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Abstract

Regulatory T-cells (Tregs) are a subset of CD4+ T-cells that have been found to suppress the immune response. During HIV
viral infection, Treg activity has been observed to have both beneficial and deleterious effects on patient recovery; however,
the extent to which this is regulated is poorly understood. We hypothesize that this dichotomy in behavior is attributed to
Treg dynamics changing over the course of infection through the proliferation of an ‘adaptive’ Treg population which
targets HIV-specific immune responses. To investigate the role Tregs play in HIV infection, a delay differatial equation model
was constructed to examine (1) the possible existence of two distinct Treg populations, normal (nTregs) and adaptive
(aTregs), and (2) their respective effects in limiting viral load. Sensitivity analysis was performed to test parameter regimes
that show the proportionality of viral load with adaptive regulatory populations and also gave insight into the importance
of downregulation of CD4+ cells by normal Tregs on viral loads. Through the inclusion of Treg populations in the model, a
diverse array of viral dynamics was found. Specifically, oscillatory and steady state behaviors were both witnessed and it was
seen that the model provided a more accurate depiction of the effector cell population as compared with previous models.
Through further studies of adaptive and normal Tregs, improved treatments for HIV can be constructed for patients and the
viral mechanisms of infection can be further elucidated.
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Introduction

Although the dynamics of CD4+ and CD8+ cells have been well

characterized, in HIV infection, there is currently a lack of

understanding concerning the role of regulatory T-cells, or Tregs

in viral dynamics [1]. Tregs are a class of CD4+ cells which limit

the activation and expansion of immune cells, including

autoreactive CD4+ cells and CD8+ cells. Initial studies provided

evidence that the Treg response to HIV was beneficial, limiting

immune exhaustion and immune-mediated tissue damage [2–3].

Conversely, Tregs have been observed to contribute to the onset of

immune dysfunction and to prevent a successful immune response

[3–5]. Finally, there is evidence that the role of Tregs throughout

infection may follow a more dynamic behavior, changing its

behavior at different stages of infection [3] [6]. Divergent reports

on Treg activity can be attributed in part to experimental obstacles

involved in studying their dynamics in vivo. Patient data for Tregs

are largely non-existent due to the absence of accurate surface

markers to characterize the population. Without selective markers,

computational modeling is paramount in providing insight into T-

cell regulation during HIV infection, specifically examining

adaptive Treg behavior.

To further exacerbate the experimental problem in HIV

infection, there is evidence that multiple subsets of Tregs exist:

normal Tregs, as well as a HIV-specific adaptive Tregs [3] [6–8].

Normal Tregs (nTreg), the body’s naturally occuring regulatory

T-cells, are present in the early stages of infection, but through

some unknown mechanism, HIV may adapt the activity of nTregs,

to the benefit of the virus; this modified class of Tregs is deemed

adaptive Tregs (aTreg) [6].

Adaptive Tregs are believed to be deleterious for the patient by

contributing to viral proliferation and poor immune activity.

Although there are no known markers for adaptive Tregs, their

existence may have a distinct effect on HIV dynamics [6]. In our

model, we included both nTregs and aTregs, matching simula-

tions to patient data and constructed an understanding of whether

the two subsets could biologically exist together with differing

effects. Our model focuses on the effect Tregs have on sharply

declining viral load during acute infection and the examination of

the importance of CD8+ activation and CD4+ population

limitation as well as its subsequent steady state levels during

latency.

Results

Model Provides Realistic Effector Cell Dynamics which are
Lacking in Previous Models

Through data fitting, the model was initially tested to ensure

normal viral behavior could be replicated. Consistent with

previous fits, two main behaviors were observed - oscillatory as

well as steady state dynamics [9] (Fig. 1A, C). The model was
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capable of reproducing the acute viral infection and proceeding

either to steady state or damped oscillations. Comparing our fits to

a previously published study (Cuipe et. al), lacking normal and

adaptive regulatory T-cells, reveals that similar dynamics could be

obtained through the inclusion of a regulatory T-cell population.

Notably however, Treg fits showed improvements in simulating

effector cell populations, within the first few weeks of infection,

compared to previous models (Fig. 1B, D). In comparing fits

between the Ciupe model and our model, we find comparable fits;

however, when we examine the ranges of effector cells, we find a

significant improvement in our model. Our model is noted as

staying within physiologically relevant effector population ranges

for the majority of the simulation, whereas the Ciupe model never

enters physiological ranges. In fact, the Ciupe model displays a

sharp decline in effector populations early in simulation not seen

biologically. Comparing the effector populations with data on

effector populations reveals that our model provides a more

biologically relevant dynamic with comparable fits to viral load

[10]. We believe these improvements are due to the usage of dual

equations modeling the effector cell population. Through

compartmentalization of effector cells into immature and mature

populations, we were able to avoid sharp drops in these cells

during acute infection and construct a method of modeling

effector populations within realistic physiological bounds.

Sensitivity of Normal Tregs on Viral Load
Partial rank correlation coefficient (PRCC) analysis was

performed in order to examine the importance of the individual

parameters on viral load. PRCC isolates a single parameter for

analysis independent of others (further explained in the methods)

and examines its behavior in the system. This analysis is important

in systems where parameters are highly sensitive or not well known

in the literature, as individual contributions must be taken into

account when making predictions. Our model considers well-

defined parameters for viral infection as well as newly introduced

parameters such as the rate at which normal Tregs downregulate

CD4+ cells (a1): a1 accounts for the rate of change of CD4+ cells

in response to normal regulator T-cells. Previous models have not

considered this CD4+ cell response directly but recent research

has suggested regulatory T-cells do effect CD4+ cells throughout

the infection process [3] [5]. We noticed a clear bifurcation in viral

load behavior when isolating (a1) (Fig. 2A). Two clusters were

observed (cluster 1 and 2) with divergent viral behaviors.

Parameter sets within cluster 1 were simulated and complete viral

load clearance was seen within the first two weeks of infection for

all points found within the cluster, thus signifying a largely non-

biological dynamic (Fig. 2B). Parameter sets within cluster 2

revealed high steady state viral loads representative of the patient

fits (Fig. 2C).

Sensitivity of Treg Downregulation of CD4+ on Viral Load
Bifurcated clustering was further examined through numerically

sampling, physiologically bound parameter sets defined in Table 1

(a1~0:0{1:0(day)21). Since a1 has values that are currently

unknown in the literature, we first varied it over three orders of

magnitude. All of our results, however, suggest that a1 is bounded

between (0:0,1:0). Viral loads at steady state (t~200 days) were

recorded for each parameter set over the a1 range. Simulations

reveal a1 parameters to be (w0:6) and (0:0{0:8) for clusters 1 and

2, respectively (Fig. 3A). Steady state behavior is relatively constant

among the various curves; specifically, viral load seems unchanged

over small values of a1, however, a clear bifurcation to zero occurs

when a1 is sufficiently large (w0:6 day21). These results suggest a

physiological range in normal Treg behavior.

Sensitivity of Transition Rate of normal Tregs on Viral
Load

Ranging c (the transition rate of normal Tregs into adaptive

Tregs) revealed surprising dynamics in viral load, particularly

during early infection (Fig. 4). It was seen that viral load was highly

dependent on c in the acute stage of infection (t~80 days), but was

to a lesser degree dependent during steady state (t~200 days). For

some parameter sets, it was even found that c~0 would result in

viral clearance; thus for these simulations it was necessary to have

an adaptive population for simulation to achieve steady state

behavior. In addition, it was revealed that a larger value forc, i.e., a

larger rate of nTregs becoming aTregs, results in, on average, a

20% increased viral load at steady state.

Impact of Treg Parameters on Viral Load and Cellular
Populations

To elucidate the dynamics of the system, different populations

were examined over increasing values of the Treg-related

parameters c and ai: The best fit for Patient 8 was utilized as

the starting parameter set, and the respective parameters were

varied over several orders of magnitude (Fig. 5). T-cell

concentration, viral load, as well as effector cell concentration

(measured as the sum of immature and mature effectors) were

graphed against ai and c (Fig. 5). Through the plots, it was seen

that steady state concentrations of the three populations were

relatively unchanged. The exception was in the case of adaptive

transition rate (c) where low values of c resulted in a moderate

decrease in steady state viral load. However, it was generally seen

that the main differences in dynamics occurred in the acute stage

of infection, i.e. for tv100 days.

An important finding was that a1 was found to be inversely

proportional to peak viral load, suggesting that reducing the target

population can limit the proliferation of virus during the early

stages of infection. a2 did not seem to have much of an effect on T-

cell and virus dynamics; however for large values of a2, there was

an early effector population drop which then rebounded to a

higher level. When a3 was increased, it was found that viral load

would increase, as expected due to the fact that a3 controls the rate

of downregulation of mature effectors by adaptive Tregs.

However, it was also found that large a3 was inversely

proportional to T-cells, which gave a surprising result (Fig. 5D).

It can be seen that viral load can remain elevated during T-cell

depletion (Fig. 5D). It was additionally found that c~0 resulted in

low viral load while cw0 on the same order as the data fitting

would result in an elevated viral load, suggesting adaptive Tregs

can have a deleterious effect on the patient (Fig. 5A).

Discussion

Although the behavior of regulatory T-cells in HIV infection is

largely unknown, recent literature contrasts heavily on whether

such T-cell populations are helpful or deleterious to the patient

[3]. It has been theorized that there are two subsets of Tregs, a

basal population of normal Tregs, and a population of adaptive

Tregs derived from interactions between normal populations and

viral particles [3] [6]. While the explicit mechanism for how such a

population can emerge is still unknown, it has been hypothesized

to occur at the transcriptional level resulting in differential

regulatory T-cell distribution in various regions of the body [6].

Here, a physiologically relevant model of normal and adaptive

Tregs was utilized to model patient viral loads and examine the

effect of normal Treg parameter boundaries and an adaptive Treg

subgroup.

Adaptive Regulatory T-Cells and HIV
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Normal regulatory T-cells, specifically the efficiency of their

clearance of CD4+ cells, were characterized throughout the model

by the parameter a1: Using the analysis as discussed, a1 was

observed to range from 0.0–0.7 day21 due to a bifurcation in viral

steady state at higher efficiencies. This suggests a defined range on

normal Treg action and acts as a first step in studying the

dynamics of this regulatory population within the framework of

HIV infection. These bounds additionally suggest that nTreg

efficiency in down-regulating CD4+ cells can drastically affect viral

load behavior. Specifically, if efficiency is relatively high, the

number of target cells for HIV is reduced enough to prevent

proliferation of virus due to a clearance of the target cell

population. The limits to which nTreg dynamics can be

manipulated in vivo will elucidate the dynamics of regulatory T-

cells within HIV dynamics and give light to potential therapeutic

techniques against the infection.

Adaptive Tregs are suggested in our model to counteract the

immune system’s defenses against HIV through depletion of the

effector cell populations. We reproduce normal viral load behavior

in the presence of aTregs (Fig. 1) and through the sensitivity

dynamics of the aTreg parameter c observe that, in some

instances, the presence of an adaptive population is essential to

produce realistic viral behavior. Additionally, the adaptive

transition parameter, c, appears to influence viral loads;

specifically, larger c values result in higher steady state viral loads

and increased T-cell counts (Fig. 5). Distinct biological markers

will be necessary for further study of adaptive T-cell populations;

however, the possibility of two classes of regulatory T-cells is

plausible within the context of mature effector cell depletion.

Additional mechanisms of aTreg action, such as depletion of other

immune cell populations or other events would be of great interest

to further examine Treg-HIV dynamics.

Figure 1. Treg model shows improved effector cell dynamics over previously published fits. (A,C) Plot of modeled uninfected T-cell
population (blue), normal Treg (green) and adaptive Treg populations (purple). Models correspond to best fits to the viral load data from two
separate representative patients. (inset) Patient data is shown (circular data points), and viral load is shown (red). Parameter values for simulations can
be found in Table 1. (B,D) Comparative plots of effector populations using Treg model as compared to a previously published model [9] as well as
physiological ranges for effector cells [10] as seen by the red horizontal lines in B and D. In all cases, we notice that our model does not dip to
unrealistic ranges initially as does the Ciupe model. However, the viral load fits between both models are nearly the same suggesting a degree of
robustness between both models.
doi:10.1371/journal.pone.0033924.g001

Adaptive Regulatory T-Cells and HIV
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Figure 2. PRCC analysis of the a1 parameter reveals strong bifurcation. (A) A plot of the weighted PRCC residuals of a1 against viral load
reveals two clusters. (B) Representative plot of cluster 1 viral dynamics. Parameter sets within cluster 1 were simulated and complete viral load
clearance was seen within the first two weeks of infection for all points found within the cluster, thus signifying a largely non-biological dynamic. (C)
Representative plot of cluster 2 viral dynamics. Parameter sets within cluster 2 revealed high steady state viral loads representative of the patient fits.
Viral steady state was measured at t = 200 days over a range of a1 values from 0.0 to 1.0 (day)1.
doi:10.1371/journal.pone.0033924.g002

Table 1. Treg model parameter ranges and descriptions.

Parameter Dimensions Description Patient 2 Fit Lower Upper Patient 8 Fit Lower Upper

pR cells/(mL*day) Production of nTregs 0.0023 0 0.070 3.519E-05 0 1.070

dR 1/day Death rate of nTregs 0.0093 [9] [9] 0.0458 [9] [9]

c mL/(virus*day) Probability of nTreg?
aTreg transition

6.621E-7 6.677E-08 2.44E-4 3.857E-4 9.472E-07 0.0313

dR 1/day Death rate of aTreg 2.218E-4 [9] [9] 7.287E-4 [9] [9]

N virus/cell Burst size of infected T-cells 2205 [9] [9] 6716.452 [9] [9]

d 1/day Death rate of Infected T-cells 1.094 [9] [9] 0.06 [9] [9]

c 1/day Clearance rate of virus 0.6167 [9] [9] 2.552 [9] [9]

s cells/(mL*day) Production of T-cells 0.7672 [9] [9] 0.855 [9] [9]

d 1/day Death of T-cells 8.214E-4 [9] [9] 0.00122 [9] [9]

k mL/(virus*day) Probability of interaction of
T-cell with virus resulting in infection

9.964E-4 [9] [9] 0.0087 [9] [9]

a1 1/day Downregulation rate of nTregs on T-cells 0.601 0.0653 5.464 0.00218 0 1.627

dx mL/(cell*day) Death of infected T-cells by mature effectors 0.3755 [9] [9] 0.0671 [9] [9]

pEi
cells/(mL*day) Production of immature effectors 0.545 0.0082 3.898 0.525 0.247 1.047

dEi
1/day Death rate of immature effectors 0.0204 [9] [9] 1.88E-4 [9] [9]

kE mL/(virus*day) Probability of interaction between virus and
immature effector resulting in mature effector

3.699E-4 0 9.249E-05 1.411E-05 0 5.312E-05

a2 1/day Downregulation rate of nTregs on immature
effectors

0.0485 0 0.111 0.0020 0 15.164

a3 1/day Downregulation rate of aTregs on mature
effectors

0.403 0 254.17 1.211E-08 0 0.0132

dEm
1/day Death rate of mature effectors 0.0124 [9] [9] 0.00121 [9] [9]

t day Time delay of emergence of mature effector
population

26.2546 [9] [9] 23.4321 [9] [9]

doi:10.1371/journal.pone.0033924.t001
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The use of two effector cell populations, immature and mature,

proved successful in maintaining realistic cell population concen-

trations and while producing comparable viral fits to previous

models. Sensitivity analyses reveal that varying parameters related

to regulatory T-cells largely influence the acute stages of infection

but are relatively robust at long times (tw100 days). Also, we

observe regulatory T-cells to be pivotal in early viral peaks and

early depletion of CD4+ T-cells.

While production and death rates for the regulatory T-cells

could be extrapolated from similar parameter values approximat-

ed in previous research, little was known about ai and c, which

reflect the downregulatory capabilities of the nTregs and aTregs as

well as the rate at which normal Tregs migrate into the adaptive

population. Parameter fitting gives bounds on these values and

desirable visualization to differentials in viral load dynamics.

Through further studies of Tregs and their different classes, new

therapeutic techniques can be developed to potentially limit

normal Treg action and reflect optimal viral load reduction

providing additional insights into viral and immune system’s

capabilities during infection.

Methods

Ethics Statement
There was no need for consent in the work presented here as no

work with patients was performed.

To examine the dynamics of HIV viral load during primary

infection, we propose a system of delay differential equations

consisting of seven variables: normal Tregs (R), adaptive

Tregs (Ra), target CD4+ cells (T), productively infected CD4+ T

cells (T*), free virus (V), immature CD8+ cells (Ei) and mature

CD8+ cells (Em).

Normal and Adaptive Regulatory T-Cells
Here, we introduce normal Tregs as well as the hypothesized

adaptive Tregs. It has been suggested that HIV interacts with

normal Tregs and induces them into a secondary adaptive

population which can have deleterious impacts on the patient

and assist the virus. To model this dynamic, normal Tregs (R)
were given a production rate of pR and a death rate of dR: The

death rate of adaptive Tregs (Ra) was defined by dR: The mass-

action term cRV was utilized, in which c is the proportion of

interactions between R and V which result in adaptive Tregs.

Figure 3. Sensitivity analysis of the a1 parameter. Representative
simulations were chosen over a range of physiological parameter sets.
Each data point shows the viral steady state, measured at t~200 days,
over a range of a1 values from 0.0 to 1.0 (day)21. Dynamics remain
relatively unchanged over low values of a1 but drop significantly with
sufficiently large a1 (w0:6 day21) to the extent that there is viral
clearance.
doi:10.1371/journal.pone.0033924.g003

Figure 4. Sensitivity analysis of the c parameter. Graphs depicting 10 representative parameter sets, plotting viral load at various time points
over varied values for c. Each distinct curve represents simulations obtained from a single, randomly determined, physiological parameter set. (A)
Plots for viral load measured at t = 80 days. For the majority of curves, viral load spikes at smaller values of c and then decreases to a steady state for
higher c values. Several simulations reveal viral loads quite close to and at 0 virions/(mL)21 for c~0. (B) Plots for viral load measured at t = 200 days.
Most curves are seen to monotonically increase over increasing values of c, suggesting a direct relationship between high adaptive Treg production
and high steady state viral loads.
doi:10.1371/journal.pone.0033924.g004

Adaptive Regulatory T-Cells and HIV
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The following are the equations for the R and Ra populations,

dR

dt
~pR{dRR{cRV , ð1Þ

dRa

dt
~cRV{dRRa: ð2Þ

Figure 5. Plots of T-cell, Virus, and Effector populations with changes in regulatory T-cell parameters. Each distinct curve represents
simulations from a unique randomly obtained, physiological parameter set. This figure depicts changes in T-cells, viral load, and effector cells given
changes in regulatory T-cell parameters c,a1,a2, and a3: (A) c was varied and plotted alongside best fit of c~0:09715: It was seen that there were two
very distinct behaviors; one behavior for c~0 and one for cw0: For c~0, viral load could be seen to stay lower and effector cells remained slightly
elevated while T-cells remained slightly lowered. (B) a1 was varied and plotted alongside the best fit for a1 from data fitting which was a1~0:0627
(days)21. All changes occur on the acute stages of infection and it is seen that for large values of a1, viral peak is significantly reduced. (C) a2 was
varied and plotted alongside the best fit of a2~0:0623 (days)21. T-cell and viral load plots appear similar although it is seen that large values of a2

result in a sharp decrease in effector population during acute infection. (D) a3 was varied and plotted alongside best fit of a3~0:2616: It was seen
that for large values of a3 that effector population would drop drastically during the acute stage of infection and would result in a minor increase in
viral load as well.
doi:10.1371/journal.pone.0033924.g005
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CD4z T-Cells and HIV Virus Load
For viral load, we use the same form as seen in the Perelson,

Nelson 1999 model,

dV

dt
~NdT�{cV : ð3Þ

For the CD4+ population, an almost identical form as the

Perelson, Nelson 1999 model is utilized, with a proliferation term

s, a half-life of 1/d, and a bikinetic expression kVT to express the

notion that interaction of virus with T-cells at some probability k

results in the infection of T-cells. In the literature, it is well

characterized that Tregs the proliferation rate of T-cells [1] [3–4].

Thus, the term a1R was introduced, which serves as the basal

downregulation of CD4+ cells by the normal population of Tregs.

The uninfected T-cell population equation is as follows,

dT

dt
~s{dT{kVT{a1R: ð4Þ

Infected T-cells were produced from the bikinetic interaction

(kVT) in which uninfected T-cells interact with HIV to become

infected. The half-life for these infected cells is 1=d with a

clearance term dxEmT�; thus infected cells are cleared also

through a bikinetic interaction with mature CD8z effectors at a

rate dx,
dT�

dt
~kVT{dT�{dxEmT�: ð5Þ

Effector Cell Equations
Various models of HIV include or exclude cytotoxic CD8+ T-

cells; depending on the specific dynamics of interest [9] [11]. In

the laboratory, it has been observed that Tregs impact the activity

of these cells, thus we include them as a key element in our model.

Some previous models [9], use a single equation to represent

effector cells, however, this population would often trend to non-

physiological conditions. To adjust for this issue, we separated the

effector population into two subsets: an immature class of effectors

and a mature class. Since effector cells need to be presented with

HIV-antigen in order to specifically combat infected cells, we write

our equations with immature effectors interacting with HIV in

order to become mature effectors.

For immature effectors, we assume similar dynamics to the

uninfected T-cell equation. There is a constant rate of production

pEi
, a death rate dEi

and a loss of cells due to conversion into

mature effector cells, dependent on virus interaction at some rate

kE : Additionally, there is a downregulation of the immature

population by normal Tregs, expressed through the a2R term,

dEi

dt
~pEi

{dEi
Ei{kEVEi{a2R: ð6Þ

Mature effectors are produced through viral interaction with the

immature effector population (kVEi) and die at a rate dEm
: A time

delay was used in the production term of the mature effectors to

represent the biological lag that occurs between immature effector

recognition of virus and the production of mature effectors.

Adaptive Tregs are hypothesized to specifically downregulate the

mature effector response through the expression a3Ra, thus

suppressing normal immune responses,

dEm

dt
~kEV (t{t)Ei(t{t){dEm Em{a3Ra: ð7Þ

Parameter Fitting
Viral load patient data were used from data collected in [12].

Fitting was accomplished through running 2,000 iterations using a

Simplex optimization algorithm through JSim Software [13]. All

parameters were varied with known parameters from [9] used as

start values in the optimization; parameter descriptions, ranges

and best fits can be found in Table 1. Parameters which were

relatively unknown, for instance production rate of nTregs, were

extrapolated from similar parameters and were varied over an

order of magnitude to ensure that their starting points were

biologically feasible. A bootstrapping algorithm was used in order

to find confidence intervals for the parameters related to Treg

dynamics (Table 1).

PRCC Analysis and other Sensitivity Analysis
In the analysis of our model, we were interested in determining

which parameters have a strong effect on key outputs such as viral

load. This is especially important for parameters which are not

well-characterized in the literature, which included terms related

to normal and adaptive regulatory T-cell function; if these have a

strong influence on model outputs, we must be careful to qualify

any conclusions drawn from model analysis with the disclaimer

that such conclusions may be very sensitive to rough parameter

estimates. The results of a sensitivity analysis can be used as a

guide in determining which parameters are most important,

whether to re-express the model in terms of better-understood

parameters, and potentially which parameters can be measured or

investigated more thoroughly.

The Partial-Rank Correlation Coefficient (PRCC) measures the

association between two variables, with the effects of other

variables removed. Given a model parameter of interest and a

model output at a particular time point, the PRCC can be used as

a sensitivity metric of the output to the parameter, independent of

the other parameters, as described in Marino et al. [14].

The first step of computing the PRCC of parameter xj and

output y is to rank-transform the data in variables x̂xj and ŷy: The

PRCC is then given by the correlation between the residuals

(y{ŷy) and (xj{x̂xj), where, where x̂xj and ŷy are given by [14],

x̂xj~c0z
Xk

p~1,p=j

cpxp, ð8Þ

ŷy~b0z
Xk

p~1,p=j

bpxp: ð9Þ

A high correlation between these residuals suggests that output

y is sensitive to parameter xi: We can apply this technique to our

HIV model by setting the model output to, for example, viral load

at time 80 days after primary infection. PRCC analysis can give us

a snapshot of the influential parameters on viral load at this time

point.

In addition to PRCC analysis, a second sensitivity analysis was

performed for the parameters ai and c: One of the parameters was

isolated, and the other parameters were chosen through a Latin

Adaptive Regulatory T-Cells and HIV
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Hypercube Sampling (LHS). The isolated parameter was ranged

over several orders of magnitude and for each value of the

parameter, viral load was simulated and recorded at t~80 days as

well as t~200 days. Plots of viral load vs. parameter value were

constructed to depict the dynamics. Analysis was performed for

100 distinct parameter sets, with representative plots in (Fig. 3, 4).

In both cases, we find using the PRCC analysis that ai and c are

robust parameters and viral dynamics are not highly sensitive to

small perturbations in either parameter, suggesting that our new

model is more robust then previous models.
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