Biological
Psychiatry:
GOS

Archival Report

Differential Impact of Anxious Misery
Psychopathology on Multiple Representations of
the Functional Connectome

Darsol Seok, Joanne Beer, Marc Jaskir, Nathan Smyk, Adna Jaganjac, Walid Makhoul,
Philip Cook, Mark Elliott, Russell Shinohara, and Yvette I. Sheline

ABSTRACT

BACKGROUND: One aim of characterizing dimensional psychopathology is associating different domains of af-
fective dysfunction with brain circuitry. The functional connectome, as measured by functional magnetic resonance
imaging, can be modeled and associated with psychopathology through multiple methods; some methods assess
univariate relationships while others summarize broad patterns of activity. It remains unclear whether different
dimensions of psychopathology require different representations of the connectome to generate reproducible
associations.

METHODS: Patients experiencing anxious misery symptomology (depression, anxiety, and trauma; n = 192)
received resting-state functional magnetic resonance imaging scans. Three modeling approaches (seed-based
correlation analysis, edgewise regression, and brain basis set modeling), each relying on increasingly broader
representations of the functional connectome, were used to associate connectivity patterns with six data-driven
dimensions of psychopathology: anxiety sensitivity, anxious arousal, rumination, anhedonia, insomnia, and
negative affect. To protect against overfitting, 50 participants were held out in a testing dataset, leaving 142
participants as training data.

RESULTS: Different modeling approaches varied in the extent to which they could model different symptom di-
mensions: seed-based correlation analysis failed to reproducibly model any symptoms, subsets of the
connectome (edgewise regression) were sufficient to model insomnia and anxious arousal, and broad
representations of the entire connectome (brain basis set modeling) were necessary to model negative affect
and ruminative thought.

CONCLUSIONS: These results indicate that different methods of representing the functional connectome differ in the
degree that they can model different symptom dimensions, highlighting the potential sufficiency of subsets of con-

nections for some dimensions and the necessity of connectome-wide approaches in others.

https://doi.org/10.1016/j.bpsgos.2021.11.004

The DSM conceptualizes mental ilinesses as discrete disorder
classes. Notable issues with the DSM, such as heterogeneity
within disorders and a lack of understanding of underlying
mechanisms, have motivated the development of alternative
frameworks such as the Research Domain Criteria (RDoC) (1).
Whereas the DSM groups symptoms together based on
common co-occurrence, RDoC delineates these symptoms
onto distinct dimensions of behavioral and cognitive (dys)
function, with the goal of mapping these dimensions onto
biological mechanisms. This study applies this dimensional
approach to a class of disorders termed disorders of anxious
misery (AM) (2,3), which includes DSM diagnoses of general-
ized anxiety disorder, major depressive disorder, persistent
depressive disorder, and posttraumatic stress disorder. Com-
bined, these disorders affect more than 800 million people
worldwide and constitute the leading cause of disability (4).
Patients with these disorders exhibit dysfunction along various

dimensions of neurocognitive functioning (constructs in the
RDoC), such as anxiety, frustrative nonreward, and sleep-
wakefulness.

A key element for investigating these dimensions is the
identification of their underlying neural circuits. Resting-state
networks (5,6) can be probed using noninvasive brain imag-
ing to visualize the functional coactivation of specific brain
regions, together forming the functional connectome (7). A key
challenge in associating psychopathology with the functional
connectome is the sheer size of connectomic data: a typical
imaging sequence may measure signal from approximately
200,000 voxels, resulting in approximately 10° potential com-
ponents of the connectome (8). Given the potentially massive
size of these data, many modeling approaches only use a
subset of the total information available within the con-
nectome. At one extreme are univariate seed-based correlation
analysis (SCA) approaches, which examine associations
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between behavioral variables and connectivity between just
two regions, the selection of which is often determined a priori.
In contrast, data-driven models such as edgewise support
vector regression (9) typically rely on a small subset of func-
tional connections within the connectome to generate multi-
variate symptom-brain associations. Finally, recent methods
such as brain basis set modeling (BBS) (10) capitalize on
connectivity patterns that can span the entire brain, using
dimensionality reduction approaches such as principal
component analysis (PCA) to efficiently summarize large-scale
patterns. It remains an open question whether different
modeling approaches are better suited for different dimensions
of AM symptomology; dysfunction in a single circuit may be
sufficient to model some dimensions, while broader, global
patterns of connectivity may be necessary to model other
dimensions.

An important consideration in assessing the generaliz-
ability of symptom-brain associations is the ability to replicate
performance in a held-out testing dataset (11). Systematic
examinations of brain-behavior associations have revealed
that samples far larger than those typically used in neuro-
imaging studies of psychopathology may be required to
generate stable associations (12). Furthermore, notable ex-
amples of failed replications (13,14) have revealed the perils
of fitting multivariate models, particularly when models rely on
a small subset of functional connections selected through
data-driven methods. Many of these failures in replication
stemmed from findings that incorrectly applied cross-
validation, which requires complete encapsulation of infor-
mation between folds to generate a reasonable estimate of
out-of-sample performance (15). Direct validation of model
performance in a held-out sample is therefore an important
step to assessing the potential generalizability of any
symptom-brain association.

To this end, this work examined transdiagnostic associa-
tions between six data-driven dimensions of AM symptomol-
ogy (anxiety sensitivity, anxious arousal, ruminative thought,
anhedonia, insomnia, and negative affect) and functional
connectivity using three different modeling approaches. The
data were randomly divided into a training set and a held-out
testing set to validate model performance.

METHODS AND MATERIALS

Sample Characteristics

For a complete description of sample characteristics,
screening procedures, and participant assessment, readers
are directed to the reference publication for this dataset (16).

Participants experiencing symptoms of AM (n = 194) were
recruited through the community. Healthy comparators (HCs)
(n = 48) were also recruited; only one modeling approach
(BBS) used data from HC participants. Demographic infor-
mation is summarized in Table 1, with additional de-
mographic information in Table S1. Two AM participants
were removed from analyses due to excessive in-scanner
motion, so we present demographics for 192 AM and 48
HC participants.

To ensure a transdiagnostic dataset within the AM category,
participants were deemed eligible if their neuroticism score on
the Neuroticism-Extraversion-Openness Five-Factor Inventory
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Table 1. Participant Characteristics

Total, Control,  Anxious Misery,
Characteristics N =240 n=48 n=192
Sex
Female 168 (70%) 34 134
Male 72 (30%) 14 58
Age, Years®
18-23 68 (28.3%) 11 57
24-29 91 (37.9%) 23 68
30-35 42 (17.5%) 9 33
36-41 30 (12.5%) 4 26
42-47 3 (1.3%) 1 2
48-53 2 (0.8%) 0 2
54-59 4 (1.7%) 0 4
Race
Asian 25 (10.4%) 6 19
Black 45 (18.8%) 9 36
Multiracial 13 (6.4%) 2 11
Other 5 (2.1%) 2 3
Undisclosed 8 (3.3%) 0 8
White 144 (60.0%) 29 115
Ethnicity
Hispanic 17 (7.1%) 3 14
Not Hispanic 219 (91.2%) 45 174
Undisclosed 4 (1.7%) 0 4
Medication Status
Medicated - - 51 (26.5%)
Unmedicated - - 141 (73.4%)
Primary DSM-5 Diagnosis
Major depressive - - 91 (47.4%)
disorder
Generalized anxiety - - 42 (21.9%)
disorder
Posttraumatic stress - - 39 (20.3%)
disorder
Persistent depressive - - 13 (6.77%)
disorder
Social anxiety disorder - - 6 (3.12%)
Cyclothymic disorder - - 1 (0.52%)

Values are presented as n or n (%). Additional demographic
information can be found in Table S1. Note that control participants
were only used in the brain basis set modeling approach.

#Median = 26 years.

was greater than one standard deviation above the population
mean (=26.2 for males, =30.1 for females) (17). Neuroticism
was selected as an eligibility criterion because it captures
general elements of psychopathology that are shared by par-
ticipants diagnosed with depression, anxiety, and trauma-
related disorders (18,19).

We did not require participants to cease taking any psy-
chotropic medications. The majority of our study participants
(73.4%) were unmedicated. All participants provided informed
consent, and all study procedures were conducted under the
approval of the University of Pennsylvania Institutional Review
Board.
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Participant Assessment

To assess participants’ symptom profiles, seven clinician-
administered and self-report scales measuring a broad range
of depressive and anxious symptomology were administered
to AM participants [see full list of assessments in Supplemental
Methods and Materials and (16)].

Hierarchical Clustering of Symptoms

To derive data-driven symptom communities from our
assessment data, we applied a hierarchical clustering algo-
rithm (20) on the Pearson correlation matrix of the 113 con-
stituent items of our seven instruments, using only data from
the AM group. After selecting an appropriate resolution (see
Supplemental Methods and Materials for details), we derived
symptom dimension scores for each participant by computing
the mean across items belonging to each symptom community
after z-scoring.

Imaging Acquisition

Participants received T1-weighted imaging and four resting-
state functional magnetic resonance imaging scans (total
acquisition time = 23:01) after their symptom assessments.
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A summary of imaging parameters and image acquisition
protocols are provided in Supplemental Methods and
Materials, with full details provided elsewhere (16).

Image Preprocessing

Preprocessing details are provided in Supplemental Methods
and Materials and the reference publication for this dataset
(16). Two participants, both of whom were AM participants
(0.83% of all participants), were removed from resting-state
analyses due to excessive in-scanner movement (root-mean-
squared movement > median (root-mean-squared
movement) + 3 X interquartile range).

Overview of Modeling Approaches

We tested the ability of three different modeling approaches,
each relying on increasingly dense representations of func-
tional connectomics, to generate robust, generalizable asso-
ciations between imaging data and symptom dimensions. An
overview of each of these modeling approaches is provided
(Figure 1), with complete details provided in Supplemental
Methods and Materials. Implementations for modeling ap-
proaches are available at https://github.com/dseok/anxious_
misery_connectomes.

Figure 1. Overview of modeling approaches. All
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Table 2. Seed-Based Correlation Analysis Results

Functional Connectomics of Anxious Misery

Symptom References Seed Mask

Sign Voxels, n r, Training r, Testing

Anxiety Sensitivity (28-32) L amygdala Whole brain
L dIPFC

R dIPFC
Whole brain
L dIPFC

R dIPFC
Whole brain
L dIPFC

R dIPFC
Whole brain
L dIPFC

R dIPFC
Whole brain
Precuneus
mPFC
Whole brain
L OFC

R OFC
Whole brain
L OFC

R OFC
Whole brain
Precuneus
mPFC

PCC

Whole brain
Precuneus
mPFC
Whole brain
Precuneus
mPFC

R amygdala

Anxious Arousal (28-32) L amygdala

R amygdala

Ruminative Thought (33-36) PCC

Anhedonia (23-27) Livs

RiVS

Negative Affect

(37-44) sgACC

Insomnia (45-49) L insula

R insula

-39

42

—41

-50

30

10

11

74
8

0.355
0.335

0.3377
0.069

33
33

31
40

31

0.359

29 35 0.241

0.376

—24 48 0.007

0.326

24 40 18 0.016"

-72 50 27 0.345 0.135°

0.272°

3

70 37 0.353 0.245

Unique seeds and masks for each symptom cluster (in addition to a whole-brain analysis) were assigned based on findings from extant literature
(“Reference”). Whole-brain analyses indicate exploratory analyses wherein significant clusters were permitted anywhere in gray matter. Significant
clusters were identified using a nonparametric permutation testing technique incorporating threshold-free cluster enhancement (implemented in
FSL’s Randomise; FWER < 0.05). Coordinates for cluster center of mass are in MNI space. In the Sign column, the sign indicates the direction
of association: “+” indicates that hyperconnectivity was associated with worse symptoms, while “—” indicates that hypoconnectivity was
associated with worse symptoms. r (training) and r (testing) indicate Pearson correlations between observed and predicted symptom scores

using a linear model using connectivity z scores.

dIPFC, dorsolateral prefrontal cortex; FWER, familywise error rate; iVS, inferior ventral striatum; L, left; MNI, Montreal Neurological Institute;
mPFC, medial prefrontal cortex; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; R, right; sJACC, subgenual anterior cingulate cortex.
#Highest performing connections in the testing set for each symptom.

Modeling Approach 1: SCA

SCA associates behavioral variables (in our case, symptom
dimension scores) with connectivity between a seed region
and another region. Each symptom dimension was assigned
specific seeds and masks based on extant literature (Table 2).
Exploratory whole-brain analyses (wherein significant clusters
outside of a priori masks are permitted) were also conducted.

Clusters that exhibited significant associations based on
permutation testing (p < .05) are reported. Given that SCA was
merely used to identify clusters for further validation in our
testing set, this p-value threshold was not adjusted for multiple
tests; Bonferroni correction of this p-value threshold resulted in
no significant clusters being identified in the training set. After
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clusters were identified, linear models predicting symptom
severity using connectivity were constructed using mean
connectivity between the seed region and the identified clus-
ter; significance of testing performances was corrected (Holm-
Bonferroni) separately for each symptom cluster.

Multivariate Methods

The next two modeling approaches used the Power264 atlas,
a well-validated parcellation that identifies 264 functional
nodes of the brain (21). In addition to these 264 nodes, we
supplemented 14 additional nodes relevant to AM disorders,
adopted from the additional nodes used in (22) (full table of
additional seeds in Table S3).

Biological Psychiatry: Global Open Science October 2022; 2:489-499 www.sobp.org/GOS


http://www.sobp.org/GOS

Functional Connectomics of Anxious Misery

Raw data
n=194
Preprocess,
QC, regress
out covariates
n=192
Training data Testing
n =142 data
n =50
Nested 5-fold CV
Feature Performance | |Hyperparameter,
selection assessment tuning
T
J
]
Feature Fitting on
selection training data
Final
assessment,
permutation
testing

Figure 2. Flowchart of model assessment framework. Two participants
were removed for excessive in-scanner motion during quality control (QC)
procedures. After data are split into training and testing partitions, hyper-
parameter tuning in training data is accomplished using nested fivefold
cross-validation (CV). The best-performing hyperparameters are used in a
final model that is fit on the full training dataset. Finally, model performance
is assessed using the testing data, and significance is determined using
permutation testing. This process was repeated for each symptom dimen-
sion, each time using the same training/testing partition.

For both of the following methods, we extracted the mean
time series of each node using spherical regions of interest
(5-mm radius) and then computed the Pearson correlation
between each time series to generate a 278 X 278 functional
connectivity matrix for each scan (38,503 unique connections).
Because participants completed four scans, the four resulting
matrices were averaged to generate one matrix per participant.

Modeling Approach 2: Edgewise Regression

In this modeling approach, a subset of individual connection
strengths (edges) was first selected using a cross-validated
feature selection procedure and then associated with symp-
tom severity using support vector regression (linear kernel).
Our feature selection procedure indicated that edgewise
regression models performed best with a small subset of
connectivity features (approximately 5% of the full matrix).

Modeling Approach 3: BBS

BBS (10) uses PCA to generate a low-dimensional represen-
tation of interindividual differences in global connectivity pat-
terns. After PCA, support vector regression (linear kernel) was
used to associate each symptom dimension with connectivity
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component scores. To capture directions of connectivity
variance that extend into healthy ranges, BBS uses data from
HC participants; this was the only modeling approach that
used our sample of HCs. PCA was only ever conducted within
the training set to prevent data leakage from testing participant
data.

Modeling Assessment Framework

All models underwent the following assessment framework
(Figure 2) designed to test the performance of models on new,
unseen data. First, age, sex, and motion (root-mean-squared)
were regressed from connectivity matrices, and age and sex
were regressed from symptom scales (see Figures S4 and S5
for correlations with motion and temporal signal-to-noise ratio).
No significant associations between symptom scales and
motion or temporal signal-to-noise ratio were detected. Sec-
ond, while matching for age, sex, and symptom severity (see
Supplemental Methods and Materials for details), a random
subset of 50 AM participants were segregated to a testing set,
leaving 142 AM participants for our training set. Next, within
the training set, fivefold cross-validation was used to perform
feature selection and hyperparameter tuning for the multivar-
iate methods. Connections were selected for each symptom
dimension by computing the Spearman correlation between
each connection and the symptom dimension in question and
then selecting the p connections with the highest absolute
correlations, where p is a hyperparameter tuned through nes-
ted cross-validation.

Finally, model performance was assessed in the held-out
testing set by computing the Pearson correlation between
the predicted and actual symptom scores, using a model fit on
the entire training set. Significance was determined using a
permutation testing procedure wherein null distributions of
correlations were generated by shuffling the rows of imaging
data relative to symptom data in the training set, performing
the entire model-fitting process using this permuted dataset
and using this model to compute the correlation between
predicted and actual symptom scores in the testing dataset,
repeating this entire process 5000 times for each symptom
and modeling approach. Given that each symptom dimension
is being modeled using three different approaches, final model
performances for each symptom were adjusted for multiple
testing using separate Holm-Bonferroni corrections.

RESULTS

Symptom Clustering

Inspection of the symptom hierarchy revealed that items
clustered according to clinically relevant dimensions (see
Figure S1 for complete hierarchy). Symptoms first separated
into two large communities, one with predominantly depres-
sive symptoms and the other with largely anxiety-related
symptoms. At finer resolutions, these two larger communities
separated into three subcommunities each, resulting in six
total communities (Figure 3). Anxiety-related symptoms
divided into the following communities: anxiety sensitivity
(representative item: “lt scares me when my heart beats
rapidly.”), anxious arousal (“Hands were shaky”), and rumina-
tive thought (“I can’t stop thinking about some things.”).
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Depression-related symptoms divided into the following
communities: anhedonia (“I would not find pleasure in my
hobbies and pastimes.”), insomnia (“Difficulty falling asleep”),
and negative affect (“Pessimistic thoughts”). See Table S4 for
a complete list of symptom clusters and their constitutive
items. Ultimately, this resolution was chosen for analysis
because it 1) allowed for interrogation of symptom dimensions
finer than those aligned with traditional diagnostic categories
(i.e., anxiety and depressive disorders) and 2) resulted in
communities that were broadly aligned with constructs of the
RDoC, unlike finer resolutions that split groups of symptoms
into clusters too narrow to be meaningfully interpreted. See
Figure S8 for correlations between symptom clusters. As ex-
pected (2), all symptoms exhibited moderate, positive corre-
lations with each other.

Training and Testing Partitions

Training (n = 142) and testing (n = 50) partitions were well
matched for age, sex, and z-scored symptom scores
(Figure S2). Two-sample t tests and 2 tests did not indicate
significant differences between data partitions for all
categories.

SCA Results

The complete list of significant clusters identified using SCA is
detailed in Table 2. Only one significant cluster was identified
using an exploratory whole-brain search, and association with
this cluster did not replicate in the testing dataset (anxious
arousal, left amygdala < left primary motor cortex, riesting =
0.007, Puncorrected = -962)-

With the exception of negative affect, all symptom di-
mensions identified at least one significantly associated cluster
within the training set. However, replication within the testing
data was mixed. Only clusters for anxiety sensitivity (left
amygdala < left dorsolateral prefrontal cortex, riesting = 0.337,
Puncorrected = -017) and anhedonia (right inferior ventral striatum
< left orbitofrontal cortex, riesting = 0.276, Puncorrected = -049)
generated meaningful correlations in the testing set. Other

Functional Connectomics of Anxious Misery

Figure 3. Clustering revealed six communities of
symptoms. Each circle represents an item on one of
seven patient assessments of psychopathology.
Indicated in each circle is the assessment to which
the item belongs. Connections and proximity of cir-
cles indicate the strength of correlation between
items. ASI, Anxiety Sensitivity Index; HAMD, Hamil-
ton Depression Rating Scale; ISI, Insomnia Severity

o anXiety SenSitiVity Index; MADRS, Montgomery—Asberg Depression
@) anxious arousa| Rating Scale; MASQ, Anxiety Depression Distress
" 3 Inventory-27; RTS, Ruminative Thought Style Ques-
ruminative thought tionnaire; SHAPS, Snaith-Hamilton Pleasure Scale.
® anhedonia
® insomnia
® negative affect

symptoms, such as anxious arousal (right amygdala < right
dorsolateral prefrontal cortex, riesting = 0.016, Puncorrected =
.909), completely failed to replicate in the testing set.

Multivariate Models: Hyperparameter Tuning in the
Training Dataset

Hyperparameter tuning was accomplished using nested
cross-validation within the training dataset (Figure S6). This
procedure indicated that edgewise regression models
generally favored smaller numbers of connections (approxi-
mately 500). In contrast, BBS models favored a high number
of connections (approximately 38,000). Because BBS models
generally exhibited increasing performance with more fea-
tures, the full connectivity matrix was used for all BBS
models.

BBS: Distribution of Principal Components. Alignment
of BBS connectivity component weights with intrinsic con-
nectivity networks was examined (Figure S7). While the first
principal components exhibited greater mean loading on a
small subset of networks (10), all components exhibited sig-
nificant loading on multiple networks, suggesting that the
interindividual variability captured by BBS components did not
merely recapitulate the structure of intrinsic connectivity
networks.

BBS: Inclusion of HCs. BBS is the only modeling approach
that used HCs. Examination of testing performance with and
without HCs revealed that the inclusion of HCs significantly
improved performance for negative affect and rumination and
had little effect for other symptom dimensions (Figure S8); as
such, HCs were included in all BBS models.

Final Model Performance in the Testing Dataset

Final model performance for all three modeling approaches is
detailed in Table 3. SCA models failed to replicate for all
symptom dimensions. Insomnia (festing = 0.344, Poorrected =

494 Biological Psychiatry: Global Open Science October 2022; 2:489-499 www.sobp.org/GOS


http://www.sobp.org/GOS

Biological
Psychiatry:
GOS

Functional Connectomics of Anxious Misery

.018) and anxious arousal (fiesting = 0.336, Poorrected = -027) b < 22
were only significantly modeled using edgewise regression S| |Elanaaeolzs
models. Negative affect (fiesting = 0.323, Pcorrected = -010) and § ‘§ § § E § % § f g
ruminative thought (fiesting = 0.313, Pcorrected = -045) were only 2 036 sa|es
significantly modeled by BBS models. Schematic representa- < 8 °2%
tions of these symptoms and their best performing modeling _g’ Z% S
approaches are displayed in Figure 4. Scatterplots of predicted g < | o olw {j §
and observed severities indicated normal distributions and CH PN S RIS ARCIRNR=1 B~ 35
absence of significant outliers (Figure S9). E a i 5 .
While modeling approaches were fit independently, con- § 3 g ‘E o
nections weighted heavily in simpler models were also prom- g glo I 538 ele 2 %
inent in more complex modeling approaches. For example, a a § @ ae Qe %fg) ;
priori connections tested in SCA generally exhibited strong 9 Q EL 2
weights in multivariate models: for insomnia, the left insula < H g 3 55
medial prefrontal cortex connection was in the top 4.04% of '; 2alololelid };, i P
connections in its BBS model; for ruminative thought, the £ g 88338 » B 2 g -
precuneus <« posterior cingulate cortex connection was in 3 N EINISISININI RS 5 o
the top 10.05% of connections in its BBS model (and ® B :{é E S
this connection performed comparatively worse in SCA, with g Z E g s §
lesting = 0.135). Only anxious arousal did not exhibit strong £ Slo oo oo alds § E
correspondence between its SCA model (which had poor 4 8|3 3 § SRS § g o £ =
replication in the testing set: riesiing = 0.016) and its multivariate : g © E 2 5
models: edgewise regression did not select the right amygdala 8 c 38 3 g § 3
< right dorsolateral prefrontal cortex connection, and this |2 273 ‘E’§
connection was only in the top 34.01% of connection weights 2|9 NEIEINE RS g g S5
in BBS. Finally, connection weights from edgewise regression 2 é’ Tmee T E g g‘g
models highly correlated with the subset of overlapping : o g; o 9
connection weights in the equivalent BBS model (range across NE § 5 o S ®
six symptoms: r = 0.852-0.949). o9 858828809 o2
Network-level representations reveal common and distinct f»j Wi og : 122 “3 g
patterns of connectivity abnormalities associated with each 2 e i“,,g, g%
symptom dimension (Figure 5). Of the four symptoms best 8 E g % oy
represented by multivariate models, all exhibited abnormal g 2w 9 Ev 3%9) © Eé gﬁ
connectivity patterns in the default mode network (DMN). 3 g § o § e g Z|o83 %g
Anxious arousal was characterized by hyperconnectivity be- §, § 3 g ;-
tween bilateral regions of the DMN, as well as hyper- <N - -g Eﬁ, S 2
connectivity between 1) sensory regions such as the visual and E 5 2 @ s B
auditory cortices and 2) networks in association cortex, such ._‘3’ é %’ E f; % "":
as the cinguloopercular network (CIN), frontoparietal network o e~ /— "~ % 3 g € S
(FPN), and DMN. Insomnia was associated with hyper- o g e g c@8
connectivity between the 1) DMN and 2) visual and auditory E © 5 é 2 £8
cortices, the right salience network, and limbic nodes. Rumi- = g7 £LIE
native thought was associated with hyperconnectivity between % NEIEIE § \ § CSD B 8 3 ‘g
bilateral regions of the CIN, as well as hyperconnectivity be- <5 e L2 § 3
tween the CIN and visual cortex and hypoconnectivity between S| g *Z, g E 5
the right CIN and the DMN. Finally, negative affect was asso- “;’ "o g % 5 3
ciated with decreased segregation (increased connectivity) ° 822 ~8 | 3 £3 $85 5
between the left FPN and the DMN, as well as between the CIN a g < T2 « s g 23 e
and DMN. In addition, the left FPN exhibited decreased con- 5 g 3 g @« 2 '§ \é
nectivity with the salience network and the visual cortex. E g § _g’é g ®
El [d5kqe 8lBg §255
DISCUSSION 3| 148333 5lEz Eggt
(/] o) = =
This work examines transdiagnostic associations between "g » g%g 2 g §’§
functional connectivity and different symptom dimensions, in 4 2 _ §= o _E 2 _tg %'g 2
line with the dimensional perspective espoused by the RDoC ;_3 % g ] |f_:’ g 2 £ £ % L _é
framework (1). Our multimodeling approach suggests that . e 5 ;(9 Z ® %g S5 % 3%
different dimensions of psychopathology required different 2 S (g,é 2 9 %’ § ;Q_E’ég e % 5
representations of the functional connectome. Univariate re- T.% g 20 § g/8 £la § Sar 8
lationships failed to robustly model any symptom dimensions. [ alel&l2&zel 9

Biological Psychiatry: Global Open Science October 2022; 2:489-499 www.sobp.org/GOS 495


http://www.sobp.org/GOS

Psychiatry:
GOS

Anxious

Data-driven,
multivariate
mesoscale
patterns
necessary

3

3 3

Qo

32

33

2 q

IS

=S

S

o<

=3
Complex,
broadly
distributed
patterns
necessary

Ruminative
thought

Negative
affect

Some dimensions, such as insomnia and anxious arousal,
were sufficiently modeled by subsets of the connectome.
Other dimensions, such as negative affect and rumination,
required information from the entire connectome; for these
dimensions, smaller subsets of connectome were not sufficient
to generate a replicable association.

Anhedonia and anxiety sensitivity were not reproducibly
modeled by any of our modeling approaches, despite a broad
body of work implicating specific connections for both anhe-
donia (23-27) and anxiety sensitivity (28-32). In fact, all asso-
ciations from single connections failed to replicate in the
testing set after correction for multiple comparisons. This
finding recapitulates similar studies that have highlighted the
challenges of replicating univariate associations in fully held-
out samples (12).

In contrast to anhedonia and anxiety sensitivity, anxious
arousal and insomnia were sufficiently modeled using
edgewise regression, which used a small subset of the
connectome (~5%). Similar to anxiety sensitivity, anxious
arousal has been associated with abnormal amygdala con-
nectivity (30,50). However, cross-cultural studies have
revealed that different ethnoracial groups experience
different degrees of anxious arousal (somatization), sug-
gesting that this symptom dimension likely involves cortical
integration beyond the amygdala (50,51). Indeed, anxious
arousal was associated with hyperconnectivity between
sensory regions and regions in the association cortex
(including the CIN, FPN, and DMN), which may underlie the
somatization of anxious states. Insomnia was associated
with hyperconnectivity between the DMN and multiple
cortical areas, including the primary sensory cortex, salience
network, and limbic nodes. This exaggerated connectivity

Depressive

Functional Connectomics of Anxious Misery

Figure 4. Schematic representations of each
symptom and its best-performing modeling
approach. Symptoms in the first row were modeled
using edgewise regression and in the second row
using brain basis set modeling (BBS). A connection’s
color represents either hyperconnectivity (red) or
hypoconnectivity (blue), and a connection’s width
represents the magnitude of its associated model
weight. Green and yellow nodes denote the a priori
connections tested in seed-based correlation anal-
ysis models; green nodes represent seeds while
yellow nodes represent resulting clusters. Other
nodes belonging to key connections are labeled and
colored cyan for easier identification: anxious arousal
was associated with hypoconnectivity between left
(L) frontopolar cortex (FPC) and right (R) supra-
marginal gyrus (SMG) and hyperconnectivity be-
tween R insula (Ins) and L amygdala (Amy),
ruminative thought was associated with hyper-
connectivity between primary motor cortex (M1) and
R angular gyrus (Ang), and negative affect was
associated with hyperconnectivity between R Amy
and anterior cingulate cortex (ACC). For edgewise
regression and BBS models, connections in the
strongest 1% of model weights are plotted for
display purposes (approximately 30 connections for
edgewise regression, approximately 300 for BBS
models). mPFC, medial prefrontal cortex; PCC,
posterior cingulate gyrus; PreC, precuneus; sgACC,
subgenual anterior cingulate cortex.

with the DMN may represent increased vigilance and
awareness of emotional and bodily states, resulting in poor
sleep initiation and continuity (52).

Finally, two of our constructs, rumination and negative
affect, were only robustly modeled by BBS, which used in-
formation from the entire connectome and drew from com-
ponents with broad alignments with multiple intrinsic
connectivity networks. Evolutionary theories of ruminative
thought support the notion that this symptom dimension
likely developed later in evolution because the emergence of
complex social environments and the ability to engage in
sustained processing are thought to be supported by the
expansive primate neocortex (53,54). Similar theories about
negative affectivity suggest that stress drives the brain to
reorganize to minimize surprise (prediction error) in the
environment, a complex process that likely involves cortex-
spanning, multinetwork interactions (55). Both ruminative
thought and negative affect exhibited abnormalities with the
DMN, which has been consistently implicated in AM disor-
ders, particularly in depression (37,56). Hyperactivity of the
DMN during emotional perception and judgment (57) and
passive viewing and reappraisal of negative pictures (56) as
well hyperconnectivity between the DMN and the FPN (38)
suggest that DMN abnormalities may underlie an inability to
detach from internal emotional states [e.g., rumination and
negative affect (56)).

This is not to suggest, however, that the nonoptimal
modeling approaches are without merit. While only the highest
performing models for each symptom survived testing for
multiple comparisons (with the exception of SCA models; see
Figure S10 for schematic diagrams of all six symptom di-
mensions and their best performing models), different models
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of the same symptom exhibited similar weights, suggesting
that convergent signals informed these different models.
Furthermore, differences in model performance for some
symptom dimensions were relatively minor; for example, all
modeling approaches for insomnia performed relatively well.
While the use of permutation testing, validation in a held-out
dataset, and correction for multiple comparisons helps to
confirm the validity of each individual model, the comparison of
performances between models is by no means conclusive
without rigorous statistical tests that would require larger
sample sizes. Future analyses in larger datasets using iterative
cross-validation methods are necessary to confirm these
hypotheses.

Direct validation of our models in a held-out dataset was
critical for verifying their performance. Indeed, edgewise
regression models exhibited excellent performance in
training set cross-validation (typically achieving correlations
of 0.6) but did not generate significant associations in testing
data for four of six symptom dimensions. Edgewise regres-
sion favored smaller subsets of features, typically on the
order of 500 features (around approximately 1% of the full
connectivity matrix), which is similar to the number of con-
nections used in many other studies examining multivariate
associations of psychopathology (22,58-60). Notably, many
of these studies did not perform a direct validation of their
models on held-out data which, as the results from this study
suggest, is a crucial step in assessing the generalizability of
multivariate models.

Biological
Psychiatry:
GOS

Figure 5. Chord diagrams displaying network-
level associations for symptoms best fit by multi-
variate models. Association strengths were collated
by node community, according to the a priori com-
munities delineated in the Power264 atlas. Commu-
nities were lateralized and plotted around each chord
diagram, with left-lateralized nodes displayed on the
left side of the plot and bar width proportional to the
number of nodes in the community. Red ribbons
indicate hyperconnectivity, while blue ribbons indi-
cate hypoconnectivity in association with symptom
scores. Ribbon opacity is proportional to the mean
strength of association with the symptom dimension
(more opaque = stronger association), and ribbon
width is proportional to the number of connections
participating in a plotted association (wider ribbon =
more connections). Ribbon appearance was deter-
mined based on a formula that balanced 1) the mean
strength of connections, 2) the variability of these
connection strengths, and 3) the number of con-
nections of each community-pair. Full details for how
this visualization was generated can be found in
Supplemental Methods and Materials (Chord
diagram for multivariate models). Note that the left
column of diagrams represents edgewise regression
models, while the right column represents brain ba-
sis set modeling models. AUD, auditory; CER,
cerebellar; CIN, cinguloopercular network; DAN,
dorsal attention network; DMN, default mode
network; FPN, frontoparietal network; LIM, limbic;
MEM, memory retrieval; SAL, salience network;
SMN, somatomotor network; SUB, subcortical; VAN,
ventral attention network; VIS, visual.

While we strove to implement a rigorous analytic design and
findings are reinforced by and expand on prior literature, these
results should also be considered in the context of the
following limitations. To minimize the number of hypotheses
tested for SCA, we limited seeds and masks for SCA to a
circumscribed set based on extant literature. It is possible that
univariate connections outside of those tested could replicate
in a testing set. However, we took care to focus on those
connections that were best supported by the literature.
Furthermore, exploratory whole-brain analyses only generated
one cluster (anxious arousal; left amygdala < left primary
motor cortex), which failed to replicate in the testing dataset. In
addition, most seed regions used for SCA were defined using
anatomical atlases; it has been demonstrated that functional
regions may be better captured through different means
(61,62), and the use of alternative seeds in future studies may
yield stronger results for SCA. Additional limitations include the
theory-driven selection of symptom structure resolution; other
resolutions in the symptom hierarchy could reveal additional
insights. Entirely data-driven multiview analyses that simulta-
neously model symptom structures and associated connec-
tivity patterns are possible (63). However, recent simulation
studies suggest that very high sample sizes (approaching
thousands of individuals for an r = 0.3) may be necessary to
generate reproducible associations using these methods (64).
Given our sample size (n = 192), we chose instead to fix our
symptom structure based on the emergence of psycholog-
ically plausible, coherent symptom communities. Finally, the
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testing dataset was of moderate size (n = 50); future analyses
pooling data from multiple sites will prove invaluable for testing
the robustness and generalizability of symptom-brain associ-
ations (12).

Despite these limitations, this work represents one of the
only studies to examine transdiagnostic AM psychopathology
using multiple representations of brain connectivity. Our
rigorous performance assessment framework revealed that
different dimensions of AM psychopathology required different
representations of functional connectivity, highlighting the
potential sufficiency of single-circuit, univariate approaches for
some dimensions and the necessity of connectome-wide,
multivariate approaches in others.
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