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Obesity enhances nongenomic estrogen receptor
crosstalk with the PI3K/Akt and MAPK pathways
to promote in vitro measures of breast cancer
progression
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Abstract

Introduction: Epidemiological and clinical studies indicate that obesity is associated with a worse postmenopausal
breast cancer prognosis and an increased risk of endocrine therapy resistance. However, the mechanisms
mediating these effects remain poorly understood. Here we investigate the molecular pathways by which obesity-
associated circulating factors in the blood enhance estrogen receptor alpha (ERa) positive breast cancer cell
viability and growth.

Methods: Blood serum was collected from postmenopausal breast cancer patients and pooled by body mass
index (BMI) category (Control: 18.5 to 24.9 kg/m2; Obese: ≥30.0 kg/m2). The effects of patient sera on MCF-7 and
T47D breast cancer cell viability and growth were examined by MTT and colony formation assays, respectively.
Insulin-like growth factor receptor 1(IGF-1R), Akt, and ERK1/2 activation and genomic ERa activity were assessed to
determine their possible contribution to obese patient sera-induced cell viability and growth. To further define the
relative contribution of these signaling pathways, cells grown in patient sera were treated with various
combinations of ERa, PI3K/Akt and MAPK targeted therapies. Comparisons between cells exposed to different
experimental conditions were made using one-way analysis of variance (ANOVA) and Student’s t test.

Results: Cells grown in media supplemented with obese patient sera displayed greater cell viability and growth as
well as IGF-1R, Akt and ERK1/2 activation relative to control sera. Despite the lack of a significant difference in
genomic ERa activity following growth in obese versus control patient sera, we observed a dramatic reduction in
cell viability and growth after concurrent inhibition of the ERa and PI3K/Akt signaling pathways. Further, we
demonstrated that ERa inhibition was sufficient to attenuate obese serum-induced Akt and ERK1/2 activation.
Together, these data suggest that obesity promotes greater ERa positive breast cancer cell viability and growth
through enhanced crosstalk between nongenomic ERa signaling and the PI3K/Akt and MAPK pathways.

Conclusions: Circulating factors in the serum of obese postmenopausal women stimulate ERa positive breast
cancer cell viability and growth by facilitating non-genomic ERa crosstalk with the PI3K/Akt and MAPK signaling
pathways. These findings provide valuable insight into one mechanism by which obesity may promote ERa
positive postmenopausal breast cancer progression and endocrine therapy resistance.
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Introduction
The prevalence of obesity in the United States has been
climbing steadily for the past three decades, resulting in
a current adult obesity rate of 35.7% [1]. A similar trend
is evident in other nations around the world and is no
longer unique to wealthy, industrialized countries [2].
This epidemic poses a dire threat to public health, as
obesity can play a role in the pathogenesis of numerous
diseases, including breast cancer. In postmenopausal
women, obesity increases breast cancer risk by approxi-
mately 40% [3-5]. A large body of evidence has also
established that obesity is associated with a worse breast
cancer prognosis for both pre- and postmenopausal
women. One prospective study that followed a popula-
tion of more than 900,000 US adults over a 16-year per-
iod found that the mortality rate due to breast cancer
was amplified with each successive increase in body
mass index (BMI) category [6]. Another study showed a
significantly greater risk for disease recurrence within
10 years of diagnosis in breast cancer patients who were
obese at the time of treatment in comparison to non-
obese patients [7]. These effects could be due to later
diagnosis in the obese population, resulting in more
advanced disease at the time of diagnosis. This hypoth-
esis was initially supported by data from a large cohort
of patients followed for a 20-year period; Majed et al.
[8] found that the obese patients presented with more
advanced tumors, suggesting that diagnosis had been
delayed. However, the authors ultimately found that
multivariate analysis demonstrated an independent effect
of obesity on breast cancer prognosis, regardless of
tumor stage at time of diagnosis. Survival analysis
revealed increased metastatic recurrence as well as
decreased disease-free interval and overall survival in
the obese patient population. While obesity has been
shown to impact prognosis negatively for both pre- and
postmenopausal patients, the most prominent effects are
seen in estrogen receptor alpha (ERa) positive postme-
nopausal patients, a finding confirmed by a recent retro-
spective analysis of the German BRENDA-cohort [9].
Previous studies indicate that obesity may adversely

impact prognosis in the ERa positive postmenopausal
patient population in part by promoting endocrine ther-
apy resistance [10]. This theory is supported by an ana-
lysis of data from the Arimidex, Tamoxifen Alone or in
Combination (ATAC) trial by Sestak et al. [11], which
found that obese breast cancer patients receiving ana-
strozole had a significantly greater risk of recurrence. In
agreement with these findings, Schmid et al. [12]
demonstrated that obese patients have a significantly
reduced response rate to letrozole in comparison to lean
(11% versus 35%). The ATAC trial also showed that
while anatrozole treatment resulted in significantly

greater recurrence-free survival in comparison to tamox-
ifen, this benefit was lost in the obese cohort [11]. The
primary site of aromatase expression and estrogen pro-
duction in postmenopausal women is the adipose tissue.
Due to an abundance of this aromatase-expressing tis-
sue, obese postmenopausal women typically have higher
levels of circulating estradiol [13-15], and researchers
have posited that this may contribute to the observed
increase in breast cancer risk and worse outcome in this
population. This hypothesis suggests that an adjustment
of the aromatase inhibitor dosage may improve obese
patient prognosis. However, that conclusion is con-
founded by two phase III clinical trials of anastrozole
that found no overall benefit from a 10 mg dose (versus
1 mg), indicating that an increased dosage may not be
effective in overcoming obesity-induced resistance to
aromatase inhibitors [16,17].
The development of endocrine therapy resistance can

be mediated by several mechanisms. Frequently, aber-
rant signaling from growth factor receptors, particularly
the insulin-like growth factor 1 receptor (IGF-1R) and
the HER family of receptors, is responsible. These recep-
tors can engage in bidirectional crosstalk with ERa,
leading to increased nongenomic ERa activity, ligand-
independent activation of ERa, and abnormal regulation
of cell cycle and apoptotic signaling. Nongenomic ERa
activity results in the activation of the MAPK and PI3K/
Akt signaling pathways, and these can in turn activate
ERa via phosphorylation, leading to enhanced genomic
ERa activity [18,19]. Obesity is typically accompanied by
elevated circulating levels of insulin, bioavailable IGF-1
and leptin, as well as a series of pro-inflammatory cyto-
kines [20-23]. All of these obesity-associated circulating
factors are able to activate the PI3K/Akt and/or MAPK
pathways, potentially enhancing the ERa crosstalk path-
ways described above and leading to endocrine resistance
and breast cancer progression [24-28]. The metabolic
alterations associated with obesity, including changes in
insulin and insulin-like growth factor binding protein 1
(IGFBP-1) serum levels (which result in increased circu-
lating free IGF-1 levels), are also significantly correlated
with breast cancer recurrence and mortality [29]. High
serum concentrations of pro-inflammatory cytokines and
leptin have been similarly linked to a worse breast cancer
outcome [30-32]. Overall, obesity creates a complex
metabolic imbalance accompanied by chronic inflamma-
tion, enriching the blood with a number of signaling
molecules that may promote breast cancer progression
and adversely affect outcome.
This study utilized an in vitro model of obesity in

which ERa positive breast cancer cells were exposed to
pooled sera samples from normal weight or obese post-
menopausal breast cancer patients. This model enabled
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us to examine the molecular pathways by which obesity-
associated circulating factors in the blood stimulate
greater ERa positive breast cancer cell viability and
growth. Here we provide evidence that these physiologi-
cal effects are mediated by enhanced crosstalk between
nongenomic ERa signaling and the PI3K/Akt and
MAPK pathways. These studies provide insight into one
potential mechanism by which obesity may promote
postmenopausal ERa positive breast cancer progression
and endocrine therapy resistance.

Methods
Serum samples
Serum was collected from postmenopausal breast cancer
patients under an Institutional Review Board (IRB)
approved biorepository collection protocol at the Cancer
Therapy and Research Center of the University of Texas
Health Science Center at San Antonio (UTHSCSA). The
collection and use of these biological samples was
approved by the IRB of UTHSCSA (HSC20070684H)
and conducted in accordance with the Declaration of
Helsinki and good clinical practice. Informed consent
was obtained prior to participation, and all samples and
data were deidentified prior to release to maintain
patient confidentiality. Serum was pooled according to
the BMI category of the patient (normal weight (con-
trol): 18.5 to 24.9 kg/m2; obese: ≥30 kg/m2). The free
IGF-1 concentration of each patient’s serum sample was
measured using the MILLIPLEX MAP Human IGF-1
Single Plex Metabolism Assay, while the MILLIPLEX
MAP Human Serum Adipokine Panel A and B kits were
used to assess patient serum concentrations of insulin,
IL-6, TNFa, leptin, and adiponectin (EMD Millipore,
Billerica, MA, USA).

Cell lines and reagents
ERa positive MCF-7 and T47D cells (ATCC, Manassas,
VA, USA) were maintained in improved minimum
essential medium (IMEM) (GIBCO Life Technologies,
Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS). 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT reagent) was pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The
drug treatments used in this study, which include PD
98,059 (a MEK1 inhibitor), LY 294,002 (a PI3K inhibi-
tor), and 4-hydroxytamoxifen (a selective estrogen
receptor modulator), were also obtained from Sigma-
Aldrich. The primary antibodies for pAkt (s473), tAkt,
pERK1/2, tERK1/2, pERa (s167), pERa (s118), pIGF-1R
(tyr1135/1136) and tIGF-1R were purchased from Cell
Signaling (Beverly, MA, USA). The tERa primary anti-
body was produced by Novacastra (Leica Microsystems,
Buffalo Grove, IL, USA).

MTT assay
MCF-7 and T47D cells were seeded in IMEM supplemen-
ted with 10% FBS at a density of 8 × 103 in 96-well plates.
After 24 hours of growth in the 10% FBS media, the cells
were exposed to 2% sera in serum-free media (SFM), with
or without the addition of drug treatments, for 48 hours.
MTT reagent in PBS (5 mg/ml) was then added to each
well to a final concentration of 0.5 mg/ml. After two hours
of incubation at 37°C, the media were removed and 50 ul
dimethyl sulfoxide (DMSO) added to each well to lyse the
cells. Absorbance was read at 570 nm on a FLUOstar
Omega Spectrometer (BMG Labtech, Offenberg, Ger-
many). Relative cell viability was calculated by dividing
each absorbance value by the absorbance for cells grown
in control patient sera. Data shown represent the average
of at least three independent experiments.

Colony formation assay
MCF-7 and T47D cells were seeded in IMEM supple-
mented with 10% FBS at a density of 500 and 1 × 1 03,
respectively, in six-well plates. After 24 hours of growth
in the 10% FBS media, the cells were continuously
exposed to 2% sera in SFM, with or without drug treat-
ments, for nine days. On day five of the treatment per-
iod, the wells were aspirated and washed, and the media
were replenished with the same concentration of sera
and inhibitors. On day nine, the colonies were fixed and
stained with 1% crystal violet in 70% acetic acid for
30 minutes and then counted. The relative number of
colonies, a reflection of cell growth, was calculated by
dividing each colony count by the count for cells grown
in control patient sera and multiplying by 100. Data
shown represent the average of at least three indepen-
dent experiments.

Western blot analysis
The cells were grown to 80% confluence in IMEM supple-
mented with 10% FBS, then the growth medium was aspi-
rated, the wells were washed, and the medium replaced
with SFM overnight. After overnight serum-starvation to
minimize the effect of growth factors and hormones in the
growth medium, 2% obese or control patient serum was
added directly to the overnight SFM with or without inhibi-
tors for 15 minutes or one hour. Kinase lysis buffer or
radioimmunoprecipitation assay (RIPA) buffer was used for
protein extraction. Protein content of the lysates was mea-
sured using the BCA Protein Assay kit from Thermo Scien-
tific Pierce (Rockford, IL, USA) or the Bio-Rad Protein
Assay (Bio-Rad, Hercules, CA, USA). Images were acquired
using a Syngene G:BOX Chemi (Frederick, MD, USA).
Relative protein levels were calculated by first standardizing
phosphorylated protein to total protein levels for each
experimental condition, then dividing the standardized
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protein level for each condition by that of cells grown in
control patient sera. Data from at least three independent
experiments were compiled for each protein and cell line to
calculate the average protein level, standard error of the
mean and statistical significance, with one representative
image for each protein shown.

Estrogen response element luciferase assay
A luciferase reporter gene driven by a 3X estrogen
response element (ERE)-tk promoter (a kind gift from
Dr. Arun Roy, UTHSCSA) was utilized to measure ERa
transcriptional activity. Transient transfections were per-
formed in triplicate wells three times. MCF-7 and T47D
cell lines were seeded in IMEM supplemented with 10%
FBS at a density of 1.5 × 104 in 24-well plates and con-
currently transfected with the ERE luciferase and renilla
plasmids after 24 hours of growth using Fugene 6 from
Promega (Madison, WI, USA) at a 1:3 ratio. The cells
were serum-starved for six hours the following day, then
exposed for 48 hours to 2% obese or control patient
serum, added directly to the SFM. Luciferase activity
was then measured using Promega’s Dual Luciferase
Reporter Assay System, with the fluorescence read on a
FLUOstar Omega Spectrometer (BMG Labtech, Offen-
berg, Germany). Relative ERa activity was calculated by
dividing the fluorescence value (standardized to renilla)
from cells grown in obese patient sera by that from cells
grown in control patient sera. Data shown represent the
average of at least three independent experiments.

Quantitative RT-PCR
Total RNA was isolated using TRIzol reagent (Invitro-
gen) and reverse transcribed with Promega’s ImProm II
Reverse Transcription System. The primer sequences
are as follows: pS2: forward, 5’-GGTCGCCTTGGAG-
CAGA-3’; reverse, 5’-GGGCGAAGATCACCTTGTT-3’;
cyclin D1: forward, 5’-TGGAGGTCTGCGAGGAACA-
GAA-3’; reverse, 5’-TGCAGGCGGCTCTTTTTCA-3’.
The manufacturer’s recommended cycling conditions for
the QuantiFast SYBR Green PCR kit (Qiagen) were
used. Data shown represent the average of at least three
independent experiments.

Statistics
Differences between cells exposed to obese versus control
sera were measured using Student’s t test. One-way ana-
lysis of variance (ANOVA) was used to analyze differ-
ences between more than two experimental conditions.
A difference of P < 0.05 was considered significant.

Results
Patient characteristics
Table 1 describes the postmenopausal breast cancer
patients who provided the sera utilized in this study,

which was pooled into two groups by BMI category,
obese (Ob) and control (Con). There was no significant
difference in the average patient age between the
groups. The average patient BMI in the Ob group was
significantly higher than the Con group (P < 0.01), and
this was accompanied by significantly higher levels of
IL-6 (P < 0.05), TNFa (P < 0.05), and leptin (P < 0.01),
as well as lower levels of adiponectin (P < 0.05). In addi-
tion, the Ob group’s serum insulin levels were almost
five-fold greater, a difference that approached signifi-
cance (P = 0.10), but there was no difference in free
IGF-1 concentration. Sixty percent of the patients in the
obese group were Hispanic, while the control group was
predominantly white. Diabetes and hypercholesterolemia
were found in at least 25% of the patients in the obese
group, but were not present in the control group. Those
diagnosed with these conditions had all been prescribed
metformin and statins, respectively, two drugs with pos-
sible anti-cancer effects (33-38). The majority of patients
in both groups were receiving either aromatase inhibitor
or tamoxifen treatment.

Table 1 Patient characteristics

Obese Control

Number of patients 20 5

Average age (years) 59.7 (6.28) 59.5 (4.76)

Average BMI (kg/m2) 36.6 (5.04)** 21.1 (2.17)

Average serum concentrations

Free IGF-1 (ng/ml) 4.92 (0.925) 5.43 (1.80)

Insulin (pg/ml) 742.9 (156.8) 157.4 (44.1)

Interleukin 6 (pg/ml) 4.6 (0.58)* 1.6 (0.29)

TNF-a (pg/ml) 7.1 (0.51)* 4.6 (0.19)

Leptin (ng/ml) 36.6 (4.67)** 6.40 (3.86)

Adiponectin (ug/ml) 54.5 (6.55)* 97.5 (32.0)

Ethnicity/race

Hispanic 12 0

White 6 3

African-American 2 0

Asian 0 1

Not Available 0 1

Confounding conditions

Diabetes 5 0

Hypercholesterolemia 8 0

Hypertension 14 1

Medications

Aromatase inhibitor 9 1

Tamoxifen 5 2

Chemotherapy 6 2

Metformin 5 0

Statin 8 0

(Standard error of the mean); *, P < 0.05; **, P < 0.01 in comparison to
control. BMI, body mass index; IGF-1, insulin-like growth factor 1; TNF-a,
tumor necrosis factor- alpha.
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Obesity-associated circulating factors enhance breast
cancer cell viability and growth
In order to elucidate the potential mechanisms by which
obesity promotes breast cancer progression, we first
evaluated the effect of obesity-associated circulating fac-
tors on cell viability and growth, both in vitro para-
meters of cancer aggression. Viability of breast cancer
cells in response to exposure to patient serum was mea-
sured by MTT assay. MCF-7 cells grown in 2% Ob sera
in SFM for 48 hours displayed a 43% increase in viabi-
lity in comparison to cells grown in Con sera (P < 0.01).
Ob sera also enhanced the viability of T47D cells by
32% versus Con sera (P < 0.01) (Figure 1A). Colony for-
mation assay was utilized to assess the effects of patient
sera on breast cancer cell growth. Both MCF-7 and
T47D cells grew significantly better in Ob sera, forming
63% (P < 0.05) and 39% (P < 0.01) more colonies,
respectively, over a nine day exposure to the Ob sera in
comparison to Con sera (Figure 1B). These results
demonstrate that one or more circulating factors in the
obese patient sera directly induces higher levels of ERa
positive breast cancer cell viability and growth.

PI3K/Akt, MAPK, and IGF-1R pathway activation is
stimulated by obesity-associated circulating factors in
breast cancer cells
The PI3K/Akt and MAPK pathways are both down-
stream targets common to many of the circulating fac-
tors typically upregulated with obesity [24-28]. They are
also involved in the regulation of cell proliferation and
survival and can crosstalk with and ultimately activate
ERa independent of estradiol [18,19]. Consequently, we
assessed the effects of Ob and Con sera on Akt and
ERK1/2 activation. MCF-7 cells exposed to 2% Ob sera
for 15 minutes or one hour had 100% (P < 0.01) and

55% (P < 0.05) higher levels of pAkt (ser473), respec-
tively, in comparison to cells exposed to Con sera.
pERK1/2 levels following 2% Ob sera exposure were
79% and 33% (P < 0.05) greater at the same time points
in comparison to Con (Figures 2A and 2B). A similar
effect was observed in T47D cells exposed to Ob versus
Con sera at these time points. Ob sera exposure stimu-
lated 53% and 64% (P < 0.01) more Akt activation and
38% (P < 0.05) and 72% (P < 0.01) more ERK1/2 activa-
tion than Con after 15 minute or 1 hour incubation per-
iods, respectively (Figures 2C and 2D). These results
suggest that the PI3K/Akt and MAPK pathways may
both play a role in obesity-induced breast cancer pro-
gression. Despite finding no difference between the two
patient groups in average serum free IGF-1, MCF-7 cells
exposed to the Ob sera had 20% (P < 0.01) higher
pIGF-1R (tyr1135/1136) levels in comparison to Con
(Figures 2E and 2F). This suggests that the Ob sera-
induced Akt and ERK1/2 activation described above
may be at least partly mediated by IGF-1R signaling that
is upregulated by a mechanism independent of bioavail-
able IGF-1 levels.

Genomic ERa activity in breast cancer cells is not directly
enhanced by obesity-associated circulating factors
In addition to an elevation in circulating levels of growth
factors, pro-inflammatory cytokines, and leptin, obesity in
postmenopausal women is typically accompanied by higher
levels of circulating estrogens [39]. In ERa positive breast
cancer cells, estradiol can bind ERa and activate its canoni-
cal signaling pathway, in which ERa acts as a nuclear tran-
scription factor or cofactor, modulating the expression of
its target genes in a manner that promotes cell proliferation
and growth. This genomic ERa activity can also be induced
via ligand-independent phosphorylation of the receptor’s

Figure 1 Obesity-associated circulating factors promote greater breast cancer cell viability and growth. (A) MCF-7 and T47D breast
cancer cells were exposed to 2% obese (Ob) or control (Con) patient sera for 48 hours; viability was then measured by MTT assay. (B) Colony
formation assay was utilized to assess MCF-7 and T47D cell growth following a nine day exposure to 2% Ob or Con patient sera. Data shown
represent the average of at least three independent experiments. *, P < 0.05; **, P < 0.01 in comparison to Con. MTT reagent, 3-(4,5-
dmethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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AF-1 domain by Akt and ERK1/2 [18,19,40]. To assess the
effect of Ob and Con sera on genomic ERa activity, we
measured relative ERE luciferase reporter activity in MCF-
7 and T47D cells in response to these conditions. No sig-
nificant difference was detected in the luciferase activity,
suggesting that the factors in Ob sera do not directly
enhance genomic ERa activity (Figure 3A). Expression of
pS2, an ERa target gene, was also measured as another
indicator of ERa transcriptional activity. qPCR analysis of
the relative levels of pS2 mRNA showed no difference in
pS2 expression in either the MCF-7 or T47D cell lines
after growth in Ob versus Con sera (Figure 3B). In contrast,
Ob sera did induce significantly higher expression of cyclin
D1, another ERa target gene, in both cell lines. MCF-7
cells expressed 34% more cyclin D1 following 24 hours of
growth in Ob sera versus Con, while cyclin D1 mRNA

levels were 30% higher in T47D cells under these condi-
tions (P < 0.05) (Figure 3C). However, while pS2 expression
is considered to be a very specific and reliable indicator of
ERa activity, cyclin D1 expression is regulated by many sig-
naling pathways, including PI3K/Akt and MAPK. There-
fore, the upregulation of cyclin D1 expression following Ob
sera exposure is likely related to increased activity in these
upstream pathways. Because cyclin D1 is involved in pro-
moting progression through the cell cycle, these results are
also supportive of our data demonstrating a significant dif-
ference in breast cancer cell growth following Ob sera
exposure.
One potential critique of our study design is the use

of sera from breast cancer patients. Many of the patients
who provided sera for this study were receiving aroma-
tase inhibitor treatment at the time of serum collection,

Figure 2 Breast cancer cell Akt, ERK1/2, and IGF-1R activation are enhanced by obesity-associated circulating factors. The effects of
obese (Ob) and control (Con) patient sera on Akt, ERK1/2 and IGF-1R activation were assessed by western blotting. MCF-7 (A and B) and T47D
(C and D) cells were exposed to 2% Ob or Con patient sera for 15 minutes or one hour; pAkt (ser473) and pERK1/2 protein levels were then
measured and standardized to tAkt and tERK1/2 protein levels, respectively. (E and F) pIGF-1R (tyr1135/1136) protein levels in MCF-7 cells were
measured and standardized to tIGF-1R following a 15 minute incubation in 2% Ob or Con patient sera. Densitometry data from at least three
independent experiments were compiled for each protein and cell line to calculate the average protein level, standard error of the mean and
statistical significance, with one representative image for each protein shown. *, P < 0.05; **, P < 0.01 in comparison to Con. IGF-1R, insulin-like
growth factor 1 receptor.
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leading to a decrease in their circulating estradiol levels.
The lack of difference in genomic ERa activity could
be an artifact of the drug’s effects. To address this issue,
we repeated the ERE luciferase assay in MCF-7 cells
with pooled sera from patients who had not been pre-
scribed aromatase inhibitors (Ob(-AI) versus Con(-AI))
and again found no difference in genomic ERa activity
(Figure 3D). Together, these studies strongly suggest
that genomic ERa activity plays a minimal role in med-
iating obese sera-induced breast cancer cell viability and
growth.

Combined PI3K and ERa inhibition attenuates effects of
obese patient sera on breast cancer cell viability and
growth
After demonstrating that Ob sera exposure directly
increases PI3K/Akt and MAPK pathway activation, but
not genomic ERa activity, we examined the contribution
of these pathways to Ob sera-induced MCF-7 cell viability
and growth. Using the targeted inhibitors LY 294,002 (LY,
a PI3K inhibitor), PD 98,059 (PD, a MEK1 inhibitor) and
4-hydroxytamoxifen (Tam, a selective estrogen receptor

modulator), we established which factors were essential
for the observed increase in viability and growth. While
each drug was able to significantly decrease the viability of
MCF-7 cells exposed to Ob sera (P < 0.05), LY/Tam inhib-
ited viability by 54% and was the only treatment able to
inhibit it to a level significantly less than cells grown in
Con sera (P < 0.05). In addition, cells exposed to Con sera
and LY/Tam had a significantly lower viability level in
comparison to all Ob sera-exposed cells (P < 0.05) except
those also treated with LY/Tam, suggesting that this drug
combination is the most effective at neutralizing obesity-
induced viability (Figure 4A). Ob sera-induced MCF-7 cell
growth was significantly decreased by all drug treatments
except PD. However, the LY/Tam combination again
proved to be the most effective inhibitor; it decreased Ob
sera-induced growth by 87%, inhibiting it to a level signifi-
cantly lower than that produced by all other drug treat-
ments (P < 0.01). Intriguingly, PD alone significantly
increased the number of colonies formed by MCF-7 cells
grown in Ob or Con sera, but also inhibited Ob sera-
induced growth when administered in combination with
Tam (P < 0.01) (Figure 4B). These results suggest that

Figure 3 Genomic ERa activity in breast cancer cells is not directly enhanced by obesity-associated circulating factors. Genomic ERa
activity in response to 2% obese (Ob) or control (Con) patient sera exposure was measured in MCF-7 and T47D cells with an ERE luciferase
reporter (A) and qPCR analysis of pS2 expression (B). Expression of cyclin D1, which is regulated by both ERa and the PI3K/Akt and MAPK
pathways, was assessed by qPCR analysis in both cell lines following growth in 2% Ob or Con patient sera (C). The effect of 2% Ob(-AI) and Con
(-AI) patient sera on genomic ERa activity in MCF-7 cells was also measured by ERE luciferase reporter (D). This pooled sera excluded breast
cancer patients receiving aromatase inhibitors at the time of collection. Data shown represent the average of at least three independent
experiments. *, P < 0.05 in comparison to Con. ERa, estrogen receptor alpha; ERE, estrogen response element.
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signaling from all three pathways, as well as enhanced
crosstalk between them, contributes to the upregulation of
breast cancer cell viability and growth by obese patient
sera. However, because the most effective drug combina-
tion was LY/Tam, the data also indicates that the PI3K/
Akt pathway and its interactions with ERa may play a
more critical role than the MAPK pathway in mediating
these effects.

Obesity-associated circulating factors enhance Akt-
mediated activation of ERa and nongenomic ERa activity
In addition to its transcriptional activity, ERa signaling
also occurs at the plasma membrane and in the cyto-
plasm. Here, ERa can activate the PI3K/Akt and MAPK
pathways when it forms complexes with other signaling
molecules, including the IGF-1R and the regulatory subu-
nit of PI3K, p85. Akt and ERK1/2 can in turn activate
ERa in a ligand-independent manner by phosphorylation
[18,19]. Although there was no difference in genomic
ERa activity following Ob versus Con sera exposure, our
data demonstrated that LY/Tam is the most effective
drug combination for the inhibition of Ob sera-induced
breast cancer cell viability and growth, indicating that
ERa is indeed a critical player in mediating these effects.
Consequently, we next examined whether nongenomic
ERa activity is enhanced by obesity-associated circulating
factors. We found that Ob sera, in comparison to Con,
promotes 53% (P < 0.01) and 52% (P < 0.05) higher levels
of ERa phosphorylation at the Akt target site (s167) in
MCF-7 cells following a 15 minute or one hour exposure,
respectively (P < 0.05). No difference between Ob and
Con was seen at the ERK1/2 target site (ser118) under
the same conditions (Figures 5A and 5B). Ob sera also

stimulated an increase in Akt and ERK1/2 phosphoryla-
tion via ERa activity in the cytoplasm. This is demon-
strated by the ability of Tam to inhibit Ob sera-induced
Akt and ERK1/2 activation in MCF-7 cells by 36% (P <
0.01) and 33% (P < 0.05), respectively. In contrast, Tam
had no effect on Con sera-induced Akt and ERK1/2 acti-
vation (Figures 5C and 5D). ERa inhibition also elimi-
nated the difference in Akt and ERK1/2 activation levels
stimulated by Ob and Con sera exposure alone, suggest-
ing that obesity-associated circulating factors are promot-
ing greater nongenomic ERa activity. This enhanced
crosstalk explains why the addition of Tam to either LY
or PD results in greater inhibition of Ob sera-induced
breast cancer cell viability and growth in comparison to
either drug alone.

Discussion
Growth factor signaling is known to promote the develop-
ment of endocrine resistance in breast cancer. However,
while obesity has been shown to modulate growth factor
signaling pathways, its impact on hormone independence
remains relatively unexplored. We have previously
reported that obese ovariectomized mice implanted with
syngeneic mouse mammary tumor cells displayed
enhanced mammary tumor development and progression,
and this was associated with elevated levels of bioavailable
IGF-1 and downstream PI3K/Akt/mTOR signaling [41,42].
Because elevated growth factor signaling can stimulate
cytoplasmic ERa localization and nongenomic ERa activity
[18], we investigated the role of bidirectional crosstalk
among various growth factor pathways and ERa. Based on
our current findings, we propose that obesity-induced sys-
temic factors promote breast cancer progression and may

Figure 4 Combined PI3K/ERa inhibition attenuates effects of obesity on breast cancer cell viability and growth. The contribution of the
PI3K/Akt, MAPK, and ERa pathways to obese (Ob) patient sera-induced cell viability and growth was examined via treatment of MCF-7 cells with
the following inhibitors during sera exposure: LY 294,002 (LY, a PI3K inhibitor, 10uM), PD 98,059 (PD, a MEK1 inhibitor, 10uM) and 4-
hydroxytamoxifen (Tam, a selective estrogen receptor modulator, 100 nM). (A) MCF-7 cell viability was measured by MTT assay following a 48
hour exposure to 2% Ob or control (Con) patient sera, with or without drug treatment. (B) Colony formation assay was used to assess MCF-7 cell
growth over a nine day exposure to 2% Ob or Con patient sera, with or without drug treatment. Data shown represent the average of at least
three independent experiments, and different letters indicate significant differences (P < 0.05). ERa, estrogen receptor alpha; MTT reagent, 3-(4,5-
dmethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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increase resistance to aromatase inhibitor therapy by initi-
ating crosstalk between nongenomic ERa activity and the
IGF-1R, PI3K/Akt and MAPK signaling pathways.
Here we demonstrate that circulating factors associated

with postmenopausal obesity increased ERa positive
breast cancer cell viability and growth (Figure 1). This
was coupled with greater breast cancer cell Akt and
ERK1/2 phosphorylation, as well as enhanced IGF-1R
activation (Figure 2). Intriguingly, there was no difference
between the obese and control patients in average serum
free IGF-1 concentration. However, average insulin levels
were non-significantly higher in the obese group, and
insulin can also bind and activate the IGF-1R (Table 1).
The lack of significant differences in these hormones
may be due to the non-fasting status of the patients, as
other studies examining their association with obesity
have assessed fasting serum samples [20,21]. Obese post-
menopausal women are also known to have, on average,
higher levels of circulating estradiol [13-15]. Conse-
quently, we were surprised to find no difference in the
genomic ERa activity of breast cancer cells grown in
obese versus control patient sera, even with the exclusion
of patients on aromatase inhibitors at the time of serum

collection, suggesting that obesity-related circulating fac-
tors promote ERa positive breast cancer cell viability and
growth independent of ERa transcriptional activity.
However, previous studies have demonstrated that ERa,

in addition to its canonical genomic signaling pathway, is
active outside the nucleus. Over the past decade, a number
of researchers have successfully characterized several
interactions between ERa and other signaling molecules
that occur in the cytoplasm. For example, Song et al.
[43,44] discovered that, in the presence of estradiol, ERa
undergoes translocation to the plasma membrane and
complexes with IGF-1R and the adaptor protein Shc,
resulting in MAPK pathway activation. Down-regulation
of IGF-1R prevents ERa translocation to the membrane,
suggesting that IGF-1R signaling is necessary for nonge-
nomic ERa activity. Ligand-bound ERa can also directly
bind Src as well as p85, the regulatory subunit of PI3K,
resulting in Akt activation downstream [45,46]. In addi-
tion, p85 can bind IGF-1R, leading to speculation that
ERa may complex with both of these molecules upon acti-
vation by estradiol [47,48]. The receptor for leptin, an obe-
sity-associated adipokine that was significantly elevated in
our obese patient group (Table 1), has also been shown to

Figure 5 Obesity-associated circulating factors promote greater Akt-mediated ERa phosphorylation and nongenomic ERa activity.
Phosphorylation of ERa at two different sites (ser167 and ser118, the Akt and MAPK target sites, respectively) following a 15 minute or one hour
exposure to 2% obese (Ob) or control (Con) patient sera was assessed in MCF-7 cells by western blot and standardized to tERa protein levels
(A and B). The effect of tamoxifen (T) treatment on Akt and ERK1/2 activation in MCF-7 cells following a 15 minute exposure to 2% Ob or Con
patient serum was also measured by western blot (C and D). Densitometry data from at least three independent experiments was compiled for
each protein to calculate the average protein level, standard error of the mean and statistical significance, with one representative image for
each protein shown. *, P < 0.05; **, P < 0.01 in comparison to Con, and different letters indicate significant differences (P < 0.05). ERa, estrogen
receptor alpha.
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crosstalk with IGF-1R, resulting in greater IGF-1R activa-
tion and an upregulation of Akt and ERK1/2 phosphoryla-
tion [49]. This interaction could potentially enhance IGF-
1R/ERa crosstalk. Activated Akt and ERK1/2 can in turn
activate ERa via phosphorylation at serine 167 and 118,
respectively, within the receptor’s AF-1 domain, leading to
enhanced genomic ERa activity [50,51]. Figure 6 sum-
marizes the different mechanisms of ERa activity. Because
PI3K/Akt, MAPK and IGF-1R activity were all upregulated
with obese patient sera exposure, we next explored the
effects of obesity-associated factors on nongenomic ERa
activity.
To determine whether obese patient sera promotes

this nongenomic ERa activity and cross-talk with
growth factor signaling pathways, we first examined the
contribution of the PI3K/Akt, MAPK, and ERa path-
ways to obese patient sera-induced breast cancer cell
viability and growth. Intriguingly, we found that a com-
bination of the PI3K inhibitor LY 294,002 (LY) with the
ERa inhibitor tamoxifen (Tam) most effectively miti-
gated the pro-growth effects of obese patient sera in the
MCF-7 cells. The combination of PD 98,059 (PD) and
Tam also demonstrated an attenuating effect on MCF-7
cell growth, so we were surprised that PD treatment
alone stimulated significantly more cell growth than sera

alone (Figure 4). This may be due to feedback upregula-
tion of the PI3K/Akt pathway in response to MEK inhi-
bition, as Hoeflich et al. [52] has demonstrated that the
selective MEK inhibitor PD0325901 enhances PI3K/Akt
signaling in several breast cancer cell lines. Together,
these data support the possibility that crosstalk between
both the PI3K/Akt and MAPK pathways and nonge-
nomic ERa signaling may be playing a role in obesity-
induced postmenopausal breast cancer progression,
although the PI3K/Akt pathway may be the more
important mediator of these effects. Additional evidence
to support this conclusion includes the observation that
Tam alone is sufficient to decrease obese patient sera-
induced Akt and ERK1/2 activation to the levels
observed in breast cancer cells grown in control patient
serum (Figure 5).
In addition to demonstrating that obesity-associated

circulating factors increase ERa-mediated Akt and
MAPK activation, we also found that they stimulated
greater Akt-mediated phosphorylation of ERa at serine
167 in MCF-7 cells (Figure 5). In contrast, exposure to
obese patient sera did not upregulate ERa phosphoryla-
tion at the MAPK target site (serine 118), but research-
ers have found that breast cancer cell MAPK activity
does not always correlate with phosphorylation at this
site [53]. This ligand-independent activation of ERa via
its AF-1 domain is a purported mechanism by which
endocrine resistance can develop [18,19]. However,
ligand-independent ERa activity is thought to be limited
to the nucleus, where phosphorylated ERa acts as a
transcription factor or co-factor (Figure 6B). As we did
not detect a difference in ERa genomic activity, it is
unclear whether the obese patient sera-induced increase
in pERa(s167) has any biological significance.
Given the lack of any detectable effect on genomic

ERa activity, it is possible that the obese sera-induced
breast cancer cell viability and growth may be indepen-
dent of circulating estrogen levels. If this hypothesis is
confirmed, it would suggest one mechanism by which
obesity may contribute to the development of resistance
to aromatase inhibitor therapy, a finding with potential
clinical implications. This conjecture, as well as the pro-
posed importance of the PI3K/Akt/mTOR pathway in
mediating the effects of obesity-associated systemic fac-
tors, is supported by the literature on endocrine resis-
tance. For example, Miller et al. [54] found that
induction of hormone independence via long-term
estrogen deprivation of ERa positive breast cancer cells
was accompanied by an amplification of PI3K/Akt/mTor
signaling linked to upstream IGF-1R/insulin receptor
hyperactivation, similar to the effects of obese patient
sera exposure. PI3K signaling was required for the
induction of hormone independence, illustrating the key
role this pathway plays in the development of endocrine

Figure 6 Breast cancer cell estrogen receptor activity. Three
general mechanisms of ERa signaling are depicted. First, ERa can
bind estradiol (E2) and enter the nucleus, where it forms complexes
with co-activators (CoAs) and regulates gene transcription by
binding directly to estrogen response elements (EREs) specific to
ERa or via interaction with other transcription factors (A). This
genomic ERa activity can also be stimulated by Akt or MAPK-
mediated phosphorylation of the receptor (B). Ligand-bound ERa
can also remain outside the nucleus, where it complexes with the
IGF-1R at the cell membrane or with other signaling molecules in
the cytoplasm to activate the PI3K/Akt and MAPK pathways (C). IGF-
1R crosstalk with the leptin receptor (OB-R) is also depicted (D).
Each mechanism ultimately leads to the transcription of target
genes that promote breast cancer cell growth. ERa, estrogen
receptor alpha; IGF-1R, insulin-like growth factor 1 receptor.
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resistance. An earlier study by Beeram et al. [55]
demonstrated that MCF-7 cells expressing a constitu-
tively active Akt were refractory to treatment with
letrozole, fulvestrant and tamoxifen, providing further
basis for our conclusions. Results indicated that the
Akt-induced resistance was mediated by both ERa-
dependent and independent mechanisms and that
response to endocrine therapy in these cells was
achieved only by combining letrozole with the mTOR
inhibitor RAD001. Similarly, Cavazzoni et al. [56] found
that letrozole-resistant, aromatase-overexpressing MCF-
7/AROM cells displayed greater PI3K/Akt/mTOR and
MAPK pathway activity. Further, mTOR inhibition with
RAD001 was able to completely inhibit proliferation in
this cell line. The authors correlated these results with
an analysis of pathway activation in breast cancer
patients who had progressed on letrozole, finding an
upregulation of PI3KA, pAkt and p-mTOR after three
months on treatment in comparison to the patients’
pre-treatment baseline. All of these studies suggest that
the PI3K/Akt/mTOR pathway and its interaction with
ERa are key mediators in the development of resistance
to aromatase inhibitors. Consequently, it is probable
that an upregulation of the crosstalk between these
pathways, as seen in ERa positive breast cancer cells
grown in obese patient sera, will lead to aromatase inhi-
bitor resistance and disease progression.

Conclusions
The continuous rise in obesity rates around the world
underscores the importance of identifying the molecular
pathways by which obesity contributes to the pathogen-
esis and progression of numerous chronic diseases,
including breast cancer. This study provides evidence
that postmenopausal obesity enhances ERa positive
breast cancer cell viability and growth via crosstalk
between the ERa, PI3K/Akt and MAPK signaling path-
ways, suggesting that the addition of a PI3K/Akt/mTOR
pathway inhibitor to aromatase inhibitor therapy may
improve the clinical outcome of obese postmenopausal
patients. Additional clarification of the crosstalk
mechanisms responsible for the effects of obesity on
postmenopausal breast cancer progression will be the
goal of future studies.
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