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The gut microbiome is associated with hepatitis B virus (HBV)-induced liver disease,

which progresses from chronic hepatitis B, to liver cirrhosis, and eventually to

hepatocellular carcinoma. Studies have analyzed the gut microbiome at each stage of

HBV-induced liver diseases, but a consensus has not been reached on the microbial

signatures across these stages. Here, we conducted by a systematic meta-analysis

of 486 fecal samples from publicly available 16S rRNA gene datasets across all

disease stages, and validated the results by a gut microbiome characterization on

an independent cohort of 15 controls, 23 chronic hepatitis B, 20 liver cirrhosis, and

22 hepatocellular carcinoma patients. The integrative analyses revealed 13 genera

consistently altered at each of the disease stages both in public and validation

datasets, suggesting highly robust microbiome signatures. Specifically, Colidextribacter

and Monoglobus were enriched in healthy controls. An unclassified Lachnospiraceae

genus was specifically elevated in chronic hepatitis B, whereas Bilophia was depleted.

Prevotella and Oscillibacter were depleted in liver cirrhosis. And Coprococcus and

Faecalibacterium were depleted in hepatocellular carcinoma. Classifiers established

using these 13 genera showed diagnostic power across all disease stages in a cross-

validation between public and validation datasets (AUC = 0.65–0.832). The identified

microbial taxonomy serves as non-invasive biomarkers for monitoring the progression of

HBV-induced liver disease, and may contribute to microbiome-based therapies.

Keywords: hepatitis, liver cirrhosis, hepatocellular carcinoma, hepatitis B virus, meta-analysis, gut microbiome

INTRODUCTION

Hepatitis B virus (HBV) infection is the leading cause of liver-related deaths in the Asia-Pacific
region (Sarin et al., 2020). HBV infection can be divided into several clinical stages according to
the extent of liver injury: (1) chronic hepatitis B (CHB), diagnosed as chronic HBV infection, and
could be asymptomatic or cause a chronic inflammation of the liver; (2) liver cirrhosis (LC), which
is the impaired liver function caused by fibrosis, leading to high morbidity and mortality (Xiao
et al., 2019); (3) hepatocellular carcinoma (HCC), the most common cause of death in patients
with liver cirrhosis. HCC develops in the setting of chronic liver inflammation and is characterized
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by constant cycle of damage caused by immune system repeatedly
attacking the liver cells due to chronic HBV infections.

The liver and gut originate from the same germ layer and have
anatomical and functional connections, known as the “gut-liver”
axis (Marshall, 1998). Bile secretion and hepatic portal systems
play a crucial role in the interaction between the liver and the gut
(Cesaro et al., 2011). Bile produced in the liver is carried by the
bile ducts to the connected intestine, and almost all circulating
blood from the gut must pass through the liver. Increasing
evidence demonstrates an association between gut microbiota
and HBV-induced liver diseases. For instance, in CHB patients,
Anaerostipesis enriched where as potential beneficial taxa such
as Bifidobacterium is significantly decreased (Xu et al., 2012;
Yun et al., 2019). Potential gut pathogens such as those from
Enterobacteriaceae are highly abundant in the gut microbiome
of liver cirrhosis patients, whereas some short-chain fatty acid
producers such as Lachnospiraceae and Ruminococcaceae are
decreased (Wong et al., 2006; Chen et al., 2011; Lepage et al.,
2011; Flint et al., 2012). Microbial translocation and TLR4
signaling was involved in the development of HCC, in which
Ruminococcus, Coprococcus, Subdoligranulum, and Clostridium
IV capable of producing butyrate were decreased (Holmstrom
et al., 2004; Dapito et al., 2012; Mangifesta et al., 2018; Ren
et al., 2019). Most of these microbiome studies focused on one
particular stage of HBV-induced liver disease against another,
while a comprehensive view of microbiome alterations along
disease progression is lacking.

With increasing availability of public microbiome datasets,
it is possible to interrogate diseases-associated microbiome
alterations through meta-analysis. By synthesizing from multiple
datasets with enhanced signal-to-noise ratio, microbiome meta-
analysis is powerful in identifying highly robust disease-related
microbial signatures (Pammi et al., 2017; Wang et al., 2020; Wu
et al., 2021). In this study, we systematically collected 16S rRNA
gene sequencing-based gut microbiome datasets involving CHB,
LC and HCC. A standardized pipeline was established to analyze
each dataset and the microbial signatures were synthesized
across studies using a random effect statistical meta-analysis.
Together with an independent cohort validation, we identified
robust signatures of the gut microbiome in association with the
progression of HBV-infected liver disease.

MATERIALS AND METHODS

Collection of Microbiome Datasets
All public 16S rRNA gene gutmicrobiome datasets were retrieved
from the National Center for Biotechnology Information by
searching for publications in PubMed and searching for datasets
in Sequence Read Archive that contained at least 1 of the
words “microbiota” (OR) “microbiome” with the term “gut”
(OR) “intestinal”, as well as “CHB” (OR) “hepatitis B” (OR)
“HBV” for chronic hepatitis B microbiome samples, “liver
cirrhosis” for liver cirrhosis ones, “hepatocellular carcinoma”
(OR) “HCC” for hepatocellular carcinoma anywhere in the article
or in BioProjects (for possibly unpublished data). We excluded
fatty liver disease, alcoholic liver disease, other hepatitis virus-
caused, and other hepatology not concerned with cirrhosis in

the search results. Also, non-human studies and review articles
were removed (Supplementary Table S1). The remaining articles
had metadata with clear annotation on disease status (Figure 1;
Table 1).

Data Retrieval and Processing
The raw sequencing data of public datasets were downloaded
from Sequence Retrieve Archive, European Nucleotide Archive,
or from links provided in publications. All 16S rRNA gene
sequencing data were processed using QIIME2 platform (Bolyen
et al., 2019). For each dataset, the pair-end sequences were
assembled and merged by FLASH (Magoc and Salzberg, 2011)
under the parameters with -M 150. All sequences were truncated
to the V4 hypervariable region by Cutadapt (Kechin et al., 2017)
under the parameters with -g GTGYCAGCMGCCGCGGTAA
(515F) and -a ATTAGAWACCCBNGTAGTCC (806R). The
trimmed sequencing reads were denoised to generate a to
generate amplicon sequence variants (ASVs) using Deblur (Amir
et al., 2017; Nearing et al., 2018), followed by taxonomy
assignment with classify-sklearn based on Naive Bayes model
(Bokulich et al., 2018), using a classifier built on the V4
rRNA sequences from SILVA database (silva-138-99-515-806-
nb-classified.qza) (Yilmaz et al., 2014). Sequences belonging to
mitochondria, chloroplast and unclassified or singleton ASVs
were excluded. The feature tables were rarefied at the frequency
of the minimum reads within a dataset.

Recruitment of Participants
Patients’ recruitment and diagnosis were made by experienced
physicians at Guangzhou Panyu Central Hospital, Guangzhou,
China, from October 2020 to July 2021. The diagnoses
of CHB, LC, and HCC were made based on iconography
examination, positive pathological examinations, viral serologic
testing, or chronic liver disease background. Patients with
severe complications, such as gastrointestinal bleeding,
spontaneous bacterial peritonitis, and history of radiotherapy
and chemotherapy within a year of diagnosis were excluded.
The healthy control group consisted of healthy volunteers
from Guangzhou Panyu Central Hospital who met inclusion
criteria of (a) 18 years or older; (b) no clinical or biochemical
evidence of intestinal and liver-related diseases that of HBV
infection; and (c) absence of regular or excessive use of
alcohol. All participants were filtered by the exclusion criteria
of (a) history of antibiotic, microecological preparation, or
immunosuppressant treatment within the past 4 weeks; (b)
diagnosis of diabetes mellitus, autoimmune disease, such as
multiple sclerosis, rheumatoid arthritis, hypertension, coronary
heart disease, or metabolic syndrome; and (c) pregnancy
or lactation. Written Informed consent was obtained from
all participants.

Sampling, DNA Extraction and PCR
Fresh tail stool samples of more than 0.5 g were collected from
all participants with informed consent at hospital, frozen at
−80◦C within an hour, and stored until use. DNA was extracted
from each sample and purified with the MagaBio Soil/Feces
Genomic DNA Purification Kit (Hangzhou Bioer Technology
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FIGURE 1 | The analysis pipeline in this study, such as the flowchart of the meta-analysis for gut microbiome of public datasets, and the independent cohort

validation. Each step is shown in the white box, and the statistical methods and software used are within. n denotes the number of datasets included in each step.

Co. Ltd.). The concentration and purity of isolated DNA were
detected with Thermo NanoDrop One (Thermo Fisher Scientific,
MA, USA). PCR was measured in BioRad S1000, targeting the
V4 hypervariable region of the bacterial 16S rRNA gene with

the forward primer 341F (5
′
-CCTAYGGGRBGCASCAG-3

′
) and

the reverse primer 806R (5
′
-GGACTACNNGGGTATCTAAT-3

′
).

Sequencing library was constructed with NEBNext Ultra II DNA

Library Prep Kit for Illumina R© (New England Biolabs, MA, USA)
according to the manufacturer’s instruction and then assessed
on the Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific,
MA, USA). Pair-end reads (250 bp × 2) were performed by
the Guangdong Magigene Biotechnology Co. Ltd. (Guangzhou,
China) on an Illumina Nova6000 platform (Illumina Inc.,
CA, USA).
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TABLE 1 | Summary of the public datasets included in the meta-analysis.

BioProject PMID Region Platform 16s region PE vs.

SE

Samples

Healthy

control

CHB HBV-LC HBV-HCC

PRJNA558158 32265857 Xiamen,

China

Illumina

HiSeq 2500

V3–V4 PE 21 28 25

PRJNA382861 29180991 Shanghai,

China

Illumina

MiSeq

V3–V4 PE 22 85

PRJNA445763 29780327 Harbin,

China

Illumina

HiSeq 2500

V3–V4 PE 20 30

PRJNA540574 32281295 Jilin,

China

Illumina

HiSeq 2500

V4 PE 20 8 8 35

PRJEB32568 NA Yantai,

China

Illumina

HiSeq 2500

V4–V5 SE 5 12 11 9

PRJNA428932 30675188 Nanjing,

China

Illumina

TruSeq

V4 SE 33 35

PRJNA478823 31293562 Guangzhou,

China

Illumina

MiSeq

V4–V5 SE 18 61

Statistical Analyses
The genus-level taxa with an average relative abundance
>0.01% in all seven public datasets were retained. To address
compositionality, the microbiome relative abundance data were
arcsine-square root-transformed and z-score-normalized before
assessed for differentially abundant taxa using Wilcoxon rank-
sum test. The summary statistics between studies were integrated
according to six pairwise comparisons such as Healthy vs. CHB,
Healthy vs. LC, Healthy vs. HCC, CHB vs. LC, CHB vs. HCC, and
LC vs. HCC, by a random effect statistical meta-analysis using the
MetaDE v1.0.5 package in R v3.6.1 (Wang et al., 2012). The effect
size combination method was chosen for meta-analysis since it
generates more conservative and biologically consistent results
than does the p-value combination method (Marot et al., 2009).
The procedures for sequencing data processing and differential
taxonomic analysis on the validation dataset are identical to those
for the public datasets. The microbiome of the validation dataset
was rarefied to 33,122 reads per sample. The genera with p <

0.05 and consistent direction of alteration in both public and
validation datasets were retained.

To test the diagnostic capabilities of the identified microbial
taxa, webuilt LASSO logistic regression models between each
pairwise comparison of health and disease stages and selected
microbial taxa using glmnet R package (Tibshirani, 1996;
Friedman et al., 2010). To test the generalizability of the
models, each model was cross-validated between public and
validation datasets. To alleviate the impact of the heterogeneity
of different public datasets, for each comparison, the model
was trained using one public dataset selected according to
the sample size and its balance between the two groups, and
tested in the validation cohort (Supplementary Table S2). The
hyperparameter of LASSO was optimized for each classifier in
a nested 5-fold cross-validation within the training subset. ROC
curves were plotted using the pROC package in R (Robin et al.,
2011).

RESULTS

The strategy of our analysis is shown in Figure 1. PubMed and
Sequence Retrieve Archive (SRA), searched with the joint query
(see Methods), returned 1,169 citations and 36 accessions in
BioProjects, respectively. After excluding studies on fatty liver
disease, alcoholic liver disease, non-HBV caused liver disease and
liver disease unrelated to cirrhosis, twelve16S rRNA gene datasets
remained (Supplementary Table S1). Total five datasets were
excluded due to missing metadata information, resulting in seven
16S rRNA gene datasets such as 139 healthy controls, 133 CHB,74
LC, and 140 HCC samples for meta-analysis (Table 1). Different
hypervariable regions were shown to have a significant impact
for microbiome meta-analysis (Wang et al., 2020). Despite that
the targeted hypervariable region of the 16S rRNA gene varied
across studies, they all covered the V4 region. For consistency,
we truncated sequences from all studies to V4 region prior to
downstream analyses.

Analysis of individual dataset revealed a significantly
association of the microbiome beta diversity with disease
subgroups for all datasets (Adonis p < 0.05), except for
PRJNA428932 (Supplementary Figure S1). A total of 66
genera >0.01% in all seven public datasets was retained
(Supplementary Table S3). For meta-analysis, different
combinations of datasets were selected according to the
6 pair wise case-control comparisons (Figure 2A). For
instance, for comparison between CHB and healthy controls,
4 studies (PRJNA558158, PRJNA382861, PRJNA540574, and
PRJEB32568) involving these two groups were incorporated. The
same strategy was applied to other case-control comparisons.
The summary statistics of microbiome-disease association were
synthesized between studies involving in the same comparison
using random effect statistical meta-analysis.

A total of 35 genera were identified as differentially abundant
in the pair wise comparisons between four disease stages
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FIGURE 2 | Signature microbiome taxa identified in the meta-analysis. (A) The public datasets included for each pair wise comparison. (B) Mean proportion of each

genus between groups of interest in each individual dataset, and the summary statistics for the random effect meta-analysis for each pair wise comparison. The genus

was highlighted by red if it was consistently and significantly altered in both public and validation datasets. Shown are the genera at the p-value threshold of 0.05.
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(Figure 2B, p< 0.05). For example, 10 genera were identified as
differentially abundant in the statistical meta-analysis between
CHB and healthy controls. Among them, Haemophilus and
Roseburia were increased in CHB; whereas the other 8 genera
were decreased. About 11 genera were differentially abundant
between LC and healthy controls, of which Lactobacillus
was the only genus enriched in LC. Total six genera were
differentially abundant between HCC and healthy controls, of
which Holdemanella was the only genus increased in HCC. And
11 genera were differentially abundant between LC and CHB,
of which only Flavonifractor was enriched in LC. Five genera
were differentially abundant between HCC and CHB, of which
Hungatella and Ruminococcusgnavus_group were enriched in
HCC. Last, four genera were differentially abundant between
HCC and LC, of which only Barnesiella was depleted in HCC.

To validate the above signatures, we collected fecal samples
from 15 healthy controls, 23 CHB, 20 LC, and 22 HCC
patients recruited at Panyu Central Hospital, Guangzhou, China,
and analyzed their microbiomes. There was a continuous
decreasing trend of alpha diversity in patients with enhanced
disease stages (Figure 3A). Principal coordinate analysis based
on Bray-Curtis dissimilarity showed that the microbiota was
significantly associated with disease status (Adonis, p < 0.001),
with HCC being most deviated from the other disease subgroups
(Figure 3B).

The results of the meta-analysis were then compared
to those of the validation cohort. For all 35 differential
genera identified in the meta-analysis, 26 (74.3%) showed
the same direction of alteration in the independent cohort,
suggesting a reasonable level of consistency between the
two datasets. Across them, 13 genera were significantly
and consistently altered in the same direction in both
public and validation datasets (p < 0.05, highlighted in
red in Figure 2B). In comparison with healthy controls,
Bilophia was significantly decreased in CHB; Lactobacilluswas
significantly increased in LC, whereas Colidextribacter,
Bilophila, Faecalibacterium, Monoglobus, and Oscillibacter were
significantly depleted; and Lachnospiraceae_ND3007_group
and Eubacterium_ventriosum_group were significantly
decreased in HCC. For comparison in between disease stages,
Oscillospiraceae_UCG−005, Prevotella, and Oscillibacter were
depleted in LC vs. CHB, and an unclassified Lachnospiraceae
and Dorea were depleted in HCC vs. CHB (Figure 2B). No taxa
were consistently depleted in HCC vs. LC at a P-value cutoff of
0.05. At a P-value cutoff of 0.1, Ruminococcaceae_incertae_sedis,
Clostridia_UCG-014,Oscillospiraceae_UCG-002 andCoprococcus
were depleted in HCC vs. LC (Supplementary Figure S2).

It is worth noting that the majority of these 13
genera showed consistent direction of change between
public and validation datasets across the six pair wise
comparisons, indicating their robustness in association with
the progression of HBV-induced liver disease (Figure 4;
Supplementary Figure S3). Therefore, in addition to identifying
microbial alteration in between disease stages, we were also
able to derive signature taxa that were most enriched or
depleted within each stage, based on the consistent signals.
Specifically, Colidextribacter, Eubacterium_ventriosum_group,

Lachnospiraceae_ND3007_group and Monoglobus were more
elevated in controls; an unclassified Lachnospiraceae was
most elevated in CHB, while no taxa were most depleted
in these two groups. On the other hand, Oscillibacter
and Oscillospiraceae_UCG-005 were most depleted in LC,
Colidextribacter, Monoglobus, and Faecalibacterium were most
depleted in HCC, while no taxa were most enriched in these two
groups (Figure 5).

Finally, we tested the diagnostic power of these 13 genera. For
each of the six pairwise comparisons among health and disease
stages, a LASSO classifier was built using the 13 taxa. To test the
generalizability, the classifier was trained using one public dataset
and cross-validated in the validation cohort. In distinguishing
CHB, LC and HCC from healthy controls, the areas under curve
(AUCs) were 0.748, 0.763, and 0.782, respectively. In between
disease stages, the AUCs were 0.683, 0.832, and 0.650 for CHB vs.
LC, CHB vs. HCC and LC vs. HCC, respectively (Figure 6). The
taxa with non-zero coefficients in each classifier were generally
consistently identified as the signature taxa for each comparison
(Supplementary Table S4; Figure 5).

DISCUSSION

Here, we present a comprehensive meta-analysis on public 16S
rRNA datasets on HBV-induced liver diseases, which identified
distinctive patterns of gut microbiome in association with the
various disease stages. The meta-analysis enabled us to identify
subtle microbial changes that were consistent across studies but
may not reach significance within each individual study. The
implementation of an independent validation cohort further
increased the robustness of the identified taxa in association with
disease progression.

HBV infection remains a prominent cause of hepatitis, liver
cirrhosis, and HCC in the Asia-Pacific region, particularly in
China (Sarin et al., 2020), as compared to the alcoholic or
fatty liver disease driving liver cirrhosis and HCC in Western
countries. Therefore, it is not surprising that the public datasets
for HBV-induced liver diseases identified are all from China. We
re-processed each dataset in a unified framework, particularly
to account for the heterogeneity of the amplified hypervariable
region across public datasets. As a unique strategy in our meta-
analysis, different combinations of studies were employed for
each pair wise comparison between groups, maximizing the
sample sets that can be integrated for systematic meta-analysis.

We identified signature microbial taxa within each disease
stage as well as taxa that were altered along the progression
of different stages. Specifically, our data indicated a trend of
depletion for key microbial taxa toward enhanced disease stages,
suggesting continuous gut dysbiosis through disease progression.
For instance, Eubacterium_ventriosum_group, Monoglobus,
Lachnospiraceae_ND3007_groupand Colidextribacter were
most enriched in healthy individuals. Eubacteriumand
Lachnospiraceae are butyrate-producing bacteria and could
have anti-inflammatory roles (Barcenilla et al., 2000). Specialized
in pectin degradation, Monoglobus was shown to be negative
associated with neutrophilic inflammation and severe liver
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FIGURE 3 | Overview of the gut microbiome in the validation cohort. (A) Alpha diversity for each disease status concluding Chao1, ACE, Shannon and Simpson. The

differences were calculated by Wilcoxon test on genus level. *p < 0.05; ***p<0.001. (B) Principal Coordinates Analysis (PCoA) of microbiome beta-diversity based on

Bray-Curtis dissimilarity index.

FIGURE 4 | The consistency of the 13 signature genera between public and validation datasets. For each genus, the gray box indicates the pair wise comparison that

the genus was both significantly and consistently altered in public and validation datasets. The green and yellow box indicates the pair wise comparisons that the

genus was consistently increased or decreased in public and validation datasets (but not necessarily significant). The 2 heat maps indicate the fold-change across the

pair wise comparisons and the average relative abundance across the four subgroups in the validation dataset. ① CHB vs. Healthy; ② LC vs. Healthy; ③HCC vs.

Healthy; ④ LC vs CHB; ⑤ HCC vs. CHB; ⑥ HCC vs. LC. *p < 0.05; **p < 0.01; ***p < 0.001.

injury (Kim et al., 2019; Chen et al., 2021; Zha et al., 2022). Dang
et al. showed that decrease of Eubacterium_ventriosum_group

and Monoglobus was associated with enhanced systemic
inflammation (Dang et al., 2022). And Colidextribacter could
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FIGURE 5 | The consistent microbial signatures along the progression of the HBV-induced diseases based on results in this study. The genera in the “highest” box

denote that their average relative abundances were most enriched in the corresponding subgroup compared to all other subgroups, whereas those in the “lowest”

box represent that their abundance were most depleted in the corresponding subgroup. In the progression from 1 disease stage to another, ↑ denotes significantly

increased abundance, ↓ denotes significantly decreased abundance.

FIGURE 6 | The receiver operating characteristic curves for classifiers based on the 13 signature genera. For each comparison between healthy and CHB, healthy

and LC, healthy and HCC, CHB and LC, CHB and HCC, LC and HCC, the ROC curve and area under curve (AUC) were shown. The LASSO binary classifiers were

trained by public dataset and validated in the independent cohort.

modulate hepatic TLR4 and NF-κB signaling to reduce LPS-
induced liver damage and inflammation (Mager et al., 2020;
Guo et al., 2021). From healthy to CHB, Bilophila decreased
significantly, whereas an unclassified Lachnospiraceae taxa

was enriched. Bilophila was found as negatively associated
with ALT and AST, suggesting its relevance to attenuated liver
inflammation (Wang et al., 2021). FromCHB to LC,Oscillibacter,
Oscillospiraceae_UCG-005, and Prevotella were depleted. The
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decrease of gut Oscillibacter and Prevotella was observed in
severe alcoholic hepatitis and amyotrophic lateral sclerosis (Fang
et al., 2016; Kim et al., 2021), while Oscillospiraceae_UCG-005
was decrease inprimary sclerosing cholangitis (Liu et al., 2021).
From LC to HCC, Ruminococcaceae, Clostridia_UCG-014,
Oscillospiraceae_UCG-002 and Coprococcus were decreased. And
Monoglobus and Colidextribacter, Faecalibacterium were found
to be most depleted in HCC. Faecalibacterium is commensal
taxa whose decrease was found as a marker for early tumor
establishment (Mangifesta et al., 2018). Likewise,Coprococcuswas
reported to decreased in patients with early-stage breast cancer
or lung cancer (Liu et al., 2019; Bobin-Dubigeon et al., 2021).
In addition, Faecalibacterium and Coprococcus are both
capable of producing butyrate, whose depletion mayaffect gut
permeability, increasing bacterial translocation in favor of cancer.
Furthermore, classifiers built using these taxa showed diagnostic
power in between health and all disease stages, implicating the
potential of the gut microbial taxa as non-invasive biomarkers
for diagnosis of pan-HBV-induced liver disease.

Our study has limitations. First, although we took efforts to
address heterogeneity in 16S rRNA hypervariable region, other
confounding effects from experimental procedures, sequencing
platform scan not be unambiguously addressed. There is no
optimal solution to fully account for the inter-study batch effects
for microbiome data (Gibbons et al., 2018; Wang and LeCao,
2020). Nevertheless, it should be noted that, rather than directly
concatenating the raw datasets, we chose to analyze each study
separately and pool summary statistics from each dataset using
a random effect model, which is a more conservative approach
but effective in reducing data heterogeneity (Ramasamy et al.,
2008). Secondly, all public and validation datasets are cross-
sectional. Although somewhat challenging, longitudinal cohorts
that monitor the disease trajectories from CHB, LC to HCC
would be valuable to validate our findings and help interrogate
potential causality betweenmicrobiome and liver diseases. Third,
additional clinical parameters such asHBV carrier stage andHBV
load are required to refine our observations, by identifying taxa
associated with disease severity. Fourth, although the diagnostic
power of classifiers built using the identified taxa was decent
when comparing healthy status and diseases, the AUCs were
relatively modest in between different disease stages, a result
possibly due to limited sample size. The results therefore need
to be validated in further larger cohorts preferably with different
demographic backgrounds.

In summary, we identified microbial signatures along the
progression of HBV-induced liver disease. These results may
help identify candidate, non-invasive microbiome biomarkers
that indicate disease progression and inform future mechanistic

studies on the role of gut microbiome in HBV-induced
liver diseases.
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