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A B S T R A C T   

Background: Accurate risk stratification of patients with intracerebral hemorrhage (ICH) could help refine 
adjuvant therapy selection and better understand the clinical course. We aimed to evaluate the value of radio
mics features from hematomal and perihematomal edema areas for prognosis prediction and to develop a model 
combining clinical and radiomic features for accurate outcome prediction of patients with ICH. 
Methods: This multicenter study enrolled patients with ICH from January 2016 to November 2021. Their out
comes at 3 months were recorded based on the modified Rankin Scale (good, 0–3; poor, 4–6). Independent 
clinical and radiomic risk factors for poor outcome were identified through multivariate logistic regression 
analysis, and predictive models were developed. Model performance and clinical utility were evaluated in both 
internal and external cohorts. 
Results: Among the 1098 ICH patients evaluated (mean age, 60 ± 13 years), 703 (64 %) had poor outcomes. Age, 
hemorrhage volume and location, and Glasgow Coma Scale (GCS) were independently associated with outcomes. 
The area under the receiver operating characteristic curve (AUC) of the clinical model was 0.881 in the external 
validation cohort. Addition of the Rad-score (combined hematoma and perihematomal edema area) improved 
predictive accuracy and model performance (AUC, 0.893), net reclassification improvement, 0.140 (P < 0.001), 
and integrated discrimination improvement, 0.050 (P < 0.001). 
Conclusions: The radiomics features of hematomal and perihematomal edema area have additional value in 
prognostic prediction; moreover, addition of radiomic features significantly improves model accuracy.   

1. Introduction 

Stroke is a major cause of death globally (“The top 10 causes of 
death,” n.d.) and the leading cause of disability-adjusted life years (GBD 
2016 Neurology Collaborators, 2019). Spontaneous intracerebral 

hemorrhage (ICH) is the second most common stroke subtype; however, 
there is no effective treatment for ICH (Andersen et al., 2009; Ironside 
et al., 2019). Early markers and accurate risk estimation of poststroke 
outcomes may help direct management, refine selection of adjuvant 
therapy, and improve patient prognosis recovery (Skajaa et al., 2022). 

Abbreviations: ICH, intracerebral hemorrhage; PHE, perihematomal edema; NCCT, non-contrast computed tomography; mRS, modified Rankin Scale; GCS, 
Glasgow Coma Scale; AUC, area under the receiver operating characteristic curve; ROC, receiver operating characteristic; IDI, integrated discrimination improve
ment; NRI, net reclassification improvement. 
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Non-contrast computed tomography (NCCT) is the preferred examina
tion modality for patients with ICH (Greenberg et al., 2022). Several 
imaging markers based on NCCT can predict hemorrhage expansion or 
poor outcomes; these radiological signs describe lesion characteristics 
and include the island sign (Li et al., 2017), the blend sign (Li et al., 
2015), the black hole sign (Li et al., 2018), the hypodensity (Boulouis 
et al., 2016), and the hematoma maturity score (Serrano et al., 2022), 
among others. 

However, although these signs can help radiologists determine lesion 
features, they are not quantitative and can result in inconsistencies due 
to subjectivity (Pszczolkowski et al., 2021). Moreover, although the I2 
score, derived from dual-energy CT images based on CT angiography, 
may be a higher sensitivity marker (Tan et al., 2019), it is not routinely 
or properly performed during the diagnostic workup of acute ICH 
(Morotti et al., 2020). In contrast, NCCT-based imaging radiomics, a 
more objective and reproducible quantitative indicator, can result in 
higher accuracy. Recently, radiomics features have been associated with 
prognosis, even though they have restricted predictive performance for 
3-month functional outcomes (Haider et al., 2021; Pszczolkowski et al., 
2021; Song et al., 2021). Specifically, although radiomics models could 
predict functional outcome, their accuracy and stability need to be 
improved to be used clinically as reliable tools for predicting poor 
functional outcomes in ICH. Further, radiomic analyses of peri
hematomal edema (PHE) and effective outcome prediction are rare. PHE 
is the main cause of secondary brain injury post-ICH (Babi and James, 
2017; Sprügel et al., 2019), and a possible therapeutic target for cerebral 
hemorrhage; however, its impact on ICH patient outcomes remains 
unclear (Wu et al., 2017; Yang et al., 2015). Furthermore, hematoma 
and PHE are usually analyzed separately, and the prognostic power of 
the radiomics features of PHE has yet to be elucidated. In addition, it is 
unclear whether and how hematoma and PHE data can improve the 
prognostic accuracy for ICH. 

Thus, this study investigated whether a combination of hematoma 
and/or PHE radiomics features with clinical quantitative features based 
on early-stage NCCT could improve the accuracy and stability of prog
nostic prediction. Moreover, we investigated the mechanism by which 
the combination of hematoma and/or PHE radiomic features provides 
additional information on 3-month functional outcomes of ICH. Thus, 
we compared the predictive performance of different models after 
addition of radiomic features. Finally, the model with the best 
comprehensive performance was visualized. 

2. Methods 

2.1. Study design and sample 

This retrospective study was reviewed and approved by the three 
centers involved. The requirement for informed consent was waived 
because of the retrospective nature of the study. All applicable data 
protection regulations were followed to ensure patient confidentiality. 

The study was conducted in three tertiary teaching hospitals in China 
and included patients with spontaneous ICH who underwent brain 
NCCT between January 2016 and November 2021. The inclusion 
criteria were inpatients, age >18 years, undergoing NCCT for suspicion 
of ICH within 6 h after symptom onset, and ICH diagnosis. The exclusion 
criteria were craniotomy or hematoma evacuation before CT, acquired/ 
secondary brain hemorrhage, tumor, trauma, cerebral aneurysm or 
infection, no PHE, and inadequate or problematic image quality. Finally, 
1098 patients were included (Fig. S1). Patients from center 1 (Gansu, 
China), were divided into the training cohort (brain scan between Jan 
2016 and Dec 2019, n = 814 patients) and the internal validation cohort 
(brain scan between Jan 2020 and Dec 2020, n = 198 patients). In 
addition, 86 patients who underwent brain scans between June 2021 
and Nov 2021 from centers 2 (Gansu, China) and 3 (Shanxi, China) were 
included in the independent external validation cohort. 

Data, including age, sex, Glasgow Coma Scale (GCS), and time from 

symptom onset to baseline CT, were obtained from medical records. 
Laboratory data at the timepoint closest to ICH ictus were also collected, 
including glucose, triglycerides, white blood cell, neutrophil, lympho
cyte, and international normalized ratio. The 3-month functional out
comes were independently assessed by a senior neurologist through in- 
person interviews (Z.Y.Z 15 years of experience) or a phone call by 
trained study staff (X.Y.H., 6 years of experience), using the modified 
Rankin Scale (mRS) score. For patients lost to follow-up (13 cases), we 
used the functional status at discharge (Ferro et al., 2004). Unfavorable 
functional outcomes were defined as a dichotomized mRS score of 4–6 
for poor outcome and 0–3 as good outcome (Shoamanesh et al., 2018). 

2.2. Image acquisition and analysis 

Baseline NCCT brain scans of the skull base to the cranium were 
acquired as part of routine clinical care. Only axial scans were accepted, 
and there were no restrictions on scanner manufacturer, scanner set
tings, or slice thickness (slice thickness: 1–5 mm; 120 KV, 148–440 mA). 
Digital Imaging and Communications in Medicine data were collected. 
Three neuroradiologists blinded to patient data and outcomes (S.L.L, J. 
D. with 3, and H.Z with 5 years of clinical experience in neuroradiology, 
respectively.) independently recorded the hematoma location (deep or 
lobar) (Pasi et al., 2021) and presence of other imaging signs, including 
intraventricular or subarachnoid hemorrhage, hypodensity, and midline 
shift. To improve interobserver consistency, only hypodensity signs 
were recorded. Any heterogeneous type within the hematoma was 
defined as positive “hypodensity sign” (Barras et al., 2009; Boulouis 
et al., 2016). The midline shift threshold was set to >4 mm (Yang et al., 
2018). 

2.3. Radiomics feature extraction and processing 

First, the volume of interest (VOI) of the whole hematoma and PHE 
were manually segmented by three authors (S.L.L., J.D., and H.Z.) on the 
axial images according to the visible gross hematoma and PHE volume 
on ITK-SNAP software (http://www.itksnap.org, version 3.8.0). The 
final VOI was derived from the overlapping segmentation made by the 
three authors. If differences among the three VOIs >20 %, the VOI was 
redefined by author D.W., who has 6 years of diagnostic experience in 
neuroradiology in an academic full-service hospital (Su et al., 2020). 
The VOI volumes were recorded, and VOIs <125 mm3 were excluded 
(Kniep et al., 2019) (Fig. S2). 

Second, the radiomic analysis workflow is described in Fig. 1. Image 
normalization and radiomic feature extraction from VOIs were per
formed using the Artificial Intelligence Kit (A.K.) software version 3.2.2 
(GE Healthcare, China). The feature extraction process followed the 
image biomarker standardization initiative guidelines (Zwanenburg 
et al., 2020b) (Supplementary Material). A total of 214 NCCT radiomics- 
based features, including 107 edema areas and 107 hematoma areas 
from seven categories (shape, first-order, gray level co-occurrence ma
trix [GLCM], gray-level run-length matrix [GLRLM], gray-level size zone 
matrix [GLSZM], gray-level dependence matrix [GLDM], and neigh
boring gray tone difference matrix [NGTDM]), were extracted from the 
original and filtered scans. 

Lastly, the Wilcoxon rank-sum test was conducted to select optimized 
radiomic features, with a threshold set to p＜0.01. Then, multivariate 
logistic regression analysis was carried out to select significant features 
from the remaining radiomic features (features with p < 0.05 were 
retained). Finally, 16 radiomics features, including seven from edema 
areas and nine from hematoma areas, were selected as inputs for the 
edema and hematoma radiomics models. To explore the supplementary 
value of the edema region, we combined the radiomic features of the two 
regions and performed multivariate logistic regression analysis (the 
threshold set to p＜0.05) (Hematoma-Edema model). Ultimately, 12 
features were selected as the input for the radiomic models (Fig. 2, 
Fig. S3, Table S1). 
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2.4. Model construction and validation 

For the clinical model, univariable analysis and multivariable lo
gistic regression analysis were used to identify independent risk factors 
for poor outcome (p < 0.05). Next, independent risk factors were used to 
develop a clinical model using multivariable logistic regression analysis. 
For the radiomic model, the radiomic score (Rad-score) was converted to 
an outcome probability for each patient. The Rad-score was calculated 
as the corresponding non-zero coefficients of features selected from 
edema and/or hematoma by multivariate logistic regression in the 
training cohort. Three radiomic models were constructed using the Rad- 

score: the edema, hematoma, and hematoma-edema models. A combi
nation model comprising the hematoma-edema Rad-score and clinical 
factors was also developed to assess the 3-month functional outcome of 
ICH patients in the training cohort. These models were then indepen
dently verified in the internal and external validation cohorts. To 
identify the best-performing model and the most discriminative features 
in the data set, we compared the areas under the receiving operating 
curve (AUC) of the models using the DeLong non-parametric approach. 
According to the integrated discrimination improvement (IDI) and net 
reclassification improvement (NRI), the model improvement after add
ing radiomic features was observed (Roscigno et al., 2021; Thomas et al., 

Fig. 1. Workflow of the radiomics analysis pipeline. Hematomas and perihematomal edemas manually segmented on non-contrast computed tomography (NCCT) 
images. Radiomic feature extraction and radiomics signature generation. Models are constructed, and their performance is assessed. 

Fig. 2. Violin plots. The correlation between 12 radiomic features and characteristics of the good- and poor-outcome groups.  
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2019). 

2.5. Statistical analysis 

For clinical and laboratory data, quantitative variables were 
expressed as the median (interquartile range [IQR]), while categorical 
variables were reported as numbers and percentages as appropriate. The 
Mann–Whitney U, and chi-squared tests were used for univariate anal
ysis, using p < 0.05 as the threshold for statistical significance. Multi
variable logistic regression analysis was used to identify factors that 
were independently associated with functional outcomes and to 
construct the clinical model. For quantitative radiomic features, the 
Wilcoxon rank-sum test was used to choose the optimized features (p <
0.01). Multivariate logistic regression analysis was used to select sig
nificant features from the remaining features (p < 0.05). A receiver 
operating characteristic (ROC) curve was generated to determine model 
accuracy and discriminative performance. Sensitivity, specificity, ac
curacy, and AUC were used to estimate model performance. Calibration 
curves based on the Hosmer-Lemeshow test and decision curve analysis 
were used to compare the consistency and the clinical value of the 
models. The DeLong nonparametric approach, IDI, and NRI were used to 
compare performance differences among models and investigate 
radiomic markers to improve the identification of the outcome of pa
tients with ICH. All statistical analyses were performed using R (version 
4.1.0; R Foundation for Statistical Computing, Vienna, Austria) and SPSS 

(version 25; IBM, Armonk, NY). 

3. Results 

3.1. Patient characteristics 

After applying the exclusion criteria, 2461 patients were excluded, 
the remaining 1098 patients were included. Among them, the median 
patient age was 60 years; there were 652 males and 446 females. The 
demographics, ICH characteristics on CT, risk factors for poor functional 
outcome, and results of univariate analysis are summarized in Table 1. 
In total, 703 patients had poor 3-month prognosis, with a high incidence 
of 64 %; the incidence of poor prognosis was similar across datasets. 
Patients with poor prognosis were significantly older than those with 
good functional outcome (median age, 60 years vs 56 years; p < 0.001); 
however, there was no significant difference in sex. Intraventricular 
hemorrhage and hypodensity sign were identified as risk factors of poor 
prognosis and found in 64 % and 73 % of patients, respectively. In 
addition, the presence of a midline shift >4 mm was closely related to 
hematoma and edema volumes and indicated poor prognosis. The lab
oratory indices related to poor prognosis included high glucose, 
neutrophil count, and neutrophil-lymphocyte ratio. 

Table 1 
Clinicodemographic patient characteristics.  

Parameter Gansu training 
cohort 

Gansu internal validation 
cohort 

External validation 
cohort 

All Data 

n = 814 n = 198 n = 86  Poor outcome Good outcome P value a 

Poor outcome* 525 (65) 129 (65) 49 (57) 703 (64) 703 (64) 395 (36)  
Time (h) 3.0 (2.0, 4.0) 2.8 (1.0, 4.0) 2.5 (1.0, 4.0) 3.0 (1.5, 4.0) 3.0 (1.5, 4.0) 3.0 (1.5, 4.0) 0.41 
Gender*       0.84 
Male 465 (57) 135 (68) 52 (61) 652 (59) 419 (60) 233 (59)  
Female 349 (43) 63 (32) 34 (39) 446 (41) 284 (40) 162 (41)  
Age (y) 60 (52, 70) 58 (51, 70) 59 (53, 70) 60 (52, 70) 62 (53, 72) 56 (50, 65) ＜0.001 
Location*       0.32 
Deep 727 (89) 178 (90) 72 (84) 977 (89) 629 (90) 348 (88)  
Lobar 87 (11) 20 (10) 14 (16) 121 (11) 74 (10) 47 (12) 
Midline shift* 224 (27) 46 (23) 12 (14) 282 (26) 254 (36) 28 (7) ＜0.001 
IVH* 409 (50) 97 (49) 40 (47) 546 (50) 449 (64) 97 (25) ＜0.001 
SAH* 151 (19) 41 (21) 16 (19) 208 (19) 181 (26) 27 (7) ＜0.001 
Hypodensities* 535 (66) 145 (73) 49 (57) 729 (66) 509 (72) 220 (56) ＜0.001 
ICH volume (mm3) 29.8 (13.3, 69.8) 32.9 (15.9, 76.2) 43.8 (14.7, 67.2) 31.1 (13.9, 70.5) 51.7 (22.9, 90.5) 16.4 (6.9, 27.3) ＜0.001 
PHE volume 

(mm3) 
9.2 (4.1, 20.3) 16.7 (7.6, 31.3) 16.9 (7.3, 31.7) 11.2 (4.9, 23.4) 15.1(6.3, 29.9) 6.5 (3.1, 13.3) ＜0.001 

Temperature (℃) 36.6 (36.5, 36.9) 36.5 (36.3, 36.7) 36.5 (36.3, 36.6) 36.6 (36.4, 36.8) 36.6 (36.5, 36.8) 36.5 (36.4, 36.8) 0.01 
Smoking* 133 (16) 31 (16) 25 (29) 189 (17) 126 (18) 63 (16) 0.53 
SBP (mmHg) 171 (151, 190) 174 (156, 195) 175 (154, 192) 172(153, 191) 178 (156, 194) 166 (149, 185) ＜0.001 
GCS*       ＜0.001 
Low (score＜9) 301 (37) 68 (34) 30 (35) 399 (36) 365 (52) 34 (9)  
High (score ≥ 9) 513 (63) 130 (66) 56 (65) 699 (64) 338 (48) 361 (91)  
GLU (mmol/L) 7.92 (6.44, 10.10) 7.72 (6.28, 9.75) 8.12 (6.15, 9.12) 7.90 (6.40, 9.89) 8.50 (6.85, 

10.71) 
6.82 (5.93, 8.51) ＜0.001 

TG (mmol/L) 1.28 (0.82, 2.15) 1.09 (0.66, 1.76) 1.46 (1.07, 1.84) 1.26 (0.99, 1.99) 1.30 (0.85, 2.02) 1.23 (0.74, 1.91) 0.10 
WBC (10^9/L) 8.56 (6.30, 11.65) 8.12 (6.40, 11.46) 10.27 (6.90, 13.88) 8.61 (6.38, 

11.79) 
9.31 (6.80, 
12.95) 

7.49 (5.72, 
10.02) 

＜0.001 

NE (10^9/L) 6.93 (4.46, 9.99) 6.28 (4.30, 9.79) 8.31 (5.07, 12.18) 6.94 (4.46, 
10.10) 

7.52 (4.79, 
11.08) 

5.59 (4.07, 8.56) ＜0.001 

LY (10^9/L) 1.02 (0.69, 1.57) 1.12 (0.69, 1.76) 1.12 (0.83, 1.59) 1.04 (0.70, 1.60) 1.06 (0.67, 1.64) 1.02 (0.76, 1.53) 0.85 
NLR 6.24 (3.39, 12.34) 5.93 (2.69, 11.60) 7.68 (3.99, 13.29) 6.25 (3.35, 

12.25) 
7.51 (3.56, 
13.65) 

5.25 (3.15, 9.79) ＜0.001 

HGB (g/L) 148 (137, 161) 151 (139, 164) 141 (129, 154) 148 (136, 161) 149 (137, 162) 147 (136, 158) 0.09 
INR 0.98 (0.93, 1.04) 1.02 (0.97, 1.06) 1.04 (0.95, 1.06) 0.99 (0.94, 1.05) 0.99 (0.94, 1.05) 0.99 (0.93, 1.05) 0.31 

Data are presented as the median (interquartile range) unless otherwise indicated. Time = time from symptom onset to baseline CT, IVH = intraventricular hem
orrhage, SAH = subarachnoid hemorrhage, ICH = intracerebral hemorrhage, PHE = perihematomal edema, SBP = systolic blood pressure, GCS = Glasgow Coma Scale, 
GLU = glucose, TG = triglycerides, WBC = white blood cell, NE = neutrophil, LY = lymphocyte, NLR = neutrophil-lymphocyte ratio, HGB = hemoglobin, INR =
international normalized ratio. 

* Data are presented as n (%). 
a P-values were obtained using chi-square tests for categorical variables, and Mann-Whitney U-tests for continuous variables. 
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3.2. Model comparison and final model 

The edema, hematoma, hematoma-edema, clinical, and combined 
models are depicted in Fig. 3. These models showed an AUCs of 0.795 
(95 % confidence interval [CI] = 0.764–0.825), 0.827 (95 % CI =
0.798–0.855), 0.826 (95 % CI = 0.797–0.854), 0.872 (95 % CI =
0.848–0.896), and 0.890 (95 % CI = 0.867–0.912), respectively, in the 
training cohort. The individual AUC, accuracy sensitivity, specificity, 
and positive and negative predictive values in the training, internal 
validation, and external validation cohorts are reported in Table 2. The 
consistency between predicted and actual poor functional prognosis at 3 
months evaluated by the calibration curve (Hosmer-Lemeshow test; 
Fig. 4A–C) indicated good agreement among the cohorts. 

For clinical utility, the decision curve (Fig. 4D–F) showed that the 
combined model (light blue) had better predictive capability for poor 
outcomes than the Rad-score or clinical model alone (dark green and 
orange, respectively). There was no significant difference in AUCs be
tween the hematoma and edema models, indicating similar prediction 
abilities. However, there were significant differences in AUCs between 
the hematoma and combined models and between the hematoma-edema 
and combined models in the three cohorts (p < 0.05, DeLong test; 
Table S2). In addition, after incorporating radiomics features, the 
combined model showed better performance than the clinical models: 
the NRI was 0.140 (95 % CI = 0.073–0.206), 0.165 (95 % CI =
0.037–0.292), and 0.196 (95 % CI = 0.013–0.379), and the IDI was 
0.050 (95 % CI = 0.036–0.064), 0.034 (95 % CI = 0.005–0.063), and 
0.066 (95 % CI = 0.032–0.101) in the training, internal validation, and 
external validation datasets, respectively (Table 3). 

These findings indicate that radiomics has additional value in pre
dicting the prognosis of ICH patients at 3 months. When comparing the 
predictive performance of the models, the combination model 
comprising the hematoma-edema Rad-score and clinical factors per
formed the best. This model included the risk factors of age (odds ratio 
[OR], 1.05; 95 % CI = 1.04–1.07; p < 0.001), ICH volume (OR, 1.00; 95 
% CI = 1.00–1.00; p < 0.001), GCS score (OR, 0.16; 95 % CI =
0.09–0.28; p < 0.001), hemorrhage location (OR, 3.44; 95 % CI =
1.81–6.63; p < 0.001), and hematoma-edema Rad-score (OR, 1.87; 95 % 
CI = 1.50–2.35; p < 0.001), all of which were significantly associated 
with 3-month outcomes in all three cohorts (Fig. 5A). We plotted a 
nomogram by using these risk markers to visualize the combined model 
(Fig. 5B). 

4. Discussion 

Although recent studies demonstrate that radiomics models can 
predict functional outcomes in ICH, these studies were either relatively 

small or their accuracy and stability were insufficient (Pszczolkowski 
et al., 2021; Song et al., 2021). Herein, a model based on clinical and 
radiomic features of hematoma and PHE area on NCCT imaging accu
rately predicted 3-month outcomes of patients with ICH. The radiomic 
features of the hematoma and PHE areas on NCCT imaging could 
quantify the shape and heterogeneity of hematomas and edema. The 
addition of the Rad-score to the clinical model increased model accu
racy, sensitivity, and specificity, providing additional information for 
ICH outcome prediction. 

Accurate prognosis risk stratification in patients with ICH is key to 
implementing effective interventions and improving patient coopera
tion with respect to active rehabilitation. For example, rapid stratifica
tion of patients with ICH in the ultra-early and targeted therapeutic 
interventions (such as intensive blood pressure reduction) can improve 
the functional outcome(Li et al., 2020). Our findings are consistent with 
previous findings indicating that conventional markers, such as age, 
hematoma volume and location, and GCS score, are more specific than 
sensitive for outcome prediction (Haupenthal et al., 2021; Nawabi et al., 
2021; Pasi et al., 2021). A larger hematoma volume is associated with 
greater mass effect, more neuron damage, and lower GCS score, all of 
which are related to worse outcomes. A deep hematoma is a high risk 
factor for poor prognosis owing to its close relationship with important 
neural structures, and thalamic ICHs have a high probability of intra
ventricular extension and brainstem compression (Eslami et al., 2019). 
Further, compared with lobar locations, deep locations have a higher 
density of corticospinal tracts. As lower hematoma volume or hemor
rhage expansion has greater impacts on clinical outcome (Roh et al., 
2020), we included hematoma location in the final model, even though 
it was not significant in univariate analysis. Older age also increases the 
risk of recurrent ICH due to greater use of antithrombotic agents and 
prevalence of cerebral amyloid angiopathy and lower social support, 
which contribute to worse prognosis (Rådholm et al., 2015). In addition, 
older patients usually have other chronic diseases, such as diabetes or 
heart disease, which limit ICH recovery to some extent. 

Analyzing pathological changes in the hematoma and PHE may 
provide more information for the effective treatment of ICH. In the past 
two decades, the relationship between different hematoma shapes or 
density on NCCT images and prognosis has been repeatedly investi
gated. However, these visual signs are vaguely named and their pre
dictive accuracy is affected by interobserver consistency (Morotti et al., 
2019). PHE formation is considered a quantitative marker of secondary 
injury; its occurrence and development are accompanied by complex 
pathological changes. Moreover, the impact of PHE on clinical results is 
unclear (Chen et al., 2021). Compared with radiological signs, radiomics 
features reflect the morphological and density characteristics of VOI’s 
(Zwanenburg et al., 2020a), providing a more quantitative and 

Fig. 3. Receiver operating characteristic curves. Receiver operating characteristic curves of the five models for assessing 3-month clinical functional outcome in 
the three cohorts. 
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Table 2 
Model performance.    

Hematoma Edema Hematoma-Edema Clinical COMB 

Cut off 0.662 0.713 0.658 0.550 0.608 

Training cohort AUC 0.827(0.798–0.855) 0.795(0.764–0.825) 0.826(0.797–0.854) 0.872(0.848–0.896) 0.890(0.867–0.912) 
Accuracy 0.741(0.709–0.771) 0.693(0.660–0.724) 0.741(0.709–0.771) 0.800(0.771–0.827) 0.816(0.787–0.842) 
Sensitivity 0.688(0.604–0.735) 0.613(0.533–0.653) 0.718(0.653–0.770) 0.781(0.709–0.815) 0.802(0.739–0.838) 
Specificity 0.837(0.744–0.879) 0.837(0.772–0.882) 0.782(0.723–0.830) 0.834(0.744–0.875) 0.841(0.765–0.882) 
PPV 0.885(0.871–0.891) 0.873(0.856–0.879) 0.857(0.845–0.865) 0.895(0.886–0.899) 0.901(0.894–0.905) 
NPV 0.596(0.567–0.608) 0.544(0.523–0.557) 0.604(0.585–0.619) 0.677(0.651–0.688) 0.700(0.680–0.710)  

Internal validation cohort AUC 0.773(0.707–0.840) 0.745(0.676–0.814) 0.779(0.712–0.845) 0.828(0.769–0.886) 0.844(0.788–0.899) 
Accuracy 0.712(0.644–0.774) 0.646(0.576–0.713) 0.707(0.638–0.769) 0.753(0.686–0.811) 0.763(0.697–0.820) 
Sensitivity 0.705(0.511–0.814) 0.589(0.449–0.737) 0.713(0.550–0.822) 0.767(0.612–0.907) 0.775(0.666–0.891) 
Specificity 0.725(0.593–0.855) 0.754(0.652–0.870) 0.696(0.550–0.812) 0.725(0.638–0.812) 0.739(0.609–0.855) 
PPV 0.827(0.776–0.847) 0.817(0.773–0.848) 0.814(0.772–0.835) 0.839(0.806–0.860) 0.847(0.827–0.865) 
NPV 0.568(0.519–0.608) 0.495(0.459–0.531) 0.565(0.507–0.602) 0.625(0.595–0.651) 0.638(0.592–0.671)  

External validation cohort AUC 0.797(0.703–0.891) 0.805(0.714–0.896) 0.801(0.709–0.894) 0.881(0.808–0.955) 0.893(0.825–0.961) 
Accuracy 0.756(0.651–0.842) 0.744(0.639–0.832) 0.733(0.626–0.822) 0.802(0.702–0.880) 0.837(0.742–0.908) 
Sensitivity 0.673(0.326–0.817) 0.694(0.510–0.837) 0.694(0.510–0.837) 0.878(0.735–0.980) 0.878(0.571–0.980) 
Specificity 0.865(0.594–0.973) 0.811(0.541–0.947) 0.784(0.486–0.919) 0.703(0.432–0.865) 0.784(0.432–0.919) 
PPV 0.868(0.762–0.889) 0.829(0.781–0.854) 0.810(0.757–0.837) 0.796(0.766–0.814) 0.843(0.778–0.857) 
NPV 0.667(0.579–0.692) 0.667(0.571–0.700) 0.659(0.545–0.694) 0.812(0.727–0.842) 0.829(0.727–0.850) 

COMB = combined model, AUC = area under the receiver operating characteristic curve, PPV = positive predictive value, NPV = negative predictive value. Data in 
parenthesis indicate 95 % confidence intervals. 

Fig. 4. Calibration curves and Decision curves. (A-C) Calibration curves of the models for predicting poor outcome at 3 months in the three cohorts. The poor 
outcomes are plotted on the y-axis; model-predicted probability is plotted on the x-axis. (D-F) Decision curve analysis for the models in the three cohorts. The gray 
line represents the assumption that all patients developed a poor outcome, and the black line represents the assumption that no patient had a poor outcome. The 
model with the highest curve and greater area was selected as the optimal model for decision making, with maximal net benefit in outcome prediction. 
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consistent method to address the heterogeneity in hematoma and PHE. 
Moreover, these features have good predictive value for hematoma 
expansion and poor functional outcome, yielding better sensitivity and 
AUC (Haider et al., 2021; Nawabi et al., 2021; Pszczolkowski et al., 
2021; Song et al., 2021). The results herein indicated that radiomic 
features of the hematoma and PHE area, including shape and first-, 
second-, and high-order features (GLCM, GLRLM, GLSZM, GLDM, 
NGTDM), were associated with prognosis. These features enable 
comprehensive quantification of pathological changes in hematoma and 
PHE. For instance, shape features—an objective and quantitative 
index—can describe the three-dimensional size and morphology of the 
hematoma and PHE; first-, second-, and high-order features can reflect 
the spatial arrangement of gray- level image voxel. This is consistent 
with previous studies that predicted prognosis based on shape and 
density characteristics, but goes even further. 

According to the results of previous radiomics studies related to 
cancer (Su et al., 2020; Tomita et al., 2021), the radiomics features not 
only reflect the presence of active bleeding and time course of bleeding, 
but may also reflect microglia/macrophage activation and neuro
inflammation in the hemorrhage and PHE areas. A comparison of 
selected radiomic features showed no significant differences in AUC 
values, specificity, and sensitivity among the Rad-score model of the 
hematoma area, the PHE area alone, and the hematoma-edema Rad- 
score model. This may prove that the pathological changes of primary 
and secondary injuries are similarly important in determining ICH 
prognosis. In contrast, the effect of perihematomal edema on prognosis 
appears more complex. The hematoma-edema Rad-score and clinical 
models showed similar predictive accuracy. Importantly, the predictive 
performance of the clinical model significantly improved with the 
addition of radiomic features. These findings support the hypothesis that 
radiomic features could better reflect ICH pathophysiology and provide 
accurate prognostic information. These pathological changes may be 
potential therapeutic targets for intracerebral hemorrhage in the future. 

Nonetheless, there are several limitations to our study. First, it was 
based on retrospective data; outcomes could be influenced by changes in 

the level of care post-ICH (e.g., withdrawal of care in some patients), 
potentially affecting outcome data. Second, patient enrollment was 
disproportionate; center1 was a local stroke center and other centers’ 
Picture Archiving and Communication Systems could not read earlier 
information. Third, the inclusion criteria were a 6-h window between 
symptom onset and baseline CT and excluded patients without PHE; 
however, many patients were admitted >6 h after symptom onset or 
there may have been no obvious PHE within 6 h, limiting the scope of 
model application. Fourth, although quantitative radiomic features 
could accurately predict prognosis and provide additional value, 
combining these radiomics features with physiopathology was chal
lenging. Future research should clarify the biological mechanisms un
derlying the prognostic influence of the quantitative radiomic features 
of hematoma and PHE to establish more effective treatment modalities 
for ICH. 

5. Conclusion 

In this retrospective, multicenter study, we evaluated the role and 
accuracy of radiomic features in predicting ICH prognosis. We demon
strated that radiomic features can quantitatively analyze morphological 
features and the internal heterogeneity of the hematoma and edema 
area, providing additional value in prognostic prediction and risk 
stratification. Similar to clinical features, the radiomic features of PHE 
were also associated with prognosis. This simple and easy-to-use 
nomogram scoring system can help clinicians perform rapid and 
objective functional outcome stratification and make rational clinical 
treatment decisions. 
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Table 3 
NRI and IDI of the predictive models.  

Clinical vs COMB NRI P value IDI P value 

Training cohort 0.140 
(0.073–0.206)  

<0.001 0.050 
(0.036–0.064)  

<0.001 

Internal validation 
cohort 

0.165 
(0.037–0.292)  

0.01 0.034 
(0.005–0.063)  

0.02 

External validation 
cohort 

0.196 
(0.013–0.379)  

0.04 0.066 
(0.032–0.101)  

<0.001 

NRI = net reclassification improvement, IDI = integrated discrimination 
improvement, Clinical = clinical model, COMB = combined model. 
Data in parenthesis indicate 95% confidence intervals. 

Fig. 5. Forest plot and Nomogram. (A) Forest plot showing multivariate association between 3-month functional outcome and clinical and radiomic characteristics. 
(B) Nomogram to predict 3-month clinical functional outcomes. GCS = Glasgow Coma Scale. 
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