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Abstract: An accurate DNA damage response pathway is critical for the repair of DNA double-strand
breaks. Repair may occur by homologous recombination, of which many different sub-pathways
have been identified. Some recombination pathways are conservative, meaning that the chromosome
sequences are preserved, and others are non-conservative, leading to some alteration of the DNA
sequence. We describe an in vivo genetic assay to study non-conservative intra-chromosomal
deletions at regions of non-tandem direct repeats in Schizosaccharomyces pombe. This assay can be used
to study both spontaneous breaks arising during DNA replication and induced double-strand breaks
created with the S. cerevisiae homothallic endonuclease (HO). The preliminary genetic validation of
this assay shows that spontaneous breaks require rad52+ but not rad51+, while induced breaks require
both genes, in agreement with previous studies. This assay will be useful in the field of DNA damage
repair for studying mechanisms of intra-chromosomal deletions.
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1. Introduction

The inappropriate repair of DNA double-strand breaks (DSBs) can cause different forms of
structural chromosomal instability such as translocations, deletions, duplications and inversions [1,2].
These aberrations are the types of genomic instability seen in cancer cell karyotypes [3].

There are two main sources of DNA double-strand breaks—endogenous and exogenous. Both
sources can produce similar types of lesions and are repaired by the same mechanisms [4]. Replication
stress is the greatest producer of endogenous breaks. Replication forks may stall as they run into
hard-to-replicate heterochromatin structures [5,6] or during collisions with RNA polymerases [7].
Such replication stalls are rescued by the recombination machinery which has evolved precisely to
deal with stress arising from the replication of long genomes [8]. Exogenous breaks are caused by
environmental chemicals or radiation.

DNA DSB repair occurs by two distinct genetic pathways: homologous recombination (HR)
or non-homologous end joining (NHEJ) [4]. HR uses an intact template sequence to copy the
missing/broken region and requires the RAD52 epistatic group (RAD52, RAD51, RAD54, RAD55/57
as well as several accessory nucleases and helicases) [9,10]. NHEJ requires Ku70/80 and Lig4, and
involves the localized repair of breaks with no major sequence rearrangements [11]. In yeast, as in
humans, the two repair pathways are cell-cycle regulated under the control of the cyclin-dependent
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kinase with NHEJ, acting primarily in G1 and HR in S-phase and mitosis [12–17]. Furthermore, NHEJ
antagonizes HR as Ku70/80 inhibits the HR pathway in G1 [15].

Several in vivo assays have been designed in various model systems, as well as in human cells,
to study the genetic requirements for DSB repair (we only reference a few) [18–26]. Such studies have
contributed vastly to our understanding of how chromosomal instability arises. We also previously
briefly described an assay to study chromosomal instability at non-tandem direct repeats arising from
spontaneous damage [27]. However, this assay was only briefly characterized and not sufficiently
validated. Here, we present an improved assay that can be used to study both random and induced
DSBs and describe the protocol for this method. We also provide a preliminary characterization of the
genetic requirements for repair of these different types of breaks. Our results show that induced breaks
are likely to be repaired by different mechanisms than spontaneous breaks, in agreement with what
has been previously shown. This assay should become a valuable tool in the field of yeast genetics to
study intra-chromosomal deletions.

2. Experimental Design, Methods and Materials

We previously reported an assay that monitors chromosomal instability [27]. In this
assay, two non-functional ura4 fragments were placed on either side of a functional his3+ gene
(Figure 1A). The ura4+ fragments contain 200 bp of overlapping identical sequences (gray
region), creating two non-tandem repeats (referred to from here on as the ura-his-ura cassette).
Here, we improved on this assay by introducing the S. cerevisiae homothallic endonuclease
(HO) restriction site next to the his3+ gene. The endonuclease restriction site is identical to
that described in [28]. Primers 5′-ggaattcggccaggtacctttcagctttccgcaacagtataaagtactctgca-3′ and 5′

gagtactttatactgttgcggaaagctgaaaggtacctggccgaatcctgca-3 with PstI restriction site overhangs were used
to amplify the HO endonuclease restriction site. The PCR was cloned into the PstI site of plasmid
pRCP16 described previously [27] to generate pRCP20. The ura-his-ura cassette was released with
SacI and KpnI and transformed into FY1828 to create RCP24. Unlike in our previous report where we
studied recombination in the centromere heterochromatin, here we introduced the ura-his-ura cassette
at the endogenous ura4+ locus (Chr.III 116575-115781). The ura4+ was replaced by the cassette. Thus,
this strain is ura auxotrophic and his prototrophic. This assay can monitor both random breaks that
may arise during DNA replication and HO-induced breaks. The HO endonuclease is expressed from
the pREP81X-HO plasmid [29]. pREP81X was used as vector control.

2.1. Spontaneous Break Recombination Protocol

1. Streak cells onto EMM-Histidine plates from the −70 ◦C freezer. Grow at 32 ◦C for 3–4 days until
colonies appear. Although the cassette is quite stable, to ensure that starting cells are ura−his+, it
may be necessary to replica plate the EMM-His onto 5-FOA and choose only those colonies that
grow on both plates.

2. Resuspend 10 colonies each in 100 µL water in microtubes, count cells and release in 4 mL
liquid EMM+UraHisLeuAde at 100 cells/microliter. Incubate tubes at 32 ◦C in the rotator for
approximately 48 h.

3. Determine the concentration of the cells in the tubes by counting cells using a hemocytometer
and plate onto EMM-Uracil+Phloxin B at 105–106 cells per plate. Because ura− cells tend to
cannibalize themselves, sometimes false positives appear. The addition of Phloxin B makes it
easier to identify false positive because it stains ura− cells bright red. Phloxin B does not have an
effect on recombination rate (Supplementary Tables S2 and S3). Furthermore, we recommend
using large 150 mm × 15 mm plates particularly when plating at higher density. Plate a YES
control as well for each colony plated on EMM-Uracil at 1000 cells per plate. This control is
important to check for cell viability and accuracy in counting. Although we used YES for this
control, a better control may be EMM+Uracil+Histidine. This maintains consistency with the
experimental plate which is EMM not YES.
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4. Incubate all plates at 32 ◦C until colonies appear—usually 3%#x2013;5 days for WT and longer
for mutants.

5. Count colonies on both the YES control and EMM-Uracil plates and record the numbers. Although
Phloxin B allows for easier differentiation of ura4+ prototrophic colonies, to ensure that all colonies
on the EMM-Uracil plates are in fact Ura+, this plate can be replica plated onto 5-FOA. All ura4+
colonies that grow on EMM-Uracil should die on 5-FOA.
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Figure 1. An assay to study spontaneous and induced double-strand breaks at regions of non-tandem
repeats. (A). The ura-his-ura assay. In this assay, two non-functional ura4 alleles flank a functional his3+

allele. The ura4 alleles have 200 bps of identical overlapping sequences, creating two non-tandem
repeats (gray areas). The S. cerevisiae homothallic endonuclease (HO) is cloned just upstream of the
his3+ gene. The HO enzyme is on a LEU2 plasmid under the control of the nmt1 promoter which
can be repressed with thiamine. Spontaneous ura4+his3− recombinants are assayed by growing
cells in EMM+UraHisAdeLeu media for 48 h then plating on selective EMM-Uracil. Induced break
recombinants are assayed by growing cells for 48 h in media without thiamine to de-repress the HO
endonuclease, while maintaining selection for the plasmid (EMM-Leucine). Cells are then plated
on EMM-Uracil. All experiments were performed at 32 ◦C. (B). Box plot showing the frequency of
recombinants for both induced and spontaneous breaks. (C). PCR across the ura-his-ura cassette in both
pre- and post-recombination strains. Half arrowheads in (A) show approximate positions of primers.
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2.2. Induced Break Recombination Protocol

1. Streak cells onto EMM-Leucine+Thiamine plates from the −70◦C freezer. Incubate at 32 ◦C for
3–4 days.

2. Resuspend 10 colonies in water, count cells and release in 4 mL liquid EMM-Leucine at
100 cells/microliter. Incubate tubes at 32 ◦C with rotation for approximately 48 h.

3. Determine the concentration of the cells in the tubes and plate onto EMM-Uracil (100 mm ×
15 mm plates) at 104 cells per plate. Plate on YES as well at 103 cells per plate.

4. Incubate all plates at 32 ◦C until colonies appear.
5. Count colonies on both YES and EMM-Uracil plates and record the numbers.

2.3. Characterization of the Assay

Spontaneous ura4+ his3− recombinants arise at an average frequency of approximately 1 in 104 cells
(Figure 1B). As expected, when the break is made by the endonuclease, the frequency is much higher
(2.5 in 10 colonies) (Figure 1B). This assay does not appear to report conversion (e.g., ura4+ his3+

colonies). PCR analysis of several recombinants with primers flanking the ura4+ ORF showed that the
ura-his-ura cassette has been converted to ura4+ (Figure 1C). Sporadically, we did find some colonies
that were ura4+ his3+, which appeared at a much lower frequency and only when we induced the
break (Supplemental Figure S1A). To understand what these ura4+ his3+ colonies were, we used PCR
to check the size of the locus in the HO-induced recombinant colonies (Supplementary Figure S1B).
When primers flanking the ura4+ ORF are used, we found that both the ura4+ and the ura4+ his3+ are
the same size—indicating that both are deletion outcomes. Next, we checked whether the ura4+ his3+

colonies arose as a result of gene conversion between the his3+ in our assay and the his3-D1 locus [30].
PCR across the his3+ locus showed that the his3-D1 deletion is present in both the ura-his-ura (pre) and
the recombinant ura4+ his3+ colonies, suggesting that the his3-D1 allele has not been converted to his3+

(WT) (Supplementary Figure S1C). However, PCR with primers within the ORF his3+ detected the
presence of the his3+ ORF in the ura4+ his3+ strains. We concluded from this PCR analysis and the
very low frequency of the ura4+ his3+ recombinants that the his3+ must arise due to some spurious
integration of the ORF elsewhere in the genome. Thus, this assay can be primarily used to test deletions.

2.4. Strains

The strains used in this study are listed in Supplementary Table S1. The construction of the
ura-his-ura recombination cassette has been described previously [27]. This cassette has been slightly
modified by cloning the S. cerevisiae HO endonuclease restriction site immediately upstream of the
his3+ gene, as described above. The HO restriction site sequence is identical to that described in [28].
Standard yeast genetics have been used to cross the recombination mutants with the ura-his-ura cassette.

2.5. PCR Analysis

The primers for the PCR in Figure 1C were, 5′-agctacaaatcccactggct-3′ and 5′-tgatattgacgaaacttttt-3′.
PCR was performed using Phusion® High-Fidelity DNA polymerase (NEB) and GC buffer at 55 ◦C
annealing temperature (34 cycles).

2.6. Data Analysis

For all assays, the data were adjusted for viability and error in plating using the numbers on
the YES plates (# colonies EMM-Uracil/(# colonies on YES/1000). The number “1000” represents the
colonies intended to be plated on the YES plate. For example, if only 900 colonies appeared on the
YES plate, then 900/1000 = 0.9 efficiency of plating. This means that a 10% error was made and the
division of EMM-Uracil colonies by 0.9 normalizes the numbers to 100% plating efficiency. Thus, the
YES plate serves as a control for both viability and plating errors and normalizes all experiments.
This normalization was also important in order to control for systematic errors that might have
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been introduced as different people did the experiments, and is not unlike normalizations used
previously [27,31]. The resulting value was then multiplied by the dilution factor so that the results
were normalized to a recombination frequency of 105 for spontaneous breaks and 104 for induced
breaks. Descriptive statistics and graphs were generated using SPSS.

3. Genetic Validation of the Assay and Discussion

3.1. Analysis of Spontaneous Breaks

We next carried out some preliminary characterization of the genetic requirements for these
deletions (Figure 2). We found that rad52+ is required for spontaneous breaks but rad51+ and pku70+

are not (Figure 2, Supplementary Tables S2 and S3). In fact, both rad51+ and pku70+ appeared to
inhibit deletion outcomes. These results suggest that spontaneous break repair relies on a pathway
that requires both rad51+ and pku70+. rad51+ has been previously shown to suppress chromosomal
rearrangements in S. pombe arising from improperly repaired spontaneous breaks [25,32]. rad51+ is
also not required for deletion outcomes, but is essential for gene conversion [33]. This indicates that
spontaneous break repair is initially channeled through a homologous recombination pathway that
requires rad51+, presumably by attempting to initiate a crossover. However, this pathway is not very
efficient, most likely because the break occurs between direct repeats—a process which favors repair
by single-strand annealing. Mechanisms of repair of spontaneous breaks by single-strand annealing
that do not rely on rad51+ have been proposed in S. pombe [34].
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Figure 2. Genetic requirements for spontaneous breaks. Box plots showing the spontaneous
recombination frequency per 105 colonies. Cells were grown on EMM-Uracil plates for 3–5 days at
32 ◦C. For clarity, insets are shown for strains with similar recombination frequencies.

The loss of pku70+ also increases recombination outcomes arising from spontaneous breaks,
indicating that pku70+ suppresses these deletions as well. Recent evidence in S. pombe shows that
pku70+ controls resection at stalled replication forks [35]. The loss of pku70+ leads to an increase in the
resection tract but a decrease in Rad51 binding. These two events combined suggest that pku70+ and
rad51+ work in the same pathway and in the repair of direct repeats in our assay. This repair pathway
most likely occurs through single-strand annealing when either pku70+ or rad51+ is lost.
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In higher eukaryotes and fission yeast, rad52+ is not essential for all forms of homologous
recombination repair [36,37]. The fact that some repair still occurs in the absence of rad52+ indicates
that, at a low percentage, ura4+ may be reconstituted by some other form of repair that does not rely
on rad52+. These genetic results validate that this assay reports deletions only.

Sometimes the deletion of rad52+ in S. pombe acquires a suppressor that attenuates the sensitivity
of the strains to DNA-damaging drugs. However, these results are not due to the effect of such
a suppressor, because all strains used here are still sensitive to methyl–methanosulfonate (MMS)
(Supplementary Figure S2).

3.2. Analysis of Induced Breaks

Next, we validated the genetic requirements for induced breaks. Because the HO endonuclease
is expressed from a plasmid behind the nmt1 promoter, we used the following controls: 1) a control
with thiamine to check whether the promoter is leaky and 2) a vector control which should give a
frequency comparable to the spontaneous frequency (Figure 3, Supplementary Table S4). We found
that recombinants appeared at about three orders of magnitude higher when the break was induced.
The addition of thiamine drastically reduced the recombination frequency—albeit not to the spontaneous
levels, suggesting that there is some promoter leakage. The vector control gives spontaneous
level recombinants.
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recombination frequency per 104 colonies. Cells were grown on EMM-Uracil plates for 3–5 days at
32 ◦C. For clarity, insets are shown for strains with similar recombination frequencies.

Both rad52+ and rad51+ are required for recombinants arising from induced breaks, suggesting
that induced breaks are likely repaired through a crossover—either intrachromosomal or unequal
sister chromatid exchange. As previously shown [38,39], pku70+ antagonizes recombination and, not
unexpectedly, we also show that the deletion of pku70+ increases recombination outcomes. However,
the function of pku70+ here is distinct from its function at spontaneous breaks, because it does not have
the same phenotype as rad51+. The small increase in the frequency of recombinants in the absence
of pku70+ suggests that the cell attempts to repair some of the generated two-ended breaks through
NHEJ, which does not result in a ura4+ phenotype. Non-homologous end-joining and pku70+ have
been previously shown to compete with recombination [29,38,39]. Because we select for ura4+, these
cells will die. The requirement of pku70+ for the induced breaks, but not rad51+, may be explained
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by the stage of the cell cycle where the breaks are repaired. We presume that spontaneous breaks are
generated as a consequence of DNA replication and may be repaired in S-phase. HO-induced breaks
cause a cell cycle delay due to activation of the rad3+-dependent checkpoint [29]. It is therefore possible
that induced breaks pile up in G2, while spontaneous breaks are repaired in S-phase. These results
suggest that the mechanism of repair of induced breaks is distinct from that of spontaneous breaks.

4. Conclusions

Here we describe an assay to study intra-chromosomal deletions arising at regions of non-tandem
repeats and provide preliminary data that show that induced breaks have different genetic requirements
than spontaneous breaks—in agreement with what has been previously shown. We believe that this
assay will be an important tool in the field of DNA damage repair to study deletions.

It is also worth noting that some cell cycle regulators, such as CDKN2A, are inactivated in
cancer cells by deletion of the entire gene rather than by point mutations [40,41]. This shows that
these intra-chromosomal deletions could introduce enough genetic change in human cells that may
cause cancer. Since there is enough conservation in repair genes between yeast and human cells,
this assay could be used to leverage the powerful yeast genetics to identify the mechanisms of these
intra-chromosomal deletions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2409-9279/2/3/74/s1,
Figure S1: Analysis of Ura+His+ recombinants, Figure S2: Sensitivity of strains to MMS, Table S1: Strains used
in this study, Table S2: Descriptive statistics for spontaneous breaks when cells were released in Edinburgh
Minimal Media and platted on EMM-Uracil with Phloxin B, Table S3: Descriptive statistics for spontaneous breaks
when cells were released in Edinburgh Minimal Media and platted on EMM-Uracil without Phloxin B, Table S4:
Descriptive statistics for induced breaks when cells were released in Edinburgh Minimal Media.
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