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Abstract

Background: Hearing loss is one of the most common modifiable factors associated with cognitive and functional
decline in geriatric populations. An accurate, easy-to-apply, and inexpensive hearing screening method is needed to
detect hearing loss in community-dwelling elderly people, intervene early and reduce the negative consequences
and burden of untreated hearing loss on individuals, families and society. However, available hearing screening
tools do not adequately meet the need for large-scale geriatric hearing detection due to several barriers, including
time, personnel training and equipment costs. This study aimed to propose an efficient method that could
potentially satisfy this need.

Methods: In total, 1793 participants (≥60 years) were recruited to undertake a standard audiometric air conduction
pure tone test at 4 frequencies (0.5–4 kHz). Audiometric data from one community were used to train the decision
tree model and generate a pure tone screening rule to classify people with or without moderate or more serious
hearing impairment. Audiometric data from another community were used to validate the tree model.

Results: In the decision tree analysis, 2 kHz and 0.5 kHz were found to be the most important frequencies for
hearing severity classification. The tree model suggested a simple two-step screening procedure in which a 42 dB
HL tone at 2 kHz is presented first, followed by a 47 dB HL tone at 0.5 kHz, depending on the individual’s response
to the first tone. This approach achieved an accuracy of 91.20% (91.92%), a sensitivity of 95.35% (93.50%) and a
specificity of 86.85% (90.56%) in the training dataset (testing dataset).

Conclusions: A simple two-step screening procedure using the two tones (2 kHz and 0.5 kHz) selected by the
decision tree analysis can be applied to screen moderate-to-profound hearing loss in a community-based geriatric
population in Shanghai. The decision tree analysis is useful in determining the optimal hearing screening criteria for
local elderly populations. Implanting the pair of tones into a well-calibrated sound generator may create a simple,
practical and time-efficient screening tool with high accuracy that is readily available at healthcare centers of all
levels, thereby facilitating the initiation of extensive nationwide hearing screening in older adults.
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Background
Age-related hearing loss adds a significant burden to in-
dividuals and society. Compared to their normal hearing
peers, individuals with hearing loss are at significantly
greater risk of incident dementia [1–3], falls [4, 5], de-
pression [6, 7], social isolation [8], loss of independence
[9], early retirement and unemployment [10], and
hospitalization [11]. Hearing loss ranked as the 13th
highest contributor to the global burden of disease in
2002 and is projected to be the 9th leading contributor
worldwide in 2030 [12]. Excess medical costs resulting
from hearing impairment ranged from $3.3 to $12.8 bil-
lion in the United States [13, 14] and were $11.75 billion
in Australia [15]. However, the adverse consequences of
untreated hearing loss are still largely underestimated by
society, by senior citizens and by health care profes-
sionals [16].
The existing literature supports the hypothesis that

treating hearing loss is effective in reducing the afore-
mentioned adverse consequences. Nonetheless, moving
towards early treatment requires the early identification
of individuals with hearing loss. Hearing impairment is
highly prevalent in older adults, affecting 33% of persons
over the age of 50 years, 45% of persons over the age of
60 years [17] and 63.1% of the population aged 70 years
or older [3]. Despite this, fewer than one-fifth of adults
with hearing loss seek or obtain any form of treatment
[18]. Age-related hearing loss is severely underrecog-
nized and undertreated.
The gold standard for estimating hearing impairment

is clinical pure tone audiometry administered by trained
audiologists [19]; however, this method is not feasible
for large-scale, population-based epidemiological screen-
ing projects because it requires access to high-cost
audiological equipment and trained personnel. The avail-
ability of an effective and sustainable hearing loss
screening strategy that is fast, accurate, and easy to use
is crucial and a prerequisite for the implementation of
effective intervention programs, especially in developing
countries with high population density and few hearing
care resources.
A number of time-efficient hearing screening strat-

egies have been proposed over the past few years. Port-
able screeners, such as Audioscope [20], screen hearing
by delivering 4 tones of different frequencies (0.5, 1, 2,
and 4 kHz) at approximately 40 dB. Although this ap-
proach provides 90% sensitivity and requires minimal
training to administer, it lacks cost-effectiveness because
the equipment is not affordable for primary care clinics
at the community level. The hearing handicap inventory
for the elderly screening (HHIE-S) questionnaire [21, 22]
offers an economic option for hearing screening and can
be completed within a few minutes with reasonable sen-
sitivity (74.6%~ 84.5%) [19, 23]. However, self-reporting

of hearing loss is strongly impacted by individuals’ denial
or non-acceptance of hearing loss and, as a result, con-
sistently underestimates the actual prevalence of disabil-
ity [23]. A growing number of application-based hearing
tests have provided an accessible and free hearing
screening approach by simulating the standard audio-
metric testing procedure via the internet and personal
smart devices [24]. However, the participation rate is
low, as these application programs require initiation by
older adults, whose motivation to use new technology is
low. In addition, the accuracy of these application-based
tests is mixed in the literature [25].
Despite the intensive effort to promote hearing screen-

ing in community-based geriatric populations, none of
the currently available screening instruments have been
systematically implemented, and their correlation to
clinical audiometric tests varies. To date, no studies have
shown that these screening tools resulted in an increased
geriatric hearing screening rate or hearing aid use. There
was also a global lack of improvement in hearing loss
burden as measured by age-standardized disability-ad-
justed life years (DALYs) over 25 years (1990~2015) [26],
implying that the available screening methods have not
been accepted by the target facilities, including clinics
with heavy flows of patients and densely populated com-
munities. The barriers of cost, time and training still
exist, leaving age-related hearing loss largely
underdetected.
No parsimonious and feasible screening instrument to

date has been developed to fill the above need. The
present study was the first attempt to simplify the clin-
ical standard pure tone audiometric assessment by using
a machine learning technology on a large pure tone
evaluation dataset collected from communities. The goal
was to explore an efficient data-driven approach is ap-
plicable in the community-based physical check setting
for screening moderate-to-profound hearing loss. Specif-
ically, we aimed to implement decision tree algorithms
to determine objectively the acoustical screening criteria
for hearing classification.
Decision tree is a nonparametric supervised machine

learning method used for classification and regression. It
creates a practical model that classifies target conditions
or predicts the value of a target variable by learning sim-
ple decision rules inferred from a set of training data
features with a known output. The features most highly
related to the outcome are included in the model. Deci-
sion tree methodology is ideal for building clinically use-
ful classification models because it uses simple logic for
classifying conditions, making it easy for patients and
clinicians to interpret data [27–30].
The decision tree model, as a basic machine learning

form, is playing an increasingly important role in health-
care applications. Specifically in the hearing science field,
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this technique has been used to seek the optimal supra-
threshold test battery to classify auditory profiles to-
wards effective hearing loss compensations [31]. More
frequent applications of a decision tree analysis were
evaluating whether a medical and audiological practice is
cost-effective, for example, implanting cochlear pros-
thesis [32], the pursuit of magnetic resonance imaging
(MRI) with or without contrast in the workup of undif-
ferentiated asymmetrical sensorineural hearing loss [33],
and universal or selective hearing screening on new-
borns [34, 35]. Some sophisticated machine learning
technologies (e.g., neural network multilayer perceptron,
support vector machine, random forest, adaptive boost-
ing) have also been used in the hearing healthcare area,
for instance, predicting postoperative monosyllabic word
recognition performance in adult cochlear implant recip-
ients [36] or predicting noise-induced hearing loss of
manufacture workers based on demographic information
and working acoustical environments [37, 38]. However,
to the best of our knowledge, machine learning tech-
nologies have not yet been applied in the geriatric hear-
ing screening area for the purpose of a practical
implementation.
A decision tree analysis is commonly used to help

identify a strategy most likely to reach a goal. In the con-
text of the current study, a decision tree can produce a
simple explicative model to determine which pure tone
frequencies and intensities could maximize the screening
test efficiency. A decision tree has proven a valuable tool
for extracting meaningful information from measured
data and represents a plausible solution for massive data
learning tasks [39]. Additionally it has the advantages of
a nonparametric setup, the tolerance of heterogeneous
data, and the immunity to noise [40]. The detailed
model deduction theory can be found in Breiman and
Friedman [41], Friedman [42] and Quinlan [43]. In con-
trast, most advanced machine learning models answer
“yes/no” questions by generating complex structural
functions rather than specific values. For example, the
neural networks models produce trained functions
dependent on network topology and weighted factors
[44]. A stochastic based method named Naive Bayes [45,
46] generates a statistical distribution network, which
can hardly be parsed as a deterministic function. Al-
though combining multiple decision trees in a random
forest [47] may offer better prediction accuracies, given
the small number of predictive features and the specific
goal of developing explicit classification rules for hearing
screening, we concluded that the decision tree method
was sufficient to meet our needs.
The research question guiding the present study was

whether there is a parsimonious pure tone set that can
predict moderate-to-profound hearing loss based on the
clinical standard audiometric pure tone thresholds

measured in the community-dwelling geriatric popula-
tion. The classification boundary of moderate hearing
loss (pure tone average PTA > 40 dB HL) was selected
because moderate or greater hearing loss in older adults
is significantly associated with an increased risk of devel-
oping frailty [48], lower levels of physical activity [49],
and a 20% increased risk of mortality after adjusting for
demographics and cardiovascular risk factors [50]. More
importantly, older adults with moderate-to-profound
hearing loss benefit from hearing aids or cochlear im-
plants not only in terms of improved hearing function
but also in terms of positive effects on anxiety, depres-
sion, health status, and quality of life [51]. Our hypoth-
esis was that a pair of tones with specific intensities
calculated via decision tree analysis on the pure tone
thresholds at four key frequencies (i.e., 500 Hz, 1 kHz, 2
kHz and 4 kHz) could be used to detect moderate-to-
profound hearing loss with high (> 85%) accuracy, sensi-
tivity and specificity.

Methods
Participants
Adults aged 60 years or older from two typical commu-
nities (with populations of approximately 110,000 and
84,000) in Shanghai were recruited to undertake clinical
audiometric pure tone testing. No history of audiological
rehabilitation experience (e.g., amplification, auditory
training) by self-report was required to participate in the
study. A total of 1322 participants were recruited from
the Jiuting community (community A), yielding a final
sample size of n = 1261 (mean age = 71.4 yrs., range 60–
92) after excluding 61 participants due to missing audio-
metric data from either ear. Of the 536 participants re-
cruited from the Nanmatou community (community B),
4 were excluded from the analysis due to missing audio-
metric data, yielding a final sample size of n = 532 (mean
age = 76.5 yrs., range 60–104). The demographic infor-
mation regarding age, sex and hearing severity are dis-
played in Table 1.

Audiometric assessment
Audiometric pure tone testing was administered by two
trained audiologists in a quiet consulting room in each
of the community healthcare centers located within a
15-min walking distance from the residents’ homes.
Prior to the audiometric assessment, the ears were ex-
amined for wax or abnormalities. The air conduction
thresholds were obtained at 0.5~4 kHz over an intensity
range of −10 to 120 dB using an Interacoustics MA52
audiometer with manual testing per protocol. Each indi-
vidual’s hearing thresholds were annotated as dB HL at
each of 4 frequencies (500 Hz, 1 kHz, 2 kHz and 4 kHz).
Stimuli were presented through supra-aural headphones
(TDH-39), except in rare cases of ear canal collapse or
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crossover retesting when insert earphones (Ear Tone 3A)
were used. As acoustic isolation was not available, the am-
bient noise levels were monitored during the pure tone
testing by an AWA5636 sound level meter. The average
ambient noise level ranged between 35 and 38 dBA.
Hearing loss severity was defined per the classification

of the World Health Organization as a pure tone thresh-
old (PTA at 0.5, 1, 2 and 4 kHz) between 25 dB HL and
40 dB HL indicating mild hearing impairment and a
hearing threshold of more than 40 dB HL indicating
moderate or more severe hearing impairment. Data were
collected over a 4-month period in community A and a
2.5-month period in community B.

Analysis strategy
The descriptive statistics related to the community sample
characteristics were evaluated using PASW 24 (SPSS/IBM,
Chicago, IL). Pearson’s chi-square test was employed for
the analysis of proportions comparison. Regression analysis
was performed to test the relationship between age and
hearing acuity. The level of significance was established at
the 0.05 level.
The decision tree analysis was performed using the Py-

thon 3.7.0 SKlearn 0.19.2 package. We used a decision tree
approach with a depth of 2 levels to analyze the audiomet-
ric pure tone data. A deeper tree was not considered in
this study because the number of features in the model
(i.e., 4 frequencies) associated with the hearing severity

determination was fairly small, and the goal of the study
was to simplify the hearing assessment procedure by using
only 2 of the 4 frequencies. The known classification out-
put for model training and testing was two classes of hear-
ing status labeled as “normal-to-mild hearing loss (PTA<=
40 dB HL)” and “moderate-to-profound hearing loss
(PTA>40 dB HL)”. Data collected from community A
(n = 1261, i.e., 70.3% of the dataset) served as the training
dataset, and data collected from community B (n = 532,
i.e., 29.7% of the total datasets) served as the test dataset
in the decision tree analysis.
A brief mathematical illustration of the tree-based ma-

chine learning methodology used in the current study is
displayed in Fig. 1. We defined the input variable (i.e.,
determinant pure tone frequency) as Xi, where Xi ∈Ωi

corresponds to the variable of the i-th input space. The
ideal learning function is defined as f : X→ Y, where
Y ∈ {c1, c2,…, cn} is a finite set of labels for the classifica-
tion problem. A tree-based model is a special represen-
tation of f with a rooted tree whose node t partitions the
input space into the subspace Ωt, as shown in Fig. 1a.
Ultimately, terminal nodes tci represent the best guess of
Ŷ∈fbc1; bc2;…; bcng . The selection of the attribute used at
each node of the tree to split the data is crucial for cor-
rect classification. Different split criteria (functions) were
proposed in the literature [52], and we applied two
widely used impurity functions in the study: Shannon
entropy [53] and the Gini index [54]. Equations (1) and

Table 1 Demographic Characteristics of Participants Aged 60 Years or Older With Audiometric Testing. The degree of hearing loss
was classified based on the pure tone average thresholds (PTA) of the better and worse ear

Community A (n = 1261) Community B (n = 532)

Better-hearing ear Worse-hearing ear Better-hearing ear Worse-hearing ear

NH
(n = 18)

HL
(n = 1243)

NH
(n = 9)

HL
(n = 1252)

NH
(n = 84)

HL
(n = 448)

NH
(n = 33)

HL
(n = 499)

Sex

Male 6 (33.3%) 540 (43.4%) 5 (55.6%) 541 (43.2%) 30 (35.7%) 294 (34.4%) 8 (24.2%) 176 (35.3%)

Female 12 (66.7%) 703 (56.6%) 4 (44.4%) 711 (56.8%) 54 (64.3%) 154 (65.6%) 25 (75.8%) 323 (64.7%)

Age group

60–69 8 (44.4%) 526 (42.3%) 4 (44.4%) 530 42.0%) 51 (60.7%) 118 (26.2%) 25 (75.8%) 144 (28.9%)

70–79 9 (50%) 609 (49%) 4 (44.4%) 614 (49.3%) 22 (26.2%) 127 (28.3%) 6 (18.2%) 143 (28.7%)

≥ 80 1 (5.6%) 108 (8.8%) 1 (11.2%) 108 (8.7%) 11 (13.1%) 203 (45.4%) 2 (6.0%) 212 (42.4%)

Hearing symmetry

Symmetrical PTA 18 (100%) 1197 (96.3%) 9 (100%) 1206 (96.3%) 79 (94%) 402 (89.7%) 33 (100%) 447 (89.6%)

Asymmetrical PTA 0 46 (3.7%) 0 46 (3.7%) 5 (6%) 46 (10.3%) 0 52 (10.4%)

Hearing severity based on the WHO standard

Mild (PTA 26~40 dB HL) 598 (47.4%) 360 (28.8%) 202 (38%) 169 (33.9%)

Moderate (PTA 41~70 dB HL) 576 (45.7%) 725 (57.9%) 176 (33.1%) 191 (38.3%)

Severe (PTA 71~90 dB HL) 61 (4.8%) 135 (10.8%) 60 (11.3%) 90 (18.0%)

Profound (PTA > 90 dB HL) 8 (0.6%) 32 (2.5%) 10 (1.9%) 49 (9.8%)
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(2) quantified the uncertainty function i(t) with node t
classification ratio pðck j tÞ ¼ Nckt=Nt , where N is the
number of samples.

iShannon tð Þ ¼ −
X
k¼1

m

p ck j tð Þlog2 p ck j tð Þð Þ ð1Þ

iGini tð Þ ¼
X
k¼1

m

p ck j tð Þ 1−p ck j tð Þð Þ ð2Þ

The above functions were plotted in Fig. 1b.
Conventionally in the clinical hearing severity classifi-

cation, all 4 frequencies are assumed to be equally im-
portant and are required upon a hearing assessment
when determining severity. To simplify the procedure
for screening purposes, we computed the importance
rank of the 4 frequencies through the tree structure
training process, seeking to discover the 2 most import-
ant frequencies of the 4 for classification with high ac-
curacy. The importance weight of each frequency was
computed using Eq. (3) [41]:

Importance ¼ Nt=N� i tð Þ−Ntr=Nt�i trð Þ−Ntl=Nt�i tlð Þð Þ
ð3Þ

where N is the total number of samples, Nt is the
number of samples for the current node, Ntr is the num-
ber of samples for the child node on the right side of the
tree branch, Ntl is the number of samples for the child
node on the left side of the tree branch, and i is the to-
be-optimized impurity function for the corresponding
nodes.

In addition to the decision tree analysis, 3 state-of-the-
art machine learning analyses applicable to our datasets
were performed for classification outcome comparisons.
These machine learning models included Support Vector
Machine (SVM), Random Forest (RF), and Multilayer
Perceptron (MLP). The same training and testing data
used in the decision tree were fed to these models. The
SVM model was fitted with the Radial Basis Function
kernel [55]. The RF was set up with a depth of 2 for each
of 100 estimators [56]. MLP was constructed with 100
hidden layers, and the optimization solver was set as
“adam” [57]. The analyses were implemented in Python
with the Scikit-learn package [58].
As an individual’s hearing status can be labeled either

by the better-hearing ear’s PTA according to WHO or
based on the worse-hearing ear’s PTA for screening pur-
poses as suggested by hearing screening researchers [22,
59], the decision tree analysis was performed on the
pure tone thresholds of the better-hearing ear and the
worse-hearing ear separately.

Results
Descriptive analysis
The demographic characteristics of the participants from
the two communities are shown in Table 1. The two
geriatric samples displayed a number of distinct charac-
teristics. On average, participants from community A
(M = 71.41, SD = 5.32) were significantly younger than
participants from community B (M = 76.55, SD = 10.18),
t (1791) = 13.962, p < .001. The sex ratio of participants
with hearing loss showed opposite patterns between the
two communities; there were significantly more male
than female participants with hearing loss in community

Fig. 1 a Decision tree graph form, node definitions and space divisions. b Impurity function plotting. The solid line represents the Shannon
entropy function, and the dashed line represents the Gini index
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B, λ2(1)=9.303, p = .002. The hearing severity distribution
was significantly different between the two community
samples depending on how hearing loss was defined,
λ2(4)=186.086, p < .01. Specifically, when hearing loss
was defined by the better-hearing ear’s PTAs, there was
no significant difference in the proportion of older
people with moderate-to-profound hearing loss between
community A (51.9%) and community B (54.9%%),
λ2(1)=1.205, p = .272. However, if hearing severity was
categorized according to the worse-hearing ear’s PTAs,
the prevalence of moderate-to-profound hearing loss
was significantly higher in community A (70.7%) than in
community B (62.0%), λ2(1)=13.070, p < .01.
Asymmetrical PTA was defined in the present study as

a difference in the four-frequency pure tone average be-
tween the worse- and better-hearing ears larger than 20
dB HL. The PTA difference between better- and worse-
hearing ears ranged from 0 dB HL to 55 dB HL in the
community A sample and from 0 dB HL to 68.75 dB HL
in the community B sample. The community A geriatric
sample (3.7%) had a significantly smaller proportion of
asymmetrical PTA than the community B sample
(10.4%), λ2(1)=30.738, p < .01.
The regression analysis on the PTA predicted by age

illustrated that age was significantly associated with
hearing acuity (B = .601, F (1,1791) = 256.418, p < .001,
adjusted R2 = .125). Specifically, the hearing acuity
dropped 0.6 dB for every one-year increase in age above
60 years old.

Decision tree analysis
The implemented decision tree analysis using two im-
purity functions generated the same results, namely, that
the 0.5 kHz tone and 2 kHz tone were the two most im-
portant frequencies for classifying older adults with and
without moderate-to-profound hearing loss (Fig. 2).

The tree model suggested a simple two-step screening
approach (Fig. 3): the 2 kHz tone with a specific intensity
is presented at the first step, followed by a 0.5 kHz tone
depending on the individual’s response to the 2 kHz
tone. The screening tone intensities were determined
based on the optimal Gini index and Shannon entropy.
When an individual’s hearing severity was defined by the
better-hearing ear, a combination of a 2 kHz (42 dB HL)
tone and a 0.5 kHz (47 dB HL) tone was suggested.
When the worse-hearing ear was selected to determine
an individual’s hearing status, a combination of a 2 kHz
(37 dB HL) tone and a 0.5 kHz (47 dB HL) tone was
suggested.
The performance of the decision tree analysis for mod-

erate-to-profound hearing loss prediction was evaluated
in terms of sensitivity, specificity and accuracy calculated
from the confusion matrices summarized in Table 2.
The confusion matrices present the detailed predictions
produced from the datasets at the optimal threshold
based on the Gini index (the Shannon entropy produced
the same results). The sensitivity, specificity and accur-
acy are displayed in Table 3. The decision tree for the
better-hearing ear screening achieved a classification ac-
curacy of 91.20% with a sensitivity of 96.35% and a spe-
cificity of 86.85% based on the training dataset and
obtained a consistent classification outcome when tested
with the community B dataset. The decision tree for the
worse-hearing ear screening achieved a classification ac-
curacy of 89.93% with a sensitivity of 97.53% and a spe-
cificity of 71.54% for the training dataset and obtained a
comparable classification outcome when tested with the
community B dataset. The participants who were mis-
classified as having moderate-to-profound hearing loss
(false positives) all had mild hearing loss.
The classification performance of the advanced ma-

chine learning methods were displayed alongside with

Fig. 2 The importance weight of each determinant frequency as a result of the optimal Gini index function and the Shannon entropy function
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the decision tree outcomes in Table 4. The results sug-
gested that the outcomes of the decision tree approach
were comparable with the random forest. Both the deci-
sion tree and the random forest were superior to the
support vector machine and multilayer perceptron in
the current study when comprehensively considering the
sensitivity, specificity and accuracy in the test set.
In addition, the intuitive screening criteria of 40 dB

HL at 2 kHz and 1 kHz suggested by previous literature
were tested in our sample as a comparison. The confu-
sion matrix for classifying moderate-to-profound hearing
loss in community A indicated a TP of 556, TN of 584,
FP of 32 and FN of 89, resulting in an accuracy of 90.4%
(with a sensitivity of 86.20% and a specificity of 94.81%).
The classification using 40 dB HL cutoffs in community
B produced an accuracy of 91.35% (with a sensitivity of
90.00% and a specificity of 92.55%). The performance of
different screening criteria is illustrated in Fig. 4.

Discussion
The current study used a fundamental machine learning
technique to explore a parsimonious pair of pure tones
that can be applied for hearing screening with a sensitiv-
ity, specificity and accuracy over 85% in community-
dwelling older adults over 60 years of age. This was the

first effort to objectively simplify the standard clinical
pure tone hearing test procedure and construct an
acoustic hearing screening criteria feasible for large-scale
geriatric hearing screening. The screening tones were
determined by collecting standard audiometric testing
results from 1793 older community residents and by
implementing decision tree analysis on their pure tone
thresholds.
In line with Ciurlia-Guy et al.’s [60] finding, our deci-

sion tree analysis identified 2 kHz as the most important
frequency for moderate-to-profound hearing loss screen-
ing in elderly people (Fig. 2). However, distinct from the
conventional belief in the important role of 1 kHz in
hearing screening, our results indicated that 1 kHz had a
minimal impact on hearing classification at the moderate
severity level; instead, 0.5 kHz became the second most
important frequency. The tree model suggested using a
2 kHz tone coupled with a 0.5 kHz tone to achieve the
optimal classification performance. The most appropri-
ate intensities of the screening tones quantified based on
the Gini index for the better-hearing ear were 42 dB HL
at 2 kHz and 47 dB HL at 0.5 kHz. This procedure in-
creased the sensitivity and accuracy by 9.1 and 1.0%, re-
spectively, compared to using the intuitive 40 dB HL at
2 kHz and 1 kHz as the criteria (Fig. 4). Sensitivity is

Fig. 3 Decision trees generated using threshold data from the better-hearing ear (left panel) and worse-hearing ear (right panel). Classification
results were indicated by false positives (FP), false negatives (FN), true positives (TP), and true negatives (TN)

Table 2 Confusion matrix summarizing the number of false positives (FP), false negatives (FN), true positives (TP), and true negatives
(TN). Numbers in parentheses are the count from the test dataset (community B)

Actual (better-hearing ear) Actual (worse- hearing ear)

Positive Negative Positive Negative

Predicted True 615 (230) 535 (259) 870 (322) 264 (163)

False 30 (27) 81 (16) 22 (8) 105 (39)
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important in the context of this study because early
intervention for as many individuals with true moderate
or greater hearing loss as possible is desired. On the
other hand, specificity also needs to be accounted for to
minimize the unnecessary number of false referrals. The
improvement of sensitivity by using 42 dB HL at 2 kHz
is clinically significant when the screening target is a
large geriatric population.
The optimal screening criteria computed based on the

worse-hearing ear were slightly different at 2 kHz due to
the proportion of participants with asymmetrical hearing
loss. The cutoff value of 37 dB HL produced a sensitivity
of 97.53% with an accuracy of 89.93%, which implies a
more aggressive screening approach. However, the speci-
ficity was compromised by 15.31%, which indicates a
high false positive rate that will result in a waste of
health resources. The difference in the criteria between
the two ears suggests a consideration of what rationale
to follow prior to massive screening. If healthcare pro-
viders believe that older adults’ hearing severity should
be defined by the worse ear’s PTA and that unilateral
hearing loss should be treated in this population, then
the criteria computed based on the worse-hearing ear

thresholds are recommended. If healthcare providers
support that the better ear represents an individual’s
overall hearing function and an early intervention should
be implemented when the better ear has moderate or
greater hearing loss, then the criteria calculated based
on the better-hearing ear thresholds are recommended.
The results of the current study suggested that the de-

cision tree models constitute useful analytical tools to
screen moderate-to-profound hearing loss. The decision
tree technique formed a simple explicative model and
produced easy-to-interpret results (Fig. 3). Although the
random forest produced slightly higher classification
sensitivity, specificity and accuracy in the current study,
it did not provide an explicit cutoff criteria for practical
use. Other advanced machine learning techniques, such
as support vector, were able to “learn” considerably well
from the training set; however, the trained models did
not effectively generalize to new datasets (Table 4),
which was reflected by the poor specificities (< 55%)
compromising the overall accuracy (< 80%). Those state-
of-the-art methods did not deduce a cutoff criteria to
meet the purpose of the current study either. Compared
to those advanced black-box-based machine learning

Table 3 Sensitivity, specificity and accuracy of classifying moderate-to-profound hearing loss by the computed screening tones

Better-hearing ear Worse-hearing ear

Training Set (Community A) Test Set (Community B) Training Set (Community A) Test Set (Community B)

Sensitivity 95.35% 93.50% 97.53% 97.58%

Specificity 86.85% 90.56% 71.54% 80.69%

Accuracy 91.20% 91.92% 89.93% 91.17%

Table 4 Comparisons on the sensitivity, specificity and accuracy of classification among different machine learning approaches.
Performances greater than 85% are highlighted in bold

Sensitivity Specificity Accuracy

Better-hearing ear Training set (Community A) Decision Tree (DT) 95.35% 86.85% 91.20%

Support Vector Machine (SVM) 100.00% 100.00% 100.00%

Random Forest (RF) 91.32% 94.97% 93.10%

Multilayer Perceptron (MLP) 78.29% 56.98% 67.88%

Test set (Community B) Decision Tree (DT) 93.50% 90.56% 91.92%

Support Vector Machine (SVM) 100.00% 33.57% 64.29%

Random Forest (RF) 94.31% 92.31% 93.23%

Multilayer Perceptron (MLP) 90.65% 51.05% 69.36%

Worse-hearing ear Training set (Community A) Decision Tree (DT) 97.53% 71.54% 89.93%

Support Vector Machine (SVM) 100.00% 100.00% 100.00%

Random Forest (RF) 98.21% 77.51% 92.15%

Multilayer Perceptron (MLP) 99.89% 11.38% 73.99%

Test set (Community B) Decision Tree (DT) 97.58% 80.69% 91.17%

Support Vector Machine (SVM) 100.00% 34.16% 75.00%

Random Forest (RF) 99.39% 84.65% 93.80%

Multilayer Perceptron (MLP) 100.00% 19.31% 69.36%

Zhang et al. BMC Geriatrics          (2019) 19:214 Page 8 of 11



algorithms, the decision tree method demonstrated the
advantage of knowledge extraction that requires explicit
explanations of the data relationships.
The results can be readily translated into feasible clinical

applications. In the simplest form, an inexpensive well-cal-
ibrated sound generator can be used to incorporate the
computed pure tones and deliver them in the correct
order to the target individuals. This method integrates the
advantages of previous screening approaches. First, its ac-
curacy is as high as that of the screening audiometers re-
ported in the literature (e.g., AudioScope). In both
community samples, the accuracy of using the pair of 2
kHz and 0.5 kHz tones exceeded 91%. Second, since the
screening criteria were directly calculated based on the
standard pure tone thresholds, the correlation of the
screening result with the gold standard audiometric re-
sults is inherently strong. Third, screening with acoustic-
ally calibrated tones is perceived as more objective than
using self-report and uncalibrated methods such as the
whisper test [61] by both clinicians and patients and con-
sequently will motivate greater engagement of healthcare
providers from multidisciplinary areas in the hearing
screening program. Fourth, the simple two-step procedure
can save substantial time for clinicians. Screening results
can be gathered in less than 1min (including delivering
the 4 tones (2 to each ear) and receiving responses) for
each individual. No specialized training is needed, and any
healthcare provider is able to determine whether to make
a referral for further diagnostic audiometric evaluation
and treatment by following the tree model. Finally, this
method can be cost-effective. Compared to the currently
available screening devices, which are relatively expensive,
a sound generator programmed with precise screening
tones will be more affordable for health centers at the
community level.
The prevalence of moderate-to-profound hearing loss

shown in this study’s samples (52 and 60% in

communities A and B, respectively) was consistent with
the prevalence documented in previous epidemiological
studies [23, 62–64] (Table 1). The proportion of older
adults with normal hearing was low due to the testing
conditions in a quiet but nonsoundproofed room. A por-
tion of the participants with normal hearing were likely to
be misdiagnosed as having mild hearing loss, but this had
a minimum impact on our results because the classifica-
tion boundary was set at moderate hearing loss (PTA = 40
dB HL). The ambient noise level in the test environment
was under 40 dBA, which permitted the accurate evalu-
ation of the moderate-to-profound pure tone thresholds.
Asymmetrical hearing loss was not common in our study
samples, which is consistent with the literature [65]. The
significant positive linear relationship between hearing
loss and age found in our study is also in line with previ-
ous studies [17, 62]. Participants in the study were not
screened for family history of deafness, dementia or occu-
pational noise exposure, and we believe that they are rep-
resentative of the general elderly population. Although the
age, sex, hearing loss severity and asymmetry distribution
characteristics were different between the two community
samples, the decision tree model generated by analyzing
the data from community A was robust. The tree model
resulted in comparable classification performance when
tested on the data of community B.
The results of the present study illustrated that hear-

ing loss is largely underrecognized in the community-
dwelling geriatric population. Given the increasing
prevalence and disease burden of undetected hearing
loss in older adults and the availability of effective treat-
ment (e.g., modern amplification devices, aural rehabili-
tation), early identification of individuals with moderate
or greater hearing loss is a cost-saving strategy. However,
screening methods at the community level are inad-
equate. There is an unmet need for a feasible data-driven
screening protocol for healthcare policy makers to

Fig. 4 The sensitivity, specificity and accuracy as a result of different screening approaches. The left panel displays the classification performance
using community A’s data, and the right panel displays the classification performance using community B’s data
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promote early identification and immediate treatment of
hearing loss in geriatric patients. The current study
demonstrated how a machine learning technique, specif-
ically decision tree analysis, can be used in the hearing
healthcare setting to meet the need for a parsimonious
acoustical screening protocol for community-dwelling
geriatric populations. Community health care centers
have the potential to serve as the first point of access to
identify moderate or greater hearing loss. The proposed
simple two-step pure tone screening approach made it
possible for the hearing test to be included in routine
checkups. This study suggests a feasible and powerful
means to deliver quality services when the gold standard
audiometric evaluation of hearing is not available.
The main limitation of our study was that our data

were collected from two communities in a single city,
which may affect the generalizability of the results. Val-
idating the tree model with audiometric data from com-
munities in a few randomly selected cities and rural
areas is needed to generalize the proposed screening in-
strument nationwide.

Conclusion
Our study proposed a parsimonious two-step screening
procedure using decision tree analysis. A pair of tones (2
kHz and 0.5 kHz) was identified to screen for moderate-
to-profound hearing loss in community-based geriatric
populations over 60 years of age in Shanghai. Implanting
the pair of tones into a well-calibrated sound generator
can create a simple, practical and time-efficient screening
tool with high accuracy that can be made available at
health centers at all levels and can thus facilitate the initi-
ation of nationwide extensive hearing screening in older
adults. The decision tree approach is an appropriate
method to determine the optimal pure tone hearing
screening criteria for local geriatric populations and iden-
tify high-risk subpopulations that need early prevention
and intervention programs and, therefore, could be used
to make the most of public health resources.
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