mutant or wild-

type tumors (Rebane-Klemm et al, 2020). This, however, does not

indicate whether the metabolic shift is a direct cause of BRAF

mutation-mediated Ras pathway activation. Along the same lines, a

previous study has used quantitative assessment of pathway activa-

tion to demonstrate fundamental cell-to-cell heterogeneity in the

modulation of Ras pathway activity after KRAS or BRAF mutation

(Brandt et al, 2019).

Finally, a possible explanation of why Wnt-low and Wnt-high

tumors reach different metabolic equilibria that do or do not tolerate

Wnt hyperactivation could be that the cells of origin of the two

tumor types are different. This cell-of-origin hypothesis is also con-

sistent with the fact that Wnt-low tumors accumulate in the proxi-

mal colon where tissue composition and development may be

different than in distal colon (Wang et al, 2020; Fawkner-Corbett

et al, 2021). Indeed, the expression of genes involved in metabolism

and mitochondrial function is subject to variation along the crypt-

top axis of intestinal tissue (Yang et al, 2016; Moor et al, 2018). It

has been reported that the activation of Wnt signaling leads to rapid

tumor development in intestinal stem cells, but not in more differen-

tiated cells (Barker et al, 2009; Fessler & Medema, 2016). Differ-

ences in metabolic profile, including OXPHOS and glycolysis levels,

may even identify tumors and single cells with high tumor initiation

and cycling capacity (Zowada et al, 2021).

Our findings do not only expand our understanding of quantita-

tive modulation of Wnt signaling during tumorigenesis, but they

also showcase how large-scale genetic perturbation data from

genome-engineered model systems can be integrated with multi-

omic data to investigate tumor heterogeneity. In this study, the

detection of context-dependent effects of Wnt signaling on cellular

phenotype and function heavily relies on integrative analysis of

multiple layers of molecular data, highlighting the importance of

future studies addressing tumor heterogeneity at single-cell level

from a multi-omic point of view.

Materials and Methods

Datasets for multi-omic tumor profiling

The study of TCGA-COAD and TCGA-READ patient cohorts pub-

lished by Guinney et al includes > 500 tumor samples for which

transcriptome profiling data are available. The study by Vasaikar

et al (2019) (CPTAC-COAD) includes transcriptome and proteome

profiling data, but only covers ~80 tumor samples. In our analysis,

we thus combine the data from both studies.

Processing of TCGA data

Clinical data and metadata concerning the experimental protocol

and sequencing were accessed using the Bioconductor packages

TCGAbiolinks (Colaprico et al, 2016) and GenomicDataCommons

(preprint: Morgan & Davis, 2017). All available clinical and RNA

sequencing quantification data from the TCGA-COAD and the

TCGA-READ projects were downloaded. We used the mutation data

generated from the mutest pipeline.

The downloaded RNA sequencing quantification files were

assembled into one data object using the DESeqDataSetFromHTSeq-

Count function implemented in DESeq2 (Love et al, 2014). Genes

with a total read count sum lower than 10 were excluded and the

library size scaled counts were exported and saved for utilization in

downstream analyses. To avoid batch effects in the comparison with

transcriptomics data, we only used transcript quantification for sam-

ples where the sequencing was carried out at a read length of 48

base pairs (samples with 76 base pairs were excluded).

The previously generated table containing normalized sequenc-

ing counts was used as a basis for CMS classification using the origi-

nal random forest classification algorithm implemented in

CMSclassifier (Guinney et al, 2015) and default parameter settings.

We only included primary tumor samples in the classification and

removed normal tissue samples. In accordance with the input

requirements for CMSclassifier, the normalized read counts were

transformed to log2 after the addition of a pseudocount.

Wnt-high and Wnt-low groups were derived from k-means clus-

tering on RNA expression of CTNNB1 target genes using the
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ComplexHeatmap package (Gu et al, 2016). Differential gene

expression between the two groups and normal tumor tissue was

performed using DESeq2 (Love et al, 2014) based on raw sequenc-

ing counts.

Processing of transcriptomic and proteomic data from 2019
cohort (Vasaikar et al, 2019; CPTAC-COAD)

We downloaded the RNA sequencing data (RNAseq data RSEM

upper-quartile normalized, Unit: Expression (RSEM-UQ, Log2

(Val + 1))) as well as the proteomics data (Proteome data for

tumor-normal samples log-ratio normalized, Unit: Expression (TMT,

Log2ratio)) from http://linkedomics.org/cptac-colon/, which is the

link indicated in the original publication (Vasaikar et al, 2018,

2019). The metadata table and CMS assignment were downloaded

from the supplementary material of the original publication.

Samples from the CPTAC-COAD cohort were classified into Wnt-

low and Wnt-high groups based on their AXIN2 expression level.

Linear models were used to estimate differential gene expression

and differential protein abundance between the Wnt-low and Wnt-

high groups. The proteomics data correspond to tumor versus nor-

mal tissue protein abundance data (logarithmic scaling). Mean rela-

tive expression levels for every gene are used in Fig 6H.

Processing of DepMap data

Gene expression, mutation, proteomics, and gene dependency data

from the cancer Dependency Map (DepMap version 19Q3; Meyers

et al, 2017; Ghandi et al, 2019) was accessed using the depmap Bio-

conductor package (Gatto, 2020). The gene expression data corre-

spond to the CCLE project RNAseq transcripts per million (TPM) for

protein coding genes only (scaled as log2(TMP + 1)). Mutation data

correspond to merged mutation calls (coding region and germline

filtered) from the CCLE project. Proteomics data correspond to nor-

malized protein abundance from quantitative proteome profiling by

mass spectrometry (Nusinow et al, 2020). The gene dependency

data correspond to the batch corrected CERES inferred gene effects

that were derived from whole-genome CRISPR-Cas9 knockout via-

bility screens.

Wnt-high and -low groups identified by clustering of TCGA 2015

samples correlated well with the expression of AXIN2, this is why

we were able to use AXIN2 expression to identify Wnt-high and

Wnt-low cell lines in the DepMap data. Linear models were used to

estimate differential gene expression, differential protein abundance

and differential gene dependence between the Wnt-low and Wnt-

high groups (Smyth, 2011).

Gene identifier conversion

The conversion of gene identifiers between ENSEMBL ids, ENTREZ ids

and gene symbols was performed using the bitr function of the Biocon-

ductor package clusterProfiler (Yu et al, 2012). Nonunique mapping

genes or genes without mapping were excluded from the analysis.

Gene set enrichment analysis

Gene set enrichment analysis was performed using gene lists

ordered according to the statistic provided by either DESeq2 or

linear model. For Fig 2, gene set enrichment analysis was performed

for the MSigDB hallmark gene set HALLMARK_WNT_BETA_CATE-

NIN_SIGNALING (Subramanian et al, 2005; Liberzon et al, 2015).

For Figs 3, 4, and 6, gene set enrichment analysis was performed

for (i) Reactome pathway annotation (using the gsePathway() func-

tion of ReactomePA package; Yu & He, 2016) and (ii) MSigDB hall-

mark gene sets and GO term gene sets of the “Cellular component”

ontology (using msigdb package for gene set annotation and GSEA()

function from ClusterProfiler package (Yu et al, 2012) for testing).

The packages implement multiple-testing correction using the Ben-

jamini–Hochberg method. Adjusted P-value cutoffs (typically 0.05)

are indicated in the figure legends.

R package versions

R version 4.1.3, enrichplot_1.14.2, data.table_1.14.2, circlize_0.4.14,

ComplexHeatmap_2.10.0, gscreend_1.1.0, GenomicDataCom-

mons_1.18.0, magrittr_2.0.2, TCGAbiolinks_2.22.4, limma_3.50.1,

DESeq2_1.34.0, SummarizedExperiment_1.24.0, MatrixGenerics_

1.6.0, matrixStats_0.61.0, GenomicRanges_1.46.1, GenomeInfoDb_

1.30.1, ReactomePA_1.38.0, msigdbr_7.4.1, ggrepel_0.9.1, org.

Hs.eg.db_3.14.0, AnnotationDbi_1.56.2, IRanges_2.28.0, S4Vectors_

0.32.3, Biobase_2.54.0, BiocGenerics_0.40.0, clusterProfiler_4.2.2,

depmap_1.8.0, cowplot_1.1.1, pheatmap_1.0.12, ggplotify_0.1.0,

patchwork_1.1.1, forcats_0.5.1, stringr_1.4.0, dplyr_1.0.8, purrr_

0.3.4, readr_2.1.2, tidyr_1.2.0, tibble_3.1.6, ggplot2_3.3.5, tidy-

verse_1.3.1.

Cell lines and culture

HCT116 cells were cultured in McCoy’s medium (Life Technolo-

gies). RKO cells were cultured in DMEM medium (Life Technolo-

gies). All media were supplemented with 10% fetal calf serum

(PAA). Cell lines were obtained from ATCC and authentication of

genotypes was performed by SNP profiling (Multiplexion, Heidel-

berg). The absence of mycoplasma infection was confirmed by regu-

lar testing.

Generation and validation of RKO and HCT116 cell lines with
truncated APC

The generation of RKO and HCT116 cell lines with truncated APC is

the same approach as described in Zhan et al (2019). Cell line RKO

APCtrunc#5 corresponds to the RKO APC truncated cell line clone #5

described in Zhan et al (2019).

The sgRNA targeting the APC gene was designed using the E-

CRISP sgRNA design tool (Heigwer et al, 2014). The sequenco of

the designed sgRNA was: sgAPC 50-TCTGCTGGATTTGGTTC
TAGGG – 30 (bold letters indicate PAM sequence). Pairs of oligonu-

cleotides encoding the sgRNA were synthesized by Eurofins Inc.

Oligonucleotides were phosphorylated, annealed, and cloned into a

Bbs1 digested px459 plasmid (#62988, Addgene) using Quick Ligase

(NEB). To generate an APC truncation, RKO and HCT116 cells were

transiently transfected with 2 lg of px459 with sgAPC. After 48 h,

cells were selected with 1 lg/ml of puromycin for 48–72 h. Single

clones were generated by serial dilutions in 96-well plates. After

10–15 days, colonies derived from single clones were expanded for

further analyses. Targeted deep sequencing of PCR amplified APC
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genomic locus was performed to assess indel formation introduced

by the sgRNA. Genomic DNA of APC mutant single-cell clones was

isolated using DNeasy Blood and Tissue Kit (Qiagen). Primer pairs

were designed 100–150 bp up and downstream of the sgRNA target-

ing site and adapters were added during the second step of

the nested PCR. The PCR primers for the first PCR step were

50-TCCCTACACGACGctcttccgatctTCAGACGACACAGGAAGC-30 and

50-AGTTCAGACGTGTGctcttccgatctACATAGTGTTCAGGTGGACT-30.
The resulting PCR products were purified with the PCR Clean-up Kit

(Machery-Nagel) and amplified with a second PCR step to introduce

unique indexes. The second PCR was purified using Agencourt

Ampure XP Beads (Beckman Coulter), and samples were sequenced

on a MiSeq (Illumina) by the Genomics and Proteomics Core Facility

of the DKFZ. The multiple sequence alignment tool ClustalOmega

(Sievers et al, 2011) was used to analyze indel formation. The two

single-cell clones used in this study were selected based on success-

ful APC truncation and Wnt/TCF4-reporter activity.

TCF4/Wnt-reporter assay

The luciferase-based dual Wnt reporter assay was performed as

described previously (Demir et al, 2013). In brief, cells were seeded

in a white, flat-bottom 384- or 96-well plates. Twenty-four hours

later, cells were transfected with a plasmid encoding tha firefly luci-

ferase under control of a promoter composed by repeats of the

TCF4-binding sites and with a control plasmid encoding renilla luci-

ferase under control of a CMV promoter. Dual-luciferase readout

was performed 48 h after transfection using Mitras LB940 plate

reader (Berthold Technologies). The firefly luciferase signal was

normalized to the renilla luciferase signal. For RKO three-

independent experiments were performed in total. For HCT116 four-

independent experiments confirmed these results.

Microarray analysis

We performed microarray-based gene expression analysis on RKO

wild-type and the isogenic APCtrunc clone (RKO APCtrunc#5) to iden-

tify genes that are differentially expressed between the two cell

lines. Two independent replicates for both RKO APCWT and RKO

APCtrunc were performed. RNA from cell pellets was extracted using

the Quiagen RNeasy kit and RNA quality assessed using the Bioana-

lyzer Eukaryote Total RNA Pico assay. For microarray measure-

ment, Affy Human U133Plus 2.0 chip was used in combination with

the iScan array scanner. Data analysis was performed according to

the Bioconductor workflow vignette for Affymetrix microarrays

(Klaus & Reisenauer, 2016).

CRISPR screening

The 90 k Toronto human Knockout pooled library (TKO) was a gift

from Dr. Jason Moffat (1000000069, Addgene; Hart et al, 2015).

The plasmid library was amplified using ElectroMAXTM Stbl4TM

cells (Invitrogen) and transfected into HEK293T cells (ATCC) with

TransIT-LT1 (Mirus Bio) transfection reagent along with psPAX2

(12260, Addgene) and pMD2.G (12259, Addgene) packaging plas-

mids for production of lentivirus.

HCT116, RKO, HCT116 APCtrunc#2 and RKO APCtrunc#5 cells

stably expressing Cas9 (73310, Addgene) were transduced with the

previously generated virus in the presence of 8 lg/ml polybrene

(Merck Millipore). The multiplicity of infection (MOI) was equal to

0.3 and each gRNA was present in 500 cells on average. The day

after, puromycin-containing medium was added and the cells cul-

tures for 48 h in this selection medium. The cells were then grown

in medium without puromycin for 12 doubling times and split every

3 days at a coverage of 500× (each gRNA was present in 500 cells

on average). The time needed for each cell line to accomplish 12

doublings was calculated based on doubling times previously esti-

mated from counting cells over a defined period of time. After 12

doubling times, time point T1 was collected by collecting and pellet-

ting the cell pool. Genomic DNA from collected cells was extracted

using QIAamp DNA Blood Maxi kit (Qiagen).

To amplify and quantify the gRNA sequences in the plasmid

library and at time point T1, many PCRs were performed, each

using 1 lg of genomic or plasmid library DNA, Q5 Hot Start HF

polymerase (NEB), and primers harboring the Illumina TruSeq

adapter sequences. The number of PCRs for each sample was such

that each gRNA in the library pool was represented on average 250

times in the total amount of DNA used for PCRs. PCR products were

purified using DNA Clean and Concentrator TM-100 (Zymo

Research) and MagSi-NGSprep Plus beads (Steinbrenner). DNA con-

centrations of the purified PCR products were measured using Qubit

HS DNA Assay (Thermo Fisher). The amplicon size in the PCR prod-

ucts was verified using DNA High Sensitivity Assay on a BioAna-

lyzer 2100 (Agilent). Finally, the libraries were sequenced on a

NextSeq (Illumina) sequencer with a 75 bp single-end protocol and

addition of 25% PhiX control v3 (Illumina).

Statistical analysis

gRNAs were counted from the raw sequencing files using the count

function with automatic sequence trimming provided by MAGeCK

(Li et al, 2014). The gRNA abundances were quantified in the plas-

mid library and in the four cell pools at time point T1.

Differential gene essentiality was calculated using the gscreend

package (Imkeller et al, 2020) and comparing normalized gRNA

abundances at time point T1 in the APCWT cell pool (cT1,WT) versus

APCtrunc cell pool (cT1,APC). Values indicated as differential gene

essentiality correspond to log2(cT1,APC/cT1,WT). Logarithmic fold

changes at gRNA level were calculated individually for every cell

line as log2(cT1/cplasmid), where cT1 denotes the normalized gRNA

count at T1 and cplasmid the normalized gRNA count in the plasmid

library (normalized counts correspond to counts scaled to the total

number of gRNA counts in the sequencing library).

Competitive cell growth assay with LARS2 knockout

gRNAs used for validation experiments around LARS2 knockout

were selected from the set of LARS2 targeting guide RNAs present in

the TKO library. The sequence of the two selected gRNAs was (bold

letters indicate PAM sequence):

LARS2_1: 50- CGTTGGCAGACCTTCCAGAA -3’.

LARS2_2: 50- CCCTATCCCAGCTGAAACAC -30.
For fluorescent labeling of control knockout cells, we used a len-

tiviral vector (lentiCRISPRv2) encoding eGFP and an sgRNA targeting

AAVS1 (pLenti_HDlib_sgRNANOonChip_Puromut_eGFP_AAVS1).

For fluorescent labeling of LARS2 knockout cells we used two
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lentiviral vectors encoding mScarlet and each one of the above

described sgRNA targeting LARS2 (pLenti_HCLib_NoC_mScar-

let_LARS2_1 and pLenti_HCLib_NoC_mScarlet_LARS2_2).

The isolated lentiviral plasmids pLenti_HCLib_NoC_mScarlet_

LARS2_1, pLenti_HCLib_NoC_mScarlet_LARS2_2 and pLenti_

HDlib_sgRNANOonChip_Puromut_eGFP_AAVS1 were transfected

into HEK293T cells (ATCC) with TransIT-LT1 (Mirus Bio) transfec-

tion reagent along with psPAX2 (12260, Addgene) and pMD2.G

(12259, Addgene) packaging plasmids to produce lentivirus.

HCT116 and RKO cells (WT and APC truncated) were transduced

with the viruses. Puromycin was added after 24-h incubation to

select for transduced cells. The next day, the cell lines were pooled

in the following manner: HCT116-WT with stable knockout in

LARS2 and expression of mScarlet were mixed 1:1 with HCT116-

WT, in which AAVS1 was targeted and eGFP expressed. The same

pooling was performed for HCT116-APC and both RKO lines.

The cell pools were grown for 2 weeks and the amount of eGFP

and mScarlet expressing cells in each pool was quantified using

FACS analysis at different time points (after 0, 3, 5, 7, 10, 12 and

15 days after pooling). FACS analysis was made with LSR Fortessa

(BD Biosciences) and FlowJo v10.1 software.

Measurement of basal respiration

For the respiration measurements, knockout of LARS2 was per-

formed using lentiviral vectors encoding each of the above-

described LARS2 targeting gRNAs (plcKO_Wu_LARS2_1 and

plcKO_Wu_LARS2_2). Generation of lentivirus and transduction of

cell lines was performed as described above. The basal respiration

rate was measured 5–7 days after transduction using Agilent Sea-

horse Instrument in combination with different drug treatment. A

day prior to the analysis, untreated HCT116 and RKO cells as well

as cells transduced with either LARS2 or AAVS1 targeting sgRNAs

were seeded in provided 96-well plates. In the experiments involv-

ing Wnt3a treatment, 100 ng/ml recombinant Wnt3a was added to

the cell culture medium 24 h prior to Seahorse measurement. The

cell number was adjusted to 20,000 cells per well. Furthermore, Sea-

horse XF Calibrant was left for incubation at 37°C overnight without

CO2 supply and the Agilent Seahorse XFe96 Sensor Cartridge was

hydrated as described in the protocol.

On the day of analysis, the sensor cartridge was transferred in

pre-warmed XF Calibrant. In addition, seeded cells were washed

two times with preprepared Seahorse XF DMEM Medium containing

1 mM pyruvate, 2 mM L-glutamine and 10 mM glucose. The plate

was then incubated at 37°C without CO2 for 1 h prior to the analy-

sis. The analysis was performed by Seahorse Wave Desktop Soft-

ware (Agilent). The oxygen consumption measurements used in this

study are three measurements A before the addition of any drug

(basal respiration + non-mitochondrial oxygen consumption) and

three measurements B after the addition of 1 lM Rotenone and

1 lM Antimycin A (non-mitochondrial oxygen consumption). The

basal respiration rate was calculated as the difference between the

mean of measurements A minus the mean of measurements B. To

quantify protein content, the cells were finally lysed with 25 ll RIPA
lysis buffer containing appropriate amounts of protease inhibitor.

BCA assay PierceTM BCA Protein Assay Kit was used to determine

protein content, which was subsequently used to normalize the oxy-

gen consumption data of the Mito Stress Test.

Data availability

Raw gRNA counts of the CRISPR screen performed in the context of

this study can be downloaded from https://github.com/boutroslab/

Supp_Imkeller_2021/blob/main/external_data/CRISPR_screen_gRNA_

counts.csv.gz. All other public datasets used in the study can be

accessed as described in the Materials and Methods section and in

the corresponding rmarkdown files. All unique biological materials

are available from the authors upon request. The code used for anal-

ysis and visualization is deposited at github.com/boutroslab/Supp_

Imkeller_2021. The README file indicated which script is used for

which analysis step.

Expanded View for this article is available online.
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