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Five‑second STEM dislocation 
tomography for 300 nm 
thick specimen assisted 
by deep‑learning‑based noise 
filtering
Yifang Zhao1, Suguru Koike1, Rikuto Nakama2, Shiro Ihara3, Masatoshi Mitsuhara4, 
Mitsuhiro Murayama3,5,6, Satoshi Hata4,7 & Hikaru Saito3,8*

Scanning transmission electron microscopy (STEM) is suitable for visualizing the inside of a relatively 
thick specimen than the conventional transmission electron microscopy, whose resolution is 
limited by the chromatic aberration of image forming lenses, and thus, the STEM mode has been 
employed frequently for computed electron tomography based three-dimensional (3D) structural 
characterization and combined with analytical methods such as annular dark field imaging or 
spectroscopies. However, the image quality of STEM is severely suffered by noise or artifacts especially 
when rapid imaging, in the order of millisecond per frame or faster, is pursued. Here we demonstrate 
a deep-learning-assisted rapid STEM tomography, which visualizes 3D dislocation arrangement only 
within five-second acquisition of all the tilt-series images even in a 300 nm thick steel specimen. The 
developed method offers a new platform for various in situ or operando 3D microanalyses in which 
dealing with relatively thick specimens or covering media like liquid cells are required.

One of the most emerging activities in the field of transmission electron microscopy (TEM) is developing 
novel techniques for dynamic observation of objects being functioning ideally in their natural environment 
or artificially controlled environment. Such observation, so-called in situ or operando microscopy, has been 
advanced by innovative sampling techniques like a liquid cell1,2, or functional holders for heating3–6 or mechani-
cally deforming7–12 a specimen etc. Dedicated “environmental” electron microscopes for controlling atmosphere 
surrounding a specimen have offered direct observations on the temporal evolution of catalytic systems13,14 etc. 
Ultrafast electron microscopes equipped with a laser-driven electron source have visualized photo-induced 
material responses15 or photon-free electron interactions16,17 occurring far beyond the nanosecond time scale. 
As achieved in some of the above dynamical observation, three-dimensional (3D) TEM such as electron tomog-
raphy can now provide dynamical analysis of a 3D structure/morphology with a nanometer resolution and in 
a non-destructive manner, in contrast to other destructive 3D structural analysis methods such as atom probe 
tomography18 and serial-sectioning by focused ion beam – scanning electron microscopy (FIB-SEM)19,20. Super-
resolution microscopy21 is a non-destructive method enabling a nanometer resolution, however, its application 
is limited to objects where fluorescent probes can be attached.

While 3D atomic structure analysis has shown remarkable results for isolated single nanoparticles22–26, the low 
penetrability due to the strong interaction of electron beam with matters often problematic in 3D TEM analysis. 
This becomes severe when the targeted objects are nanometer sized and embedded in other materials as well as 
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liquid, or are part of a larger-scale object. Generally speaking, the thickness of a specimen for TEM analysis is 
required to be thinner than 100 nm, and this limitation becomes strict in the conventional TEM (CTEM) mode 
due to image blur caused by inelastic scattering, which cannot be overcome without adding dedicated equipment 
like a recently developed chromatic aberration corrector27.

On the other hand, in the scanning TEM (STEM) mode which is basically free from the chromatic aberration 
of the imaging lens system, the deterioration of image quality due to the specimen thickness is much smaller 
than that in the CTEM mode. In fact, a 3D arrangement of dislocations in an iron slab, a 400 nm thick specimen, 
was clearly visualized by STEM tomography28. In this particular study using a 300 keV electron beam, disloca-
tion line contrast was visible even when the specimen was tilted by 60°, i.e., the effective specimen thickness 
reached to 800 nm. It was also demonstrated that STEM tomography overwhelmingly effective for a very thick 
biological specimen29, where even a 1-µm-thick specimen was successfully analyzed in three dimensions. As 
these previous examples demonstrate, the STEM mode has a great advantage over the CTEM mode for the 3D 
visualization of nanostructures inside thick specimens. Furthermore, a high-angle annular dark-field imaging 
method is available for the STEM mode, which is suitable to quantify the mass density and chemical composi-
tion from the image intensity30.

Operando observation also requires its temporal resolution sufficient to observe the time evolution of the 
targeted phenomenon. In principle, the STEM mode, which is a serial detection method, has disadvantages 
in terms of imaging speed compared to the parallel detection method counterparts such as the CTEM mode. 
Recently developed high-speed cameras for the CTEM mode have achieved a frame time of sub-millisecond 
order, enabling the CTEM mode to implement dynamic structural analyses down to molecular scale31,32. When 
a high-speed camera is applied to fast CTEM tomography, a few second of acquisition time for tilt-series images 
is archived14,33. In this respect, the acquisition time for STEM tomography is still in the order of minutes4–6,34 due 
to the lack of a fast-imaging method enabling millisecond order frame time for the STEM mode.

In order to pave a new way to operando 3D observation and make structural analysis available for thick 
specimens, here we propose a novel approach based on a deep learning method to solve the problem inherent 
in fast imaging in the STEM mode, i.e., non-trivial noises superimposed in images, which is nearly impossible to 
remove by conventional noise filtering methods. We applied our new method to STEM imaging of dislocations 
in a steel specimen having 300 nm thickness, and successfully demonstrated that the quality of images taken 
with 30 ms per frame was significantly improved by our unique noise filtering method based on the U-Net35. 
The result images are almost equal to the quality of 50 frames averaged images composed by the drift-corrected 
frame integration (DCFI) technique36, exhibiting sufficiently high signal-to-noise ratio for 3D structure analy-
sis. Then, applying this U-Net-assisted STEM imaging technique to the rapid acquisition of tilt-series images 
for tomography that accomplishes five seconds of acquisition time for tilt-series images. In comparison to the 
conventional method requiring few tens of minutes, our 5-s STEM tomography represents the 3D dislocation 
arrangement accurately enough to understand its structure in mesoscopic scale. The present challenge also high-
lights an unprecedented aspect of deep-learning-based noise filtering step that overcomes complex degradation 
of image quality caused by a rapid scan, showing promise for the application of rapid STEM imaging approach 
to various in situ or operando experiments.

Deep‑leaning‑assisted rapid STEM tomography
Concept of the proposed method.  We have developed a rapid STEM tomography method composed of 
three parts: (1) rapid tilt-series image acquisition (less than five seconds), (2) image noise filtering and distor-
tion correction, and (3) three-dimensional (3D) reconstruction (Fig. 1a). The rapid tilt-series image acquisition 
was conducted under 114 ns/pixel of scan speed and 28 degree/s of specimen specimen-tilt speed. These scan 
and specimen-tilt speeds are the fastest settings available in the electron microscope used in this experiment. 
This fastest scan speed achieves about 30 ms frame time, the time it takes to render a 512 × 512 pixels image size, 
which is hundreds of times faster than the conventional frame time for STEM imaging, although the resultant 
low quality of original images (Fig. 1c) needs to be compensated by a noise filtering technique. This extremely 
fast scan speed is required to reduce the time lag artifact negatively impacting the accuracy of the final 3D 
reconstruction. The time lag artifact occurs when the specimen tilt advances during a frame acquisition due to 
the continuous tilting adding a curl shape distortion to the final 3D reconstruction (Fig. 1b). Even within the 
30 ms of image acquisition time, the specimen swings by 0.8° in the current experimental setting (28 degree/s), 
resulting in a tiny time lag artifact as discussed later. Note that, as another method for tomography than tilt-
series image acquisition, we can consider through-focal image acquisition37 which is completely free from any 
artifacts or limits accompanied with specimen tilting. This technique can also be effectively combined by noise 
filtering techniques discussed in this paper, and is a potential strategy for further speeding up of operando 3D 
observation although it is beyond the scope of this paper.

The extremely fast scan causes a severely low signal-to-noise ratio, as shown in Fig. 1c. To resolve the problems 
associated with the severely low signal-to-noise ratio, a deep-learning-based noise filtering method was devel-
oped in this study. Noise filtering algorithms for digital images are categorized into two types, i.e., algorithms 
with and without learning processes. The block-matching-and-three-dimensional filtering (BM3D) algorithm 
is a well-known powerful denoising technique not requiring any prior learning processes38,39. In general, non-
learning noise filtering algorithms mainly estimate the variance of an additive white Gaussian noise (AWGN). 
The latest BM3D algorithm provided by Egiazarian et al. has been developed to optimize the filtering process by 
foresight knowledge. This algorithm works effectively when the existing noise matches with one of pre-registered 
models like band-pass noise and line pattern noise, etc., thus, the type and amplitude distribution of potentially 
existing noises in each image have to be known or well estimated in advance39. However, identifying the noise 
model becomes too complex when an image includes non-trivial noises originating from the characteristics of 
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the devices used for the imaging, which become significant or non-negligible in extremely fast scan settings 
pushing the beam scan device and /or the electron detector to the limit. In fact, this kind of non-trivial noise 
was recognized in our experiment, as shown in Figs. 1c–f. Some systematic patterns appeared in Fig. 1e by 
subtracting an averaged image (Fig. 1d) from a single rapid scan image (Fig. 1c), which seemed to be streaked 
in the fast scan direction (x axis) and had higher frequency components in the y direction as shown in Fig. 1f. 
These observations led us to develop a deep-learning-based noise filtering method, being inspired by previous 
successful applications for some reconstruction problems from noisy or incomplete inputs40–44.

It should be noted that the rapid scan also introduced enormous image distortion, as shown in Fig. 1g, prob-
ably due to the hysteresis of the beam scan device consisting of a set of magnetic coils. In Fig. 1g, two images 
were taken from the same field view at two different scan speed settings were superimposed and compared. In 
our electron microscope, image shrinkage in the x direction appeared when the scan speed reached 114 ns/pixel. 
This image distortion cannot be expressed by affine transformation, i.e., it is not a uniform shrinkage of the whole 
image. In order to calibrate the dimensions of the rapid scan images, we measured this position-dependent distor-
tion by using a commercial standard specimen, a cross grating pattern made of gold nanoparticles. The technical 
details of this image distortion calibration are described in the method section and Supplementary information A.

All the artifacts we have discussed so far appear specifically in the STEM mode while they have not been seen 
in the CTEM mode, and this fact is likely to be a reason why tilt-series image acquisition with a few seconds order 
has only been implemented in the CTEM mode combined with a high-speed camera. However, those shortcom-
ings in the STEM mode can drastically be improved just by software developments as discussed in this paper.

U‑Net‑based noise filtering.  Supervised learning was employed for developing a dedicated noise filter 
finely adjusted to the noise specific to the hardware and the operating condition used in this study. The train-
ing data used for machine learning consists of 175 different areas in total, taken from five different specimen 
tilt angles (35 areas per angle) under the same imaging condition as the rapid tilt-series images regarding the 
scan speed, the pixel size, the electron optics, the detector setting, etc. 50 frames (images) were acquired from 
each of these areas; in summary, 8750 rapid scan images were the inputs for to be developed U-Net’s training as 
described in Fig. 2a. These noisy images were used intentionally because these would have a similar image qual-
ity with unprocessed tilt-series images expected from this rapid STEM tomography method. We also prepared 
one reference image for each of the areas by averaging the 50 frames (images) using the drift-corrected frame 
integration (DCFI) function equipped in Titan’s Velox™ software. The U-Net was optimized through the training 
process so that each of the output images became similar to the corresponding reference image (Fig. 2a). This 
training process possibly becomes more efficient by employing recent algorithms such as Noise2Noise45 and 
Noise2Void46 so that the time cost for data collection is reduced.

The effective thickness, the pathlength of the electron beam has to penetrate through, depends on the tilt 
angle of the specimen slab and causing the tilt-angle-dependent signal-to-noise ratio. This characteristic suggests 
that the training data should include various images from different tilt angles ranging from 0° to 70°. Therefore, 

Figure 1.   Problems to be solved and outline of the proposed protocol for rapid STEM. (a) Procedure for the 
proposed rapid STEM tomography. (b) Schematic drawing of time lag artifact. (c) Typical image of dislocations 
obtained with a single rapid scan. The scan speed and frame time are 114 ns/pixel and 30 ms, respectively. 
(d) Averaged image by 50 equivalent rapid scan images for the field of view corresponding to (c). (e) Typical 
noise image produced by subtracting the averaged image (d) from the single rapid scan image (c). (f) Fast-
Fourier-transformed (FFT) image of (e). (g) Superposition of a rapid scan image (aqua, 114 ns/pixel) and a 
corresponding slow scan image (red, 6.1 µs/pixel) for the same field of view. Note that the scale bars attached 
with the images include 10% errors at most because all the STEM images here are not processed with the 
distortion correction.
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multiple areas and specimen tilt angles were chosen for collecting the training data. In order to ensure that the 
areas for the training data have a similar thickness as the area used for the rapid STEM tomography, we only 
selected the areas where the image intensity histogram is similar to the corresponding data for the rapid STEM 
tomography as discussed in Supplementary information B. In this way, we collected 35 averaged images and 1750 
rapid scan images at 5 different specimen tilt angles 0°, 20°, 40°, 60° and 70°, respectively (Fig. 2a).

We used Dragonfly™ software (Object Research Systems) for the U-Net-based noise filtering. The used archi-
tecture is described in Fig. 2b, which is a standard one known as U-Net35. Prior to input into the U-Net, the 
brightness of all the experimental images as well as the reference images was adjusted the way that the minimum 
intensity in each of the images equaled to zero, and all the images were then normalized by the maximum inten-
sity in each of the images. We set the patch size to 64 × 64 pixels, the optimization algorithm to Adam47, and the 
objective function to mean square error.

Results and discussion
Comparison of U‑Net and BM3D.  In the U-Net-based noise filter development process, we have evalu-
ated the performance of the U-Net-based noise filter by applying it to multiple new fields of views not included 
in the training data. Figure 3 shows a comparison between an original single rapid scan image and two filtered 
images, where dislocations in an austenitic steel are visualized with dark lines. The original bright-field STEM 
image was obtained under excitation of an hkl = 200 diffracted beam (details of the observation condition are 
described in the method section and Supplementary information C). The image processed through the U-Net-
based noise filter (Fig. 3b) appears much clearer than the original image (Fig. 3a). One can intuitively recognize 
that the quality of the noise-filtered image is closer to that of the DCFI image (Fig. 3d). This is quantitatively 
confirmed by the evaluation based on the peak signal-to-noise ratio (PSNR), summarized in Table 1, where the 
PSNR was calculated relative to the averaged (DCFI) image. Thus, each PSNR value indicates how the image is 
similar to the DCFI image. The PSNR values, the mean and standard deviation, were calculated for 10 new fields 
of views selected from images taken at the specimen tilt angle 0°, 20°, 40°, 60° and 70°, respectively (see typical 
test images taken at different tilt angles in Supplementary information D).

The performance of the U-Net-based noise filter is compared with the BM3D-based filter which was opti-
mized for this study (Supplementary information E). As shown in Table 1, the BM3D-based noise filter gives 
higher scores regarding the PSNR. However, the line-shaped strain contrast arising from dislocations became 
remarkably broadened in the width direction in the image processed through the BM3D-based noise filter 
(Fig. 3c). This is more clearly shown in the contrast profiles extracted from the images (Fig. 3e). The differences 
between the U-Net-based and BM3D-based noise filters are summarized in Tables 2 and 3 regarding the width 
and intensity of the dark lines relative to those in the DCFI images, respectively.

The details for measurement of the relative width and intensity are described in Supplementary information D. 
A large difference is found in the relative width, whereas the relative intensity is comparable. The line broadening 
becomes larger with increasing the tilt angle in both filters. The reason for this tilt angle dependence is considered 
to be the effective specimen thickness increasing with the tilt angle; that is, the signal-to-noise ratio is deteriorated 

Figure 2.   Deep learning by single rapid scan images and averaged images. (a) Schematic drawing of deep 
learning employed in this study. (b) Architecture of U-Net. Each number listed on the side of the boxes indicates 
the number of feature maps. The gray arrow indicates the concatenation process.
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in the higher tilt angle range due to a decrease of forward-scattered electrons. That said, the U-Net-based noise 
filter keeps the line broadening smaller than the BM3D-based filter. Even when the tilt angle reached higher 
than 60°, i.e., the effective thickness became thicker than twice the original thickness, the line broadening was 
suppressed to be less than 150%, while it sometimes became more than 200% with the BM3D-based noise filter. 
Accordingly, although the U-Net-based noise filter gives a slightly lower score of PSNR than the BM3D-based 

Figure 3.   Performance of the U-Net-based noise filter. (a)–(d) Comparison of (a) single rapid scan image, (b) 
filtered image by the U-Net, (c) filtered image by the BM3D, and (d) DCFI image using 50 equivalent rapid 
scan images for the same field of view. (e) Line profiles extracted from the four images (Figs. 3a-3d) along the 
indicated lines (from A to B).

Table 1.   Peak signal-to-noise ratio of noise-filtered images by U-Net-based algorithm and BM3D-based 
algorithm.

Method

U-Net (dB) BM3D (dB)

Tilt angle

0° 30 ± 2 34 ± 3

20° 29 ± 3 32 ± 2

40° 32 ± 2 33 ± 2

60° 32 ± 2 35 ± 3

70° 30 ± 5 35 ± 3

Table 2.   Relative width of dislocation dark line visualized in the noise-filtered images by U-Net-based 
algorithm and BM3D-based algorithm.

Method

U-Net (%) BM3D (%)

Tilt angle

0° 98 ± 19 125 ± 27

20° 95 ± 26 142 ± 58

40° 110 ± 15 159 ± 42

60° 110 ± 23 175 ± 54

70° 123 ± 31 173 ± 46
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one, our U-Net-based noise filter is obviously superior to the BM3D-based one by setting the highest priority 
on the performance on spatial resolution, especially in the application to rapid STEM tomography. It could be 
worth noting that so much difference in performance between the two noise filters was not recognized in the 
previous applications for noisy images obtained in the CTEM mode47. The contrasting results seen in this study 
suggest that the noise contained in the rapid scan images is not representative, and thus, fine tuning of the noise 
filter based on supervised learning is especially required in the rapid STEM imaging.

Evaluation of the U‑Net‑assisted rapid STEM tomography.  Here we show the initial result of rapid 
STEM tomography assisted by the U-Net-based noise filter and discuss its performance by comparing it to a 
dataset obtained from a conventional method, i.e., using an intermittent specimen tilt and slow scan speed (see 
the method section for the detailed acquisition parameters). The fastest scan speed, 114 ns/pixel, was used to 
acquire a single STEM image of 512 × 512 image size (frame time 30 ms), although the actual imaging speed 
became 14 fps because an additional 40 ms to store a frame before scanning the next frame was required. This 
imaging speed provides tilt-series images taken every 2° on average for the fastest specimen-tilt speed of 28 
degree/s. Under this experimental condition, 71 frames were collected over a 140° of angle range during 5 s 
of total acquisition time as a single set of tilt-series images (Tilt-series 1). Several selected images are shown 
in Fig. 4a, which are compared with denoised images processed by the U-Net-based noise filter (Tilt-series 2, 
Fig. 4b) and tilt-series images obtained by a conventional method with a slow scan speed (Tilt-series 3, Fig. 4c). 

Table 3.   Relative intensity of dislocationdark line visualized in the noise-filtered images by U-Net-based 
algorithm and BM3D-based algorithm.

Method

U-Net (%) BM3D (%)

Tilt angle

0° 93 ± 11 94 ± 19

20° 81 ± 33 76 ± 29

40° 95 ± 11 85 ± 19

60° 79 ± 16 71 ± 9

70° 95 ± 17 83 ± 18

Figure 4.   Application of the U-Net-based noise filter for rapid tilt-series images. (a) Part of original rapid tilt 
series (Tilt-series 1). (b) Denoised rapid tilt series generated from Tilt-series 1 (a) through the U-Net-based 
filter (Tilt-series 2). (c) Corresponding slow tilt series obtained by a conventional method (Tilt-series 3). The X, 
Y, and Z axes depicted at the bottom left represent coordinates fixed at the used TEM instrument.
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All the images in Fig. 4 were processed by a distortion correction (see the method section and Supplementary 
information A).

Figure 5a–c shows results of 3D reconstruction from the Tilt-series 2 (noise filtered Rapid 3D) and Tilt-series 
3 (Slow 3D) and their superposition, respectively. The three-dimensional spatial arrangement of dislocations 
in both Rapid 3D and Slow 3D is almost the same, suggesting that the U-Net-based noise filter effectively dis-
criminated the signals from severe noises in the Tilt-series 1. In order to precisely evaluate the accuracy of 3D 
positional measurement, the center of each of the dislocations was extracted from both Rapid 3D and Slow 3D. 
Here the center of nth dislocations in the kth yz cross-section is defined as a weighted average of two-dimensional 
(2D) positions rnk;

where I(rnk) is the intensity at the position rnk , and the summation was performed near the dislocation of inter-
est (see Supplementary information F). This definition based on the weighted average is more robust against 
noise than the definition based on the local maximum. Gnk for both Rapid 3D and Slow 3D are plotted in Fig. 6. 
The nearest points across Rapid 3D and Slow 3D were searched in the same k of cross-sections to determine the 
pairs, i.e., Gnk,rapid and Gnk,slow . The average of positional errors in the y and z directions is defined as follows;

where N is the number of found pairs in the entire space. 
∣

∣�Gy

∣

∣ and |�Gz | are 7.8 nm and 10.3 nm, respectively. 
It should be noticed that there are some missing parts of the dislocations in Rapid 3D probably due to the weaker 
contrast than the detection limit, although they are a very small fraction of all the dislocations in the field of view. 
However, such a difference in detection is not what we evaluated here. To purely evaluate the positional accuracy, 
only the corresponding points detected in both Rapid 3D and Slow 3D were selected in the above calculations of 
∣

∣�Gy

∣

∣ and |�Gz | . In the same way, we extracted the local intensity centers in the xz cross-section. The average 
positional error in the x direction |�Gx| was calculated to be 6.4 nm. The calculated positional errors in the x 
and y directions are less than 0.5% of the lateral sizes of the field of view. In particular, the error in the x direc-
tion ( |�Gx| ) is the smallest, indicating that the influence of nonlinear image distortion due to the rapid scan is 
successfully removed by the correction method discussed in Supplementary information A. On the other hand, 
|�Gz | is slightly larger than the other two directions, suggesting anisotropic errors degrading the positional 
accuracy in the z direction.

In order to further investigate the morphological difference between Rapid 3D and Slow 3D, �Gz is plotted 
as a function of y and as a function of x, where they are averaged regarding the x and y directions, respectively 
(Fig. 7a and b). A characteristic convex trend appeared in the y dependence of �Gz (Fig. 7a) while no obvious 
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Figure 5.   Rapid STEM dislocation tomography. (a) and (b) 3D-reconstructed data calculated from (a) Tilt-
series 2 and (b) Tilt-series 3. (c) Superposition of Figs. 5a and 5b. The 3D data are projected along with several 
angles and displayed as 2D images. The x, y, and z axes depicted at the bottom left represent coordinates fixed at 
the used TEM instrument.
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Figure 6.   3D plot of local intensity centers. Orange and aqua plots were extracted from Rapid 3D (Fig. 5a) and 
Slow 3D (Fig. 5b), respectively.
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trend was recognized in the x direction (Fig. 7b), indicating that the specimen looked as if it curled up around 
the tilt axis (x axis) during acquiring of the Tilt-series 1. This convex dependence of �Gz in the y direction is the 
time lag artifact inevitably appearing in STEM tomography with a continuous specimen tilt (Fig. 1b). The time 
lag becomes the largest at the specimen tilt angle equal to 0° because the field of view becomes the largest in the 
y direction. At that time, the z component is dominant in the specimen movement. This is the reason why the 
time lag artifact mostly affects the accuracy of z positions. Note that this artifact is reproducible in principle, and 
thus, the positional accuracy in the z direction can be further improved by a proper calibration. Overall, we can 
conclude that the measured position of a dislocation in 3D by the proposed rapid STEM tomography is accurate 
enough to characterize the mesoscopic scale slip systems of materials.

Conclusions
To conclude, we have herein demonstrated a rapid STEM tomography, which drastically shortens the acquisition 
time down to 5 s, approaching to TEM-based rapid tomography. This method potentially improves the temporal 
resolution of operando 3D observation. The U-Net-based noise filter nearly completely recovers image quality 
from the poor images severely suffered from low signal-to-noise ratios, enabling a short frame time (30 ms) 
STEM imaging. This filter exhibits higher performance than the widely used BM3D filter in terms of keeping the 
original contour with a high resolution. It has been demonstrated that the deep-learning-based noise filtering 
plays a critical role for pushing the temporal resolution of STEM imaging up to a hardware limit. This promising 
approach currently has a large room to be improved especially in terms of time cost reduction or simplifying the 
collection procedure of training data. This point should be kept considering through comparison with various 
other learning algorisms as a future task, and it should be examined for various types of applications. The nonlin-
ear image distortion caused by the rapid scan can be compensated by the correction algorithm using a standard 
calibration specimen. As a result, 3D dislocation arrangement in an austenitic steel was clearly visualized, which 
well reproduced the result obtained by the conventional method based on intermittent specimen tilt with the 
slow scan of 1.6 s per frame. The averaged positional errors of the rapid STEM tomography were less than 8 nm 
in the lateral directions relative to the 3D data obtained by the conventional method, which were less than 0.5% 
of the field of view (~ 1.8 µm). The positional error in the z direction was relatively large (10.3 nm) due to the 
time lag artifact, which is expected to be further reduced by developing an appropriate calibration process. In 
addition, such an artifact due to the current limitation of scan speed is to be basically and continuously reduced, 
being expected by a hardware development going on48. It is significant to materials characterization especially 
for nano-mechanics that the present method enables tomographic observation of a 300 nm thick steel specimen 
which is practically impossible by the conventional TEM tomography. Several significant technical developments 
in STEM-based postmortem analysis techniques have been made over last several years aiming to high-spatial 
resolution structural defects characterization. These aim to obtain quantitative information from a thicker speci-
men (foil thickness > 200 nm) than conventional TEM approach by removing undesired diffraction contract 
elements such as bend contour49 or by distinguishing dislocations having different crystallographic characters 
at the same time based on their appearance50,51. In comparison with conventional TEM based approach, these 
techniques appear to be more efficient to identify the crystallographic nature of dislocation loops down to about 
2 nm in diameter and to provide statistically relevant number density of dislocation loops and other irradiation 
and/or plastic deformation induced defects. Accordingly, the proposed technique would greatly contribute to 
recent research activities as a platform technique for the four-dimensional (4D) observation requiring thick 
specimens such as dislocations in plastic deformation52–54.

Methods
Specimen preparation.  A single crystal of an AISI316L alloy, a typical austenitic stainless steel, was 
employed for a specimen. The chemical composition of the alloy was Fe-0.012% C-0.45% Si-0.17% Mn-17.3% 
Cr-10.57% Ni-4.72% Mo (mass %). The main phase of the as-prepared alloy is austenite (γ-Fe), whose crystal 
structure is the face-centered cubic (fcc) structure. After solid-solution heat treatment at 1323 K and 2 h, disloca-

Figure 7.   �Gz calculated from the 3D plot of local intensity centers. (a) y dependence of �Gz averaged along 
the x direction. (b) x dependence of �Gz averaged along the y direction.
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tions were introduced by a compressive deformation at room temperature. The compressive direction was nearly 
parallel to the < 100 > γ-Fe direction. The strain rate during the deformation was 1 × 10−4 s−1 and the magnitude of 
compressive plastic strain was about 3%. The specimen was cut into square sheets of 1.5 mm × 1.5 mm × 0.05 mm 
in size and then electropolished in an HClO4–CH3OH electrolyte under conditions of 20 V, 20 mA and 243 K.

Instrumentation.  A transmission electron microscope Titan Cubed G2 (Thermo Fisher Scientific Inc.) 
was operated at an acceleration voltage of 300 kV under the STEM mode with a relatively small convergence 
semi-angle of the incident electron beam, 1.2 mrad. This small convergence angle makes the depth of focus suf-
ficiently deeper so that the influence of the inevitable defocus caused by the high-angle tilt of the specimen can 
be ignored. In this setup, the blur due to such a defocus is less than 2 nm at most. All the images in this study 
were acquired using the commercial software, Velox™ (Thermo Fisher Scientific Inc.). The pixel size of all the 
images was 4.56 nm. A high-angle triple-axis (HATA) specimen holder (Mel-Build Co.) was used for adjusting 
the crystal orientation in order to maintain the two-beam excitation condition over the whole range of specimen 
tilt angle, which is required to visualize the same set of dislocations in all the tilt-series images55,56. In this experi-
ment, the [200] direction of the specimen was aligned to the tilt axis of the specimen holder (Supplementary 
Information C). All the dislocation images were bright-field images obtained by detecting the direct beam disk.

Rapid tilt‑series acquisition.  For tilting the specimen, a goniometer of the microscope was rotated from 
-70° to + 70° at the fastest speed which the regular user mode can choose. The resultant duration from the start 
to stop rotation was about 5 s, which was the shortest value achievable within the hardware limit on our micro-
scope. For the selected image size, 512 × 512 pixels, it takes about 30 ms to read a frame at a scanning speed of 
114 ns/pixel and about 40 ms to store the frame, which means that it takes about 70 ms in total to completely 
record one frame. During the 5 s, about 70 frames could be acquired without stopping the goniometer rotation 
throughout the tilt angle range, from − 70° to + 70°, which is not inferior to the number of tilt-series images 
acquired by a conventional method. In order to evaluate the quality of rapid STEM tomography comparing to 
the conventional method, we also acquired tilt-series images from the same field of view in the almost same con-
dition but taking a longer frame time of 1.6 s and intermittent manipulation of the goniometer as performed in 
the previous studies28,56. The tilt-series images were acquired every 2° throughout the range from − 70° to + 70°. 
In this conventional method, the rotation of the goniometer was stopped during image acquisition of 1.6 s at 
each tilt angle, resulting in dozens of minutes for the total procedure of tilt series image acquisition.

Image distortion correction.  As shown in Fig. 1g, the rapid scan image taken at 30 ms/frame is shrunken 
only in the x direction, compared with the slow scan taken at the 3 s/frame. This image distortion direction 
matches with the fast scan direction (Fig. 1g), suggesting that this image distortion is related to the characteristic 
of the beam scan device. In this study, we assume that nonlinear image distortion can be ignored in the slow 
scan. Under this assumption, we derive the image distortion distribution in the rapid scan image by calculating 
the local cross-correlation between the rapid scan image and the slow scan image obtained from the identical 
field of view as discussed in Supplementary information A.

Image processing and 3D reconstruction.  The effective thickness changes due to the specimen tilt 
cause the dislocation contrast being inconsistent. The tilt-series images we collected were not strictly a projection 
of the dislocation structure, so they cannot be directly applied to 3D reconstruction. Therefore, we implemented 
a binarization processing to the tilt-series images prior to 3D reconstruction (see the details of the binarization 
in Supplementary information G).

3D reconstruction also requires the tilt angle information of the tilt-series images. However, due to the non-
uniform motion of the rapid specimen tilt, the tilt angle of each frame of the rapid tilt-series images cannot be 
accurately known solely from the averaged rotation speed of the goniometer. To resolve this problem, we use 
multiple feature points in each of the images to correct tilt angles of each frame as discussed in Supplementary 
information H.

After the above steps, we used Inspect3D™ software (Thermo Fisher Scientific Inc.) to align the tilt-series 
images and reconstructed the 3D datasets by the simultaneous iterative reconstruction technique (SIRT) with 50 
times iterations. All the tilt-series images of rapid and conventional methods were used for 3D reconstruction, 
and Visualizer-evo™ software (SYSTEM IN FRONTIER INC.) was then used for 3D display.

Code availability
The codes employed for the noise filtering and distortion correction are available from the corresponding author 
upon reasonable request.
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