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Introduction

	 The advent of optogenetic technologies has ad-
vanced the field of neuroscience by allowing the ma-
nipulation of specific neuronal populations with mil-
lisecond resolution using light. Optogenetics allows 
researchers to stimulate or inhibit brain cells defined 
by a specific promoter and to specifically target a par-
ticular brain region. Opsins, or light-sensitive proteins, 
are genetically expressed in the neurons of a model 
organism and can then be activated with ~1-ms tem-
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Optogenetics refers to the ability to control cells that have been genetically modified to express light-sensitive ion 
channels. The introduction of optogenetic approaches has facilitated the dissection of neural circuits. Optogenetics 
allows for the precise stimulation and inhibition of specific sets of neurons and their projections with fine temporal 
specificity. These techniques are ideally suited to investigating neural circuitry underlying motor and cognitive dys-
function in animal models of human disease. Here, we focus on how optogenetics has been used over the last decade 
to probe striatal circuits that are involved in Parkinson disease, a neurodegenerative condition involving motor and 
cognitive abnormalities resulting from degeneration of midbrain dopaminergic neurons. The precise mechanisms 
underlying the striatal contribution to both cognitive and motor dysfunction in Parkinson disease are unknown. Al-
though optogenetic approaches are somewhat removed from clinical use, insight from these studies can help identify 
novel therapeutic targets and may inspire new treatments for Parkinson disease. Elucidating how neuronal and be-
havioral functions are influenced and potentially rescued by optogenetic manipulation in animal models could prove 
to be translatable to humans. These insights can be used to guide future brain-stimulation approaches for motor and 
cognitive abnormalities in Parkinson disease and other neuropsychiatric diseases.
© 2016, AICH – Servier Research Group		  Dialogues Clin Neurosci. 2016;18:99-107.
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porally precise delivery of specific wavelengths of light 
(Figure 1).1,2 Optogenetic viruses, constructs, and equip-
ment are now readily available, making this technology 
accessible for various applications. 
	 The first light-sensitive protein was isolated in the 
1970s from Halobacterium halobium, though it took 
many years for its bioengineering potential to be re-
alized.1,3 In 2003, initial work was published by Ernst 
Bamberg, describing the use of Channelrhodopsin-2 
(ChR2) to drive neuronal activity with light.4 In a 2005 
paper, Boyden et al from Karl Deisseroth’s laboratory 
further characterized ChR2’s potential for fast, precise, 
and dynamic stimulation of neurons and made signifi-
cant improvements in the ease of genetic expression 
and efficacy.5 Furthermore, optogenetic stimulation 
has almost no measurable side effects for the host tis-
sue, proving to be minimally invasive for use in vivo in 
mammals.6 Optogenetic proteins have also been engi-
neered for the targeted inhibition of neuronal popula-
tions (Figure 1). The two primary inhibitory opsins are 
NpHR, a halorhodopsin, and Arch, an archaerhodop-
sin.7,8 NpHR, a chloride pump, requires constant light to 
move through its photocycle and has slower dynamics 
than Arch, a proton pump, which has more potent inac-
tivation effects.7,9,10

	 Genetic technology facilitates cell-type specificity 
for targeting optogenetic proteins to individual classes 
of neurons. Lentiviruses or the more commonly used 
adeno-associated viral (AAV) vectors can be used to 
express a given construct in all neurons, excitatory py-
ramidal neurons, inhibitory interneurons, astrocytes, 
or oligodendrocytes, depending on the genetic pro-
moter used.6,11-14 The use of transgenic Cre-recombi-
nase mouse lines affords definitive cell-type specificity. 
In combination with Cre-dependent AAV vectors or 
transgenic mice, robust expression can be attained in a 
cell type restricted by a chosen Cre-driving promoter.15 
This technique allows researchers to use various exist-

ing transgenic Cre mouse lines and to ask precise, di-
rected questions that can be used to gather information 
about the actions of neuronal subclasses.16,17 Another 
advantage presented by optogenetic technologies is the 
ability to target not only a specific cellular class, but also 
modulate the projections of that cell type to a structure 
of interest. Optical cannulae can be implanted in down-
stream structures receiving projections from the injec-
tion location as a way to target only efferent projections 
(Figure 2).18-20 
	 Because of their versatility, the various optogenetic 
proteins and stimulation techniques present a rich tool-
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Figure 1. �Optogenetic tools for modulating membrane voltage po-
tential. Stimulating the neurons expressing the nonselec-
tive cation channel Channelrhodopsin-2 (ChR2) using blue 
light immediately depolarizes the neuron and triggers an 
action potential. Sometimes it is desirable to inhibit neu-
ronal signaling instead of triggering it. Light stimulation 
of halorhodopsin (NpHR), a chloride pump, hyperpolar-
izes neurons and inhibits spikes in response to yellow light. 
Recent variants (named eNpHR2.0 and eNpHR3.0) exhibit 
improved membrane targeting in mammalian cells and con-
sequently, photocurrents. Light-driven proton pumps such 
as archaerhodopsin-3 (Arch), Mac, bacteriorhodopsin (eBR), 
and rhodopsin-3 (GtR3) can also be used to hyperpolarize 
neurons and block signaling. Ca2+, calcium; ChETA, chan-
nelrhodopsin-2 mutant E12ET; mV, millivolts; Na+, sodium; 
nm, nanometer; SFO, step-function opsin; VChR1, Volvox-
derived channelrhodopsin-1. 

	 �Reproduced from reference 2: Pastrana E. Optogenetics: controlling 
cell function with light. Nat Methods. 2011;8(1):24-25. Copyright © 
Nature America, Inc. 2011 
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box for a multitude of research questions. For compre-
hensive reviews on the use of optogenetics for a wide 
range of applications, see Yizhar et al,20 Zhang et al,21 
and Deisseroth.1 Manipulating neuronal activity with 
the high level of temporal and spatial precision, cell-
type specificity, and control that optogenetics allows has 
led to major advancements in our understanding of ba-
sic neural circuitry. Additionally, pairing these methods 
with multichannel and multisite neuronal recordings 
has the potential to reveal how these circuits are dis-
rupted in neuropsychiatric diseases such as Parkinson 
disease (PD). 

Parkinson disease neural circuitry 
and current treatments

PD is a neurodegenerative disorder characterized by 
the gradual death of midbrain dopaminergic neurons in 

the substantia nigra pars compacta (SNc) and ventral 
tegmental area (VTA).22-24 The cardinal symptoms of 
PD in humans are resting tremor, muscle rigidity, and 
akinesia (difficulty in initiating movements)—of note, 
PD can also lead to nonmotor symptoms.25,26 PD symp-
toms result from striatal dysfunction. The striatum inte-
grates projections from the cortex and thalamus to pro-
mote action selection (Figure 3).27-29 It mainly consists 
of medium spiny neurons (MSNs) expressing two main 
types of dopamine receptors: D1-type and D2-type.30-33 
These populations are expressed in two main output 
pathways: D1 in the striatonigral “direct” pathway, and 
D2 in the striatopallidal or “indirect” pathway.31,32 The 
striatonigral pathway directly inhibits the globus pal-
lidus interna (Gpi) and substantia nigra pars reticulata 
(SNr). The striatopallidal pathway indirectly excites 
the GPi/SNr via disinhibition (Figure 3).29,34 The stria-
tonigral (direct) pathway has been speculated to pro-
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Figure 2. �Targeting optogenetic tools in vivo. (Top) Direct stimulation of neuronal cell bodies is achieved by injecting virus at the target region and 
then implanting a light-delivery device above the injected region. Even this simple experiment can provide specificity with viruses that 
will not transduce afferent axons and fibers of passage. Additional cell-type specificity is attained either by cell-type–specific promoters 
in the viral vector or via a recombinase-dependent virus, injected in a transgenic animal expressing a recombinase such as Cre in specific 
cells, leading to specific expression of the transgene only in defined cell types. (Bottom) Projection (axonal) targeting is achieved by 
viral injection at the region harboring cell bodies, followed by implantation of a light-delivery device above the target region containing 
neuronal processes from the virally transduced region; in this way, cell types are targeted by virtue of their projections. 

	� Reproduced from reference 19: Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev 
Neurosci. 2012;13(4):251-266. Copyright © Nature Publishing Group, 2012. Originally published in reference 20: Yizhar O, Fenno LE, Davidson TJ, Mogri 
M, Deisseroth K. Optogenetics in neural systems. Neuron. 2011;71(1):9-34. Copyright © Elsevier, Inc. 2011
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mote motor actions, whereas the striatopallidal (indi-
rect) pathway suppresses actions. Imbalances between 
neural activities in the direct and indirect pathways in 
the basal ganglia caused by a loss of dopaminergic in-
put result in profound motor deficits among patients 
with PD.35,36 

Optogenetics to probe striatal circuits and 
motor symptoms in animal models of PD

In animal models of PD, optogenetic approaches have 
been applied to answer a variety of fundamental re-
search questions. There are two primary toxin-based 
animal models of PD, both of which are induced by 
toxic pharmacological lesion. The first involves a 6-hy-
droxydopamine (6-OHDA) injection into the substan-
tia nigra, medial forebrain bundle (MFB), or striatum. 
The second requires repeatedly administering 1-meth-
yl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intra-
peritoneally.37-40 Although 6-OHDA and MPTP animal 
models do not replicate the progressive loss of dopami-
nergic neurons, they model catecholamine dysfunction 
in PD. Other models involve α-synuclein overexpres-
sion or mutations; to our knowledge, optogenetics has 
not been explored in these models.41-43 
	 Optogenetics has provided details of striatal MSNs, 
interneurons, and afferents that could have implica-
tions for PD and other neuropsychiatric diseases (for 
complete review, see ref 44). As a result of the efficacy 
of subthalamic nucleus (STN) deep brain stimulation 
(DBS) on the motor symptoms of PD, Gradinaru et 
al12 investigated STN optogenetic inhibition and ex-
citation as a method to mimic the effects of DBS in 
animals with 6-OHDA injections in the MFB (Figure 
4).12,19,45 While optogenetic excitation and inhibition 
of STN neurons had no effect, high-frequency stimu-
lation of afferent fibers projecting from the motor 
cortex to the STN ameliorated motor symptoms. It is 
important to note that infusions of muscimol and lido-
caine in the STN have been demonstrated to relieve 
some PD symptoms in monkeys treated with MPTP.46 
Changes in STN activity following stimulation could 
influence downstream structures, including the stria-
tum. These results illustrate how optogenetics can be 
used to precisely define neural circuitry and describe 
the influence of stimulation and inhibition on behav-
ioral measures.
	 As previously described, it is thought that hyperac-
tivity in the indirect pathway and insufficient activity in 
the direct pathways contribute to the motor symptoms 
of PD.35 To investigate this hypothesis, Kravitz et al45 
used optogenetics to selectively probe these pathways 
in mice expressing D1-Cre or D2-Cre recombinase-
dependent ChR2 in MSNs. They found that bilateral 
stimulation of the D2 neurons of the indirect pathway 
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Figure 3. �In Parkinson disease, dopamine arising from the substantia 
nigra pars compacta is thought to activate D1-expressing 
striatal medium spiny neurons of the direct pathway (red 
lines) and to inhibit D2-expressing striatal neurons of the 
indirect pathway (blue lines). The output nuclei globus pal-
lidus interna and substantia nigra pars reticulata project to 
the thalamus, which in turn sends efferents that complete 
the cortico-basal ganglia-thalamo-cortical loop. In Parkinson 
disease, degeneration of nigral neurons reduces dopamine-
receptor stimulation in striatal medium spiny neurons. The 
imbalance between direct and indirect pathways results in 
abnormal activation of output nuclei and overinhibition of 
thalamic neurons projecting to the cortex. DA, dopamine; 
GPe, globus pallidus externa; GPi, globus pallidus interna; 
SNc, substantia nigra pars compacta; SNr, substantia nigra 
pars reticulata; STN, subthalamic nucleus. 

	� Reproduced from reference 29: Calabresi P, Picconi B, Tozzi A, Ghigl-
ieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a 
critical reappraisal. Nat Neurosci. 2014;17(8):1022-1030. Copyright 
© Nature Publishing Group, 2014



Striatal optogenetics in Parkinson disease - Parker et al	 Dialogues in Clinical Neuroscience - Vol 18 . No. 1 . 2016

induced freezing and bradykinesia and decreased loco-
motion, whereas stimulation of the D1 neurons of the 
direct pathway reduced freezing and increased locomo-
tion. Additionally, they reported that optogenetic stim-
ulation of the direct pathway rescued motor abnormali-

ties induced by 6-OHDA lesions in the MFB (Figure 4). 
These data indicate the importance of the opposing 
influences of the direct and indirect pathways and indi-
cate potential therapeutic strategies to ameliorate the 
motor deficits associated with PD.45 
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Figure 4. �A schematic diagram (top panel) shows key neural projections that are involved in parkinsonian behavior and treatment. Data in the 
bottom left panel are from a study that used a constitutively expressing ChR2 mouse line (Thy1::ChR2) to identify a mechanistic 
explanation for the therapeutic effects of deep brain stimulation. By illuminating and recording in the subthalamic nucleus, this paper 
showed that afferent fibers entering the subthalamic nucleus, rather than local cell bodies themselves, are likely to be the direct target 
of deep brain stimulation in the correction of parkinsonian motor activity. High-frequency stimulation of the afferent fibers into subtha-
lamic nucleus potently silenced the structure as shown and reversibly abolished the parkinsonian symptoms. By contrast, low-frequency 
stimulation of the afferents simply added spikes on top of endogenous spikes and worsened parkinsonian symptoms.12 Data in the 
bottom right panel are from a study that used a Cre-AAV to selectively express ChR2 in either D1 dopamine receptor (D1R)::Cre or D2 
dopamine receptor (D2R)::Cre mice to examine the differential contributions of the direct and indirect pathways with respect to motor 
output. Activation of D1R-expressing neurons silenced local basal ganglia activity and increased ambulation, whereas activation of D2R-
expressing neurons increased this activity and enhanced immobile or bradykinetic (slow) behavior.45 Black bars indicate the duration of 
illumination. AAV, adeno-associated viral; ChR2, Channelrhodopsin-2; HFS, high-frequency stimulation; LFS, low-frequency stimulation; 
M1, primary motor cortex; μV, microvolts; D1, D1-type dopamine receptor; D2, D2-type dopamine receptor; GABA, γ-aminobutyric 
acid; GP, globus pallidus; Hz, hertz; ms, milliseconds; s, seconds; SNr, substantia nigra pars reticulata; STN, subthalamic nuclus. 

	� Reproduced from reference 19: Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev 
Neurosci. 2012;13(4):251-266. © 2012, Nature Publishing Group. Bottom left image group originally published in reference 12:  Gradinaru V, Mogri M, 
Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324(5925):354-359. © 2009, American 
Association for the Advancement of Science. Bottom right image group originally published in reference 45: Kravitz AV, Freeze BS, Parker PRL, et al. Regula-
tion of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466(7306):622-626. Copyright © Nature Publishing 
Group, 2010
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	 Optogenetics has also been used to probe the mech-
anisms underlying the efficacy of grafting human plu-
ripotent stem cell-derived dopaminergic neurons in 
disease models. Animals with striatal 6-OHDA lesions 
exhibit motor impairments that are robustly reversed 
following engraftment of dopaminergic neurons in 
the lesioned area.47 To probe the mechanisms underly-
ing the efficacy of this effect, Steinbeck et al48 optoge-
netically inhibited engrafted dopamine stem cells after 
motor recovery. They report that inhibiting dopamine 
neurons resulted in the reappearance of motor deficits, 
indicating the essential role of dopaminergic neurons at 
the lesion site. 
The studies described here provide evidence for the im-
portance of optogenetic exploration of striatal function 
in animal models of PD. These results could inform the 
design of novel drug- and stimulation-based therapies 
to rescue dopaminergic dysfunction and motor symp-
toms in PD. 

Optogenics to probe neural circuitry and 
cognitive dysfunction in animal models of PD

In addition to the characteristic motor symptoms, non-
motor symptoms are also present in PD including de-
pression, psychosis, and cognitive dysfunction.49 Cog-
nitive impairment is a serious component of PD for 
many patients. Though initially controversial, cognitive 
deficits are now an integral part of PD symptomatol-
ogy. These cognitive symptoms can be diverse, including 
visuospatial dysfunction, working-memory deficits, and 
executive dysfunction.50 Despite its prevalence, the un-
derlying basis of cognitive dysfunction in PD is poorly 
understood. Whereas treatments exist that successfully 
alleviate motor symptoms of PD, their cognitive ben-
efits are not established.51-55 
Cognitive dysfunction in PD patients may involve the 
prefrontal cortex, a key input structure to the stria-
tum.56-61 Frontostriatal circuits are the primary neural 
pathways responsible for cognitive dysfunction in PD. 
The frontal cortex receives dopaminergic projections 
from dopaminergic neurons in the VTA. Dopaminergic 
neurons in the VTA also die during PD and therefore 
could play a role in disease-related cognitive abnor-
malities.22 Given the critical role of the dopaminergic 
system in the development of PD, its significance in cog-
nitive symptoms of PD has also been studied.62,63 
As described earlier in this review, animal models are 

a critical component of PD research. However, the 
relevance of animal models is less obvious when deal-
ing with complicated internal processes like “cognitive 
dysfunction.” When trying to approach cognitive defi-
cits of PD in an animal model, it is essential to find a 
behavioral assay that is simple, relies on the structures 
involved in the disease, and is translatable to human 
patients. Temporal processing tasks meet these criteria. 
Interval-timing tasks require subjects to make a motor 
estimation of the passage of an interval of time. Interval 
timing can be studied in both rodents and humans.64,65 
Tasks that rely on time estimation are known to rely 
on dopaminergic systems.66-70 Our group has shown that 
interval-timing tasks are impaired in PD and in rodents 
administered 6-OHDA injections in the VTA or in the 
frontal cortex.71 Specifically, we found that disrupting 
dopamine synthesis also impaired interval timing. We 
used optogenetics to specifically implicate prefrontal D1 
dopamine receptors and demonstrated that stimulating 
prefrontal D1 neurons could enhance performance of 
timing tasks.72 Additionally, PD patients and rodent PD 
models had diminished frontal, low-frequency, cue-re-
lated activity and single-neuron ramping activity, indi-
cating conserved mechanisms for timing and cognitive 
function.73  
Optogenetics provides a novel way to probe fron-
tostriatal interactions in animals performing the 
interval-timing task and can be tailored specifically 
to D1 dopamine receptors using Cre-dependent ex-
pression of ChR2 or other opsins. These techniques 
can be used in animal models of PD with depleted D1 
dopamine to try to ameliorate aberrant frontal and 
striatal neuronal activity and rescue performance 
on behavioral tasks. The same techniques could be 
used to probe cognitive flexibility and frontostriatal 
circuitry in other paradigms including reversal learn-
ing, attentional set-shifting, and task switching. These 
tasks are impaired in PD and can all be explored in 
animal models.74 Elucidating the neural mechanisms 
of cognitive impairment in neuropsychiatric disease 
may identify novel sites for DBS or transcranial mag-
netic stimulation in PD, schizophrenia, and other 
neuropsychiatric diseases that share dysfunctional 
D1-dopamine and striatal abnormalities.75-78 Results 
from these proposed studies have the potential to il-
luminate the neural mechanisms of cognitive impair-
ment and help identify novel biomarkers and novel 
therapeutic targets for the D1-dopamine system. 
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Future directions

This review summarizes the powerful contribution that 
optogenetics has made to our understanding of stria-
tal circuitry, abnormalities in PD, and the potential for 
striatal modulation as a novel therapeutic target in PD. 
Yet, it is clear that if we aim to inspire new treatments 
for PD, there is a great need for further optogenetic 
exploration of striatal circuitry and function in animal 
models. Looking forward, optogenetics can be used to 
pave the way for emerging technologies to adaptively 

stimulate brain circuitry in diseases of impaired motor 
and cognitive function. If we can map specific neuronal 
abnormalities and show that optogenetic stimulation or 
inhibition successfully rescues motor and/or cognitive 
impairments in animal models of PD, an online, closed-
loop design could be used to stimulate aberrant circuits. 
In patients with PD, cognitive and motor function could 
be restored using concomitant electroencephalography 
to detect neural abnormalities and deep brain or tran-
scranial stimulation to adaptively rescue specific pat-
terns of neuronal activity.79   o
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Estrategias optogenéticas para evaluar la función 
estriatal en modelos animales de la Enfermedad 
de Parkinson

La optogenética se refiere a la capacidad de controlar 
células que han sido modificadas genéticamente para 
expresar canales iónicos sensibles a la luz. La introduc-
ción de las estrategias optogenéticas ha facilitado la 
disección de los circuitos neurales. La optogenética per-
mite precisar la estimulación e inhibición de conjuntos 
específicos de neuronas y sus proyecciones con una alta 
especificidad temporal. Estas técnicas idealmente están 
adaptadas para investigar los circuitos neurales que 
subyacen a la disfunción motora y cognitiva en modelos 
animales de la enfermedad humana. Este artículo se en-
foca en cómo se ha empleado la optogenética durante 
la última década para explorar los circuitos neurales que 
están involucrados en la Enfermedad de Parkinson, una 
condición neurodegenerativa que incluye alteraciones 
motoras y cognitivas resultantes de la degeneración de 
neuronas dopaminérgicas del mesencéfalo. Aunque las 
estrategias optogenéticas están algo alejadas del em-
pleo clínico, el conocimiento a partir de estos estudios 
puede ayudar a identificar nuevos blancos terapéuticos 
y puede inspirar nuevos tratamientos para la Enferme-
dad de Parkinson. El esclarecer cómo las mediciones 
neurales y conductuales son influenciadas y potencial-
mente recuperadas por la manipulación optogenética 
podría llegar a ser traducible a los humanos. Estos cono-
cimientos pueden ser empleados para guiar futuras es-
trategias de estimulación cerebral para anormalidades 
motoras y cognitivas en la Enfermedad de Parkinson y 
otras enfermedades neuropsiquiátricas.  

L’optogénétique et son utilisation pour évaluer la 
fonction striatale dans des modèles animaux de la 
maladie de Parkinson

L’optogénétique est une méthode permettant de contrô-
ler des cellules qui ont été préalablement génétiquement 
modifiées pour exprimer des canaux ioniques sensibles 
à la lumière. Son utilisation a ouvert la voie à l’analyse 
des circuits neuronaux car elle permet la stimulation et 
l’inhibition précises de groupes spécifiques de neurones 
et de leurs projections avec une excellente spécificité 
temporale. Ces techniques sont parfaitement adaptées 
à l’examen des circuits neuronaux sous-tendant une dys-
fonction motrice et cognitive dans des modèles animaux 
de pathologies humaines. Cet article met l’accent sur la 
façon dont l’optogénétique a été utilisée ces 10 dernières 
années pour examiner les circuits striataux impliqués 
dans la maladie de Parkinson, une maladie neurodégé-
nérative dont les troubles moteurs et cognitifs résultent 
d’une dégénérescence des neurones dopaminergiques 
du mésencéphale. Les mécanismes précis sous-tendant la 
contribution du striatum au dysfonctionnement moteur 
et cognitif de la maladie de Parkinson sont encore mé-
connus. Bien que l’optogénétique soit quelque peu éloi-
gnée de l’usage clinique, les connaissances issues de ces 
études peuvent aider à identifier de nouvelles cibles thé-
rapeutiques et suggérer de nouveaux traitements pour la 
maladie de Parkinson. Une fois élucidés, les mécanismes 
par lesquels les manipulations optogénétiques peuvent 
influencer et potentiellement restaurer les fonctions neu-
ronales et comportementales pourraient être transposés 
chez l’homme. Ces connaissances pourraient alors être 
utilisées pour mener de futures stratégies de stimulation 
cérébrale dans les anomalies motrices et cognitives de la 
maladie de Parkinson et d’autres maladies neuropsychia-
triques. 
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