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Abstract 

Background:  Critical values are commonly used in clinical laboratory tests to define health-related conditions of 
varying degrees. Knowing the values, people can quickly become aware of health risks, and the health professionals 
can take immediate actions and save lives.

Methods:  In this paper, we propose a method that extends the concept of critical value to one of the most com-
monly used physiological signals in the clinical environment—Electrocardiogram (ECG). We first construct a mapping 
from common ECG diagnostic conclusions to critical values. After that, we build a 61-layer deep convolutional neural 
network named CardioV, which is characterized by an ordinal classifier.

Results:  We conduct experiments on a large public ECG dataset, and demonstrate that CardioV achieves a mean 
absolute error of 0.4984 and a ROC-AUC score of 0.8735. In addition, we find that the model performs better for 
extreme critical values and the younger age group, while gender does not affect the performance. The ablation study 
confirms that the ordinal classification mechanism suits for estimating the critical values which contain ranking infor-
mation. Moreover, model interpretation techniques help us discover that CardioV focuses on the characteristic ECG 
locations during the critical value estimation process.

Conclusions:  As an ordinal classifier, CardioV performs well in estimating ECG critical values that can help people 
quickly identify different heart conditions. We obtain ROC-AUC scores above 0.8 for all four critical value categories, 
and find that the extreme values (0 (no risk) and 3 (high risk)) have better model performance than the other two 
(1 (low risk) and 2 (medium risk)). Results also show that gender does not affect the performance, and the older age 
group has worse performance than the younger age group. In addition, visualization techniques reveal that the 
model pays more attention to characteristic ECG locations.
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Background
Critical values, which are also known as panic values, tell 
“when to panic” over abnormal health-related conditions 
[1]. With a few numerical critical values that summarize 
and simplify the complex medical circumstances, health 
professionals can provide timely and effective responses. 
Also, people without any medical background can easily 
assess the health problems based on the values. Critical 
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values are always defined with decision boundaries esti-
mated from laboratory tests or vital signs [2–5]. For 
example, if a routine blood test shows a person’s serum 
potassium level is less than 3.0  mmol/L, it is a serious 
warning that the subject is at risk for hypokalemia and 
will need hospitalization, otherwise he or she might suf-
fer from severe ventricular arrhythmia due to digoxin 
toxicity. Moreover, mortality risk scores in the Intensive 
Care Unit (ICU), such as APACHE III score [6] or SAPS 
II score [7], can also be viewed as an extended concept of 
critical values.

The above mentioned critical values require clinical 
laboratory tests or medical monitoring devices, which 
limits their usage in everyday life. In this paper, we aim to 
extend the concept of critical value to Electrocardiogram 
(ECG or EKG), which is one of the most commonly used 
non-invasive diagnostic or health management tools for 
heart-related problems. Compared with laboratory tests 
or simple vital signs, it is more difficult to build a critical 
value estimator for physiological signals, such as ECGs. 
Due to the high sampling frequencies, complex patterns, 
and long trends, traditional machine learning methods 
might not learn effectively from these complex signals.

Recently, deep neural networks (or deep learning meth-
ods) have achieved state-of-the-art performances in 
many areas such as speech recognition, computer vision, 
and natural language processing [8]. They also show great 
potentials on cardiovascular management [9, 10], disease 
detection [11–22], and biometric human identification 
[23, 24], and many other ECG analysis tasks [25–29]. 
However, there are no deep learning models designed 
for ECG critical value estimation so far. Unlike the above 
mentioned research, critical value estimation is neither a 
regression task nor a pure classification task. It is actually 
an ordinal classification task [30], which outputs catego-
ries that involve certain order relationships. As a result, 
the existing regression or classification models cannot be 
used directly to solve the ECG critical value estimation 
task.

In this paper, we present a method to estimate ECG 
critical values based deep learning techniques. We first 
propose a mapping from common ECG diagnostic con-
clusions (ECG statements) to ECG critical values. Then, 
we build an automatic critical value estimation model 
named CardioV, which is a 61-layer deep neural network 
based on neural architecture search and other advanced 
techniques in general Artificial Intelligence (AI) research 
areas [31–38]. Since the critical values have orders, we 
define the problem as a novel ordinal classification multi-
task problem [30]. In order to obtain the probabilities 
of “no risk (critical value 0)”,“low risk (critical value 1)”, 
“medium risk (critical value 2)”, and “high risk(critical 
value 3)”, we train the model to learn the probabilities of 

being greater than “no risk ”, “low risk ” or “medium risk”, 
then convert them into probabilities of the four ordered 
critical values. We conduct experiments on a large pub-
lic ECG dataset named PTB-XL [39]. The mean absolute 
error on the test set is 0.4984, and the average ROC-AUC 
score is 0.8735. Results also show that the agreement of 
model-cardiologist is comparable with that of cardiolo-
gist–cardiologist. In addition, our ablation study reveals 
that CardioV is better than the baseline deep learn-
ing models. With ECG critical values, people can easily 
assess their heart conditions and be aware of the critical 
situations.

Methods
Dataset
We use PTB-XL1 [39] from PhysioNet [40] to build and 
evaluate our method. The PTB-XL ECG dataset is a 
large publicly available ECG dataset, which contains 
21,837 10-s clinical 12-lead ECG recordings from 18,885 
patients (52% male and 48% female), ranging in age from 
0 to 95. The waveform files are stored in WaveForm Data-
Base (WFDB) format with 16 bit precision at a resolu-
tion of 1 μ V/LSB and a sampling frequency of 500 Hz. A 
downsampled version of the waveform data with a sam-
pling frequency of 100 Hz is released for the convenience 
of users. We use the 500 Hz ECG data in our experiments 
and preprocess the raw data using a bandpass filter of 
0.5–50 Hz. The raw ECG data are annotated by up to two 
cardiologists, who assign potentially multiple ECG state-
ments to each record [39]. There are 71 different ECG 
statements within five categories: Normal ECG (9528 
records), Myocardial Infarction (5486 records), ST/T 
Change (5250 records), Conduction Disturbance (4907 
records), and Hypertrophy (2655 records). The details of 
the 71 ECG statements can be found in our critical value 
mapping table (Table 2). The overall statistics is shown in 
Table 1.

Mapping from ECG statements to critical values
We start with ECG statements conforming to the Stand-
ard Communication Protocol for Computer-assisted 
Electrocardiography (SCP-ECG) standard, which covers 
diagnostic, form, and rhythm statements. Based on the 
SCP-ECG standard and the 2017 Chinese expert consen-
sus [41], we create the mapping between critical values 
and ECG statements as shown in Table 2. The resulting 
ECG critical values have four levels, which are 0 (No 
Risk), 1 (Low Risk), 2 (Medium Risk), and 3 (High Risk). 
Their ordinal relationships are as follow:

1  https://​physi​onet.​org/​conte​nt/​ptb-​xl/1.​0.1/.

https://physionet.org/content/ptb-xl/1.0.1/
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Deep neural network for modeling ECG
Deep learning methods especially convolutional neural 
networks (CNNs) have achieved state-of-the-art per-
formances in ECG modeling [28]. We design our ECG 
classification CNN model with the neural architecture 
space searching technique that is adapted to find the 

(1)
0(no risk) < 1(low risk) < 2(medium risk) < 3(high risk)

best models for image classification [31]. The resulting 
network contains 61 layers which includes 7 stages of 
convolutional blocks connected with shortcut residual 
connection [32, 33], one global average pooling layer, and 
one fully connected dense layer. Each block consists of 
one convolutional layer with kernel size 1 (Conv1), one 
aggregated convolutional layer [34] with kernel size 16 
and 16 groups (ConvK), and another convolutional layer 
with kernel size 1 (Conv1). Before each convolution layer, 
we apply batch normalization (BN) [35], Swish activa-
tion [36], and dropout (DO) [37]. We also introduce the 
channel-wise attention mechanism (SE block) [38] to 
improve the model performance. The first block of each 
stage downsample its input by a factor of 2, and the cor-
responding shortcut connections downsample the iden-
tity input using a max pooling operation by a factor of 2. 
The detailed model architecture is shown in Table 3.

Formally, we use X ∈ R
d×n to represent input ECG 

data, where n is the length of ECG, d is the number of 
leads which is 12 in our case. We also use F  to represent 
our deep neural network. The predicted logits z ∈ R

c can 
then be represented as:

Training via ordinal classification
For the ECG critical value estimation task, the common 
idea would be to build a deep model to implement a 

(2)z = F(X).

Table 1  Overall statistics of PTB-XL dataset

Item Statistics

# Records 21,837

   Normal ECG 9528

   Myocardial infarction 5486

   ST/T change 5250

   Conduction disturbance 4907

   Hypertrophy 2655

Duration 10 s

Total patients 18,885

Gender

   Male 11,379 (52%)

   Female 10,458 (48%)

Age

   Mean, (min, max) 60, (2, 95)

   < 65, ≥ 65 12,331, 9417

Table 2  The mapping of ECG statements to critical values

Critical Values Labels

0, No risk (9148 Records) Normal ECG (NORM), non-specific T-wave changes (NT_), sinus rhythm (SR)

1, Low Risk (5322 Records) Non-diagnostic T abnormalities (NDT), left anterior fascicular block (LAFB), incomplete right bundle branch block 
(IRBBB), non-specific ST changes (NST_), complete right bundle branch block (CRBBB), non-specific ischemic (ISC_), 
normal functioning artificial pacemaker (PACE), first degree AV block (1AVB), left atrial overload/enlargement (LAO/LAE), 
ischemic in lateral leads (ISCLA), incomplete left bundle branch block (ILBBB), right atrial overload/enlargement (RAO/
RAE), left posterior fascicular block (LPFB), right ventricular hypertrophy (RVH), septal hypertrophy (SEHYP), sinus tachy-
cardia (STACH), atrial premature complex (PAC), abnormal QRS (ABQRS), high QRS voltage (HVOLT), inverted T-waves 
(INVT), low amplitude T-waves (LOWT), prolonged PR interval (LPR), low QRS voltages in the frontal and horizontal leads 
(LVOLT), sinus arrhythmia (SARRH), sinus bradycardia (SBRAD), non-specific ST depression (STD_), non-specific ST eleva-
tion (STE_), T-wave abnormality (TAB_)

2, Medium Risk (3241 Records) Left ventricular hypertrophy (LVH), complete left bundle branch block (CLBBB), ischemic in anterolateral leads (ISCAL), 
non-specific intraventricular conduction disturbance (block) (IVCD), ventricular premature complex (PVC), subendo-
cardial injury in anteroseptal leads (INJAS), ischemic in anteroseptal leads (ISCAS), ischemic in inferior leads (ISCIN), 
ischemic in inferolateral leads (ISCIL), atrial flutter (AFLT), atrial fibrillation (AF), electrolytic disturbance or drug (former 
EDIS) (EL), paroxysmal supraventricular tachycardia (PSVT), digitalis-effect (DIG), ischemic in anterior leads (ISCAN), 
second degree AV block (2AVB), subendocardial injury in inferolateral leads (INJIL), subendocardial injury in lateral leads 
(INJLA), subendocardial injury in inferior leads (INJIN), bigeminal pattern (unknown origin, SV or Ventricular) (BIGU), 
premature complex(es) (PRC(S)), Q waves present (QWAVE), supraventricular arrhythmia (SVARR), supraventricular tachy-
cardia (SVTAC), trigeminal pattern (unknown origin, SV or Ventricular) (TRIGU), voltage criteria (QRS) for left ventricular 
hypertrophy (VCLVH)

3, High Risk (4126 Records) Inferior myocardial infarction (IMI), anteroseptal myocardial infarction (ASMI), inferolateral myocardial infarction (ILMI), 
anterior myocardial infarction (AMI), anterolateral myocardial infarction (ALMI), long QT-interval (LNGQT), Wolf-Par-
kinson-White syndrome (WPW), lateral myocardial infarction (LMI), inferoposterolateral myocardial infarction (IPLMI), 
subendocardial injury in anterolateral leads (INJAL), inferoposterior myocardial infarction (IPMI), posterior myocardial 
infarction (PMI), third degree AV block (3AVB), ST-T changes compatible with ventricular aneurysm (ANEUR)
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classification task. That is, given predicted logits z ∈ R
c , 

for classification task we first apply softmax on z to get 
probabilities p ∈ [0, 1]c , then optimize deep neural net-
work F  via cross-entropy loss. However, the classifica-
tion task only distinguishes different classes, which does 
not model the ordinal relationship shown in Eq. 1.

To solve this problem, we define the task as an ordinal 
classification task [30] rather than a simple classification 
task. The framework of our method is shown in Fig.  1. 
Ordinal classification task has the ability to learn from 
the ordinal relationship of classes. Intuitively, in our set-
ting, the ordinal classification task can be regarded as a 
multi-task classification problem with the following three 
tasks:

•	 Task 1: whether the ECG critical value is higher 
than no risk? The probability is denoted as 
Pr(> NoRisk|X);

•	 Task 2: whether the ECG critical value is higher 
than low risk? The probability is denoted as 
Pr(> LowRisk|X);

•	 Task 3: whether the ECG critical value is higher 
than medium risk? The probability is denoted as 
Pr(> MediumRisk|X).

Formally, given predicted logits z ∈ R
c , for ordinal 

classification task we first apply sigmoid on z to get 
probabilities p ∈ [0, 1]c (Eq.  3), then optimize objec-
tive L of deep neural network F  via multi-task binary 
cross entropy (BCE) loss (Eqs.  4, 5). The label y is 
computed based on Table  4. In addition, c is set to 3, 
p[0] = Pr(> NoRisk|X) , p[1] = Pr(> LowRisk|X) , and 
p[2] = Pr(> MediumRisk|X).

Then, we transform Pr(> NoRisk|X) , Pr(> LowRisk|X) 
and Pr(> MediumRisk|X) into probability of each critical 
value: Pr(NoRisk|X) , Pr(LowRisk|X) , Pr(MediumRisk|X) 
and Pr(HighRisk|X) based on Eq.  6. The final output is 
the class with the highest probability.

(3)p =sigmoid(z)

(4)L =
1

c

c

i=1

BCE(p[i], y[i])

(5)BCE(p, y) =y · log p+ (1− y) · log(1− p)

(6)

Pr(NoRisk|X) = 1− Pr(> NoRisk|X)

Pr(LowRisk|X) = Pr(NoRisk|X)− Pr(> LowRisk|X)

Pr(MediumRisk|X) = Pr(LowRisk|X)− Pr(> MediumRisk|X)

Pr(HighRisk|X) = Pr(> MediumRisk|X).

Table 3  Model architecture

ECG length n = 5000 , number of leads d = 12 , and output dimension c = 3 . 
The first dimension ∗ represents number of samples in a batch

Stage Layers Output size

Input (*, 12, 5000)

Stage 1 (Conv1, ConvK, Conv1) × 2 (*, 64, 2500)

Stage 2 (Conv1, ConvK, Conv1) × 2 (*, 160, 1250)

Stage 3 (Conv1, ConvK, Conv1) × 2 (*, 160, 625)

Stage 4 (Conv1, ConvK, Conv1) × 3 (*, 400, 312)

Stage 5 (Conv1, ConvK, Conv1) × 3 (*, 400, 156)

Stage 6 (Conv1, ConvK, Conv1) × 4 (*, 1024, 78)

Stage 7 (Conv1, ConvK, Conv1) × 4 (*, 1024, 39)

Pooling Global Average (*, 1024)

Prediction Dense (*, 3)

Fig. 1  Framework

Table 4  Computing referenced probabilities from critical values

Critical value Pr(> NoRisk|X) Pr(> LowRisk|X) Pr(> MediumRisk|X)

0 (no risk) 0 0 0

1 (low risk) 1 0 0

2 (medium risk) 1 1 0

3 (high risk) 1 1 1
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Implementation details
We split the entire dataset by subject and obtain a train-
ing set with 17,741 samples (80% subjects), a validation 
set with 2193 samples (10% subjects), and a test set with 
2203 samples (10% subjects). The model is built and 
trained with the PyTorch Python package. We choose 
Adam [42] optimizer with back-propagation, and add 
weight normalization to avoid overfitting. The batch size 
is set to be 256 samples, and the original learning rate is 
set to be 0.001. When the validation performance stops 
improving, we reduce the learning rate by a factor of 0.3. 
Compared with conventional classification, it is more 
difficult to train the ordinal multi-task classification. To 
solve the problem, we first train the model with conven-
tional cross-entropy loss, and then conduct a finetuning 
after replacing the objective to ordinal loss. The results 
are reported on the test set.

Evaluations
Our evaluation measurements include mean absolute 
error (MAE), receiver operating characteristic (ROC) 
curve of each class, area under the ROC curve (ROC-
AUC, or just AUC) of each class, and the average value of 
AUC scores. The ROC curve is first computed based on 
the predicted probability and ground truth of each label 
directly without a predefined threshold, then defined as 
the curve of the true positive rate versus the false posi-
tive rate at various thresholds ranging from zero to one. 
We also ask the cardiologists to revise wrong predicted 
cases and calculate the agreement of model-cardiologist 
and the agreement of cardiologist-cardiologist. Moreo-
ver, we analyze MAE = 3 cases, which represent seri-
ous errors in the model, one by one. Finally, in order to 
explain the model, we use the Grad-CAM [43] method 
to obtain the corresponding heat maps for the layers of 
interest. Through the heat maps, we can find the posi-
tions of the signal that the model is concerned about in 
the corresponding layers.

Results
Classification results
The results of the ROC curves for each class are shown in 
Fig. 2. We can see that all four classes achieve higher than 
0.8 ROC-AUC scores. We also observe that 0 (No Risk) 
and 3 (High Risk) are higher than the other two. The rea-
son might be that the intermediate values (1 and 2) are 
more difficult to predict than the extreme values (0 and 
3).

We then evaluate the model performance on differ-
ent patient subtypes. We further divide the test set into 
subgroups by gender (male, female), and by age (age < 
65, age ≥ 65), and show the results in Table 5. In terms of 

genders, the male and female groups have close perfor-
mances on all evaluations, which indicates that the model 
is fair towards different genders. For ages, the age <  65 
group is much better than the age ≥ 65 group. The reason 
might be that elders have age-related issues which could 
affect the heart but are difficult to be identified with ECG.

Moreover, we compare the agreement of model-car-
diologist and the agreement of cardiologist-cardiologist. 
We first extract wrong predicted cases ( MAE ≥ 1 ), and 
then ask an individual cardiologist to revise these cases. 
After that, we analyze these results by comparing original 
labels (annotated by other cardiologists), model predic-
tions, and revised labels. The total number of incorrectly 
predicted cases is 674. After revising, the cardiologist 
agrees with the original labels in 259 samples, agrees 
with model predictions in 361 samples, and disagrees 
with both in 54 samples. In this case, we can see that the 
agreement between model and cardiologist (model-car-
diologist) is 361/674 = 53.56% , which is higher than the 
agreement between cardiologist and cardiologist (cardi-
ologist-cardiologist) 259/674 = 38.43% . The disagree-
ment of ECG diagnosis among cardiologists has already 
been discovered in previous research [25]. The result 
suggests that our method has at least comparable perfor-
mance with cardiologists.

Ablation study
We compare CardioV with two ablation study baselines: 
classification and regression. We implement classifica-
tion with the same model architecture, and replace our 
ordinal classification objective with the four-class cross-
entropy objective. We also implement regression with the 
same model architecture, but optimize a mean squared 
error (MSE) objective to predict the numerical critical 
values. From the results shown in Table  6, we see that 
CardioV performs better than both classification and 
regression, which suggests that ordinal classification is a 

Fig. 2  ROC curves of 4 classes of CardioV
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good choice when dealing with classification tasks with 
definite ordinal relationships among categories.

Case study
Finally, we examine the MAE = 3 cases which might 
lead to serious consequences in the real-world applica-
tions. The total number of MAE = 3 wrong predicted 
cases is 15. Among these cases, we find that 9 have dis-
tortions with low-frequency baseline drift (Fig. 3 Left) or 
high-frequency noise (Fig.  3 Right). The other cases are 
themselves difficult to be identified. For example, Fig.  4 
(Left) shows the tiny R wave or pathological Q wave, 
which mainly exists in ECGs of people who have old infe-
rior wall myocardial infarction (old IMI), but could also 
appear in ECGs of healthy people. Figure 4 (Right) shows 

an ECG with frequent atrial premature complex, which 
might be recognized as sinus arrhythmia.

In addition, we apply gradient-weighted class acti-
vation mapping (Grad-CAM) to obtain the heat maps 
of the last convolutional layers for each stage to inter-
pret the model. The highlighted areas represent the 
locations that the model focus on. To visualize them, 
we select two representative types of ECGs, which are 
ECGs of “rhythm-type” AF (characterized by an irregu-
larly irregular rhythm) and ECGs of “beat-type” PVCs 
(characterized by wide QRS complexes). Figure  5a, b 
show the selected ECGs of AF and PVCs, which are 
overlaid with heat maps of the last convolution layer 
calculated by the Grad-CAM method. We see that 
most of the characteristic locations are brighter than 

Table 5  Results of different subtypes

Subtype MAE AUC0 AUC1 AUC2 AUC3 AUC​

Full 0.4934 0.9289 0.8421 0.8330 0.8894 0.8735

Male 0.4686 0.9304 0.8549 0.8254 0.9001 0.8777

Female 0.5197 0.9222 0.8298 0.8381 0.8754 0.8676

Age < 65 0.3882 0.8971 0.8725 0.8132 0.8975 0.8701

Age ≥ 65 0.6108 0.9324 0.7974 0.8214 0.8634 0.8537

Table 6  Results of different methods

Method MAE AUC0 AUC1 AUC2 AUC3 AUC​

CardioV 0.4934 0.9289 0.8421 0.8330 0.8894 0.8735

Classification 0.5247 0.9259 0.8233 0.8360 0.8838 0.8673

Regression 0.5811 – – – – –

Fig. 3  Distorted ECG cases. (Left) ECG with low-frequency baseline drift. (Right) ECG with high-frequency noise
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other areas. To further explore the model’s hierarchical 
focus locations, we combine the heap map weights of 
all 12 leads for the last layer of each stage, and plot the 
weights from top to bottom in layer arrangement order 
(see Fig. 5c, d). The results show that the higher layers 
pay more attention to the characteristic ECG locations.

Discussion
Critical value is a concept that is easy to understand, and 
even people without medical background can use it to 
identify different health conditions. The traditional criti-
cal values are associated with laboratory tests results and 
simple vital signs. However, in many cases, we need more 

Fig. 4  ECG cases that are difficult to be diagnosed. (Left) ECG with small R wave or pathological Q wave. (Right) ECG with frequent atrial premature 
complex

Fig. 5  Visual interpretation of the model. a, b The ECGs of AF and PVCs, which are overlaid with the heat maps calculated by the Grad-CAM 
method. c, d The weights of heat maps for each stage corresponding to a, b (the highest stage is at the bottom). The red blocks mark the 
characteristic ECG locations
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complex signals to accurately assess the health condi-
tions. As a physiological signal that can be collected eas-
ily and quickly, ECG is a good candidate to be mapped 
into critical values. Compared with laboratory tests and 
vital signs, ECG signals provide much more high-fre-
quency information about the heart conditions, which 
also means it is difficult for traditional machine learn-
ing models to learn the features. In this paper, we pro-
pose a deep ordinal convolutional neural network named 
CardioV to automatically estimate the ECG critical value 
categories.

From the experimental results we find that the two 
extreme critical values (0 and 3) have better model 
performance than the two middle ones (1 and 2). The 
extreme critical values include normal and high risk con-
ditions, which might be easier to predict than the other 
two, since the healthy state and severe condition could 
have more easily identifiable ECG characteristics. On the 
other hand, older people may have complex ECG signa-
tures because their hearts may be affected by age-related 
diseases, so the model performs poorly in the older age 
group compared to the younger age group.

Since the main objective of this work is to demonstrate 
the feasibility of assessing critical values with ECGs, there 
are still several limitations. First, it does not combine 
other information of the patients, such as the blood rou-
tine test results. Second, without considering additional 
stratification rules, the same ECG recording can reflect a 
variety of heart diseases and can be subdivided into dif-
ferent critical grades. In the end, no specific suggestion of 
actions are associated with each critical value.

In the future, we plan to collect more data to enhance 
our model, and build a hierarchy of critical value esti-
mator to support tiered medical services. Moreover, we 
would like to extend similar ideas to other physiologi-
cal data, such as photoplethysmogram (PPG), electro-
encephalogram (EEG), and electromyogram (EMG), so 
people can easily understand these complex signals and 
take quick actions in life-threatening situations.

Conclusion
In our study, we propose CardioV, an ordinal clas-
sifier, to estimate ECG critical value categories that 
can help people quickly identify different heart health 
conditions. Test results show that the model performs 
well in all four critical value categories. Further-
more, we observe three phenomena: extreme values 
(0 and 3) have better model performance than the 
other two; gender does not affect the performance; 
the older age group has worse performance than the 
younger age group. We also find that the agreement 
of model-cardiologist is comparable with that of 

cardiologist-cardiologist. The ablation study reveals 
that CardioV outperforms baseline deep learning mod-
els and validates that ordinal classification is suitable 
for identifying categories with ranking information. In 
addition, we interpret our model through activation 
visualization techniques, and discover that the model 
pays more attention to characteristic ECG locations, 
whether in “rhythm-type” or “beat-type” arrhythmia.
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