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Abstract: Periodontitis is an inflammatory condition that causes the destruction of the supporting
tissues of teeth and is a major public health problem affecting more than half of the adult population
worldwide. Recently, members of the herpes virus family, such as the Epstein–Barr virus (EBV), have
been suggested to be involved in the etiology of periodontitis because bacterial activity alone does
not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the
etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on
the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of
osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were
induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in
HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide
and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell
differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells,
EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with
oral cells or macrophage lineage, resulting in periodontitis onset and progression.

Keywords: periodontitis; Epstein–Barr virus; proinflammatory cytokines; osteoclast; gingival fibroblasts

1. Introduction

Periodontitis, which used to be termed chronic periodontitis, is a chronic inflammatory
disease that causes the destruction of periodontal tissues and alveolar bone; it is among
the most prevalent infectious diseases in the world. Although no single etiological agent
has been identified, a number of bacteria, such as Porphyromonas gingivalis, are believed
to be associated with the disease and are used as diagnostic markers [1]. However, bac-
terial activity alone cannot explain the several clinical characteristics of periodontitis [2].
Several reports have demonstrated the absence of periodontal bacteria in patients with
periodontitis, and no significant difference has been found in the prevalence of bacteria
between healthy and diseased periodontium [3–5]. Recently, a positive association has been
reported between periodontitis and infection with herpesviruses, such as the Epstein–Barr
virus (EBV) and human cytomegalovirus (CMV) [2,6]. EBV is an enveloped herpes virus
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with double-stranded DNA and only infects humans. During a primary EBV infection,
the virus undergoes lytic replication in epithelial cells and B cells, in which it establishes
latency [7]. Periodically, the virus can reactivate, and it is commonly found in the saliva of
infected persons [2].

Recently, we demonstrated that P. gingivalis can induce EBV reactivation through
epigenetic regulation [8]. Many studies have found a higher prevalence of EBV DNA
in the gingival tissue, gingival crevicular fluid, and subgingival plaque of patients with
periodontitis [9–13]. We also reported that EBV DNA was more frequently detected in
patients with deeper probing depth sites than in those with shallow probing depth sites
or healthy controls. The range of counts of EBV DNA in the periodontal pockets of
periodontitis patients was 3.74 × 103–2.83 × 109 copies/mL [14,15]. A large number of
EBV-encoded small RNA (EBER) positive cells were found in the gingival tissue of patients
with periodontal disease [14]. Vincent-Bugnas et al. reported that the level of gingival
epithelial EBV infection is correlated with the severity of periodontitis [16]. Treatment
with an antiherpesvirus drug decreased the presence of EBV to the detection limit, and
the periodontal condition improved dramatically [17]. These observations indicate that
EBV is involved in the etiology of periodontal disease. However, despite its importance,
the molecular mechanisms by which EBV affects the pathogenesis and progression of
periodontal disease remain poorly understood.

It has been demonstrated that periodontopathic bacterial infections and their asso-
ciated bacterial products, such as lipopolysaccharide (LPS), stimulate the production of
inflammatory cytokines such as interleukin (IL)-6 and IL-8 from human gingival fibroblasts
(HGFs) and monocytes, leading to connective tissue destruction and bone resorption in
periodontal patients [1,18]. Both LPS and inflammatory cytokines promote osteoclastogen-
esis and enhance osteoclast-mediated bone resorption by promoting the expression of the
receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) [1,18,19].

EBV can also trigger the cells of the immune system to produce cytokines and
monokines, and inflammatory mediators play an important role in the pathogenesis and
eventual outcome of EBV infection [7]. Although the main cells targeted by EBV infection
are B cells, several studies have reported that UV- or heat-inactivated EBV could stimulate
the production of inflammatory cytokines in monocytes and neutrophils [20–23]. These
observations indicate that even when EBV has not infected the cells, simple contact with
host cells can induce the production of inflammatory cytokines involved in the progression
of EBV infection.

The purpose of this study is to examine whether inactivated EBV affected the expres-
sion of inflammatory cytokines in HGFs. HGFs are the major cells in periodontal connective
tissues, providing a tissue framework for tooth anchorage and functioning as a regulator of
the production of inflammatory molecules. We also investigated the potential of inactivated
EBV for inducing osteoclast differentiation.

To the best of our knowledge, this is the first time that inactivated EBV has been
shown to markedly induce the production of inflammatory cytokines, the activation of
nuclear factor kappa B (NF-κB) in oral cells, and the differentiation of RAW264.7 cells into
osteoclast-like cells.

2. Results
2.1. Effect of EBV on IL-6 and IL-8 mRNA Expression in Gingival Fibroblasts

To investigate the effect of EBV on the expression of IL-6 and IL-8 from HGFs, we
performed a real-time polymerase chain reaction (RT-PCR) analysis. Because we detected
EBV DNA in deeper probing pocket depths sites (≥5 mm) ranging between 3.74 × 103 and
2.83 × 109 copies/mL in Japanese periodontitis patients [15], 5000 copies/mL of EBV were
used to treat HGFs for different periods of time. The extent of stimulation was comparable
with that elicited by tumor necrosis factor-α (TNF-α) as a positive control. EBV substantially
increased the expression of IL-6 and IL-8 mRNA (Figure 1). The IL-6 mRNA level was
upregulated in HGFs 4 h after incubation with inactivated EBV and reached a maximum
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after 12 h of stimulation. High time-dependent expression of IL-8 mRNA was observed in
response to incubation with EBV.

Figure 1. Effects of EBV on the expression of IL-6 and IL-8 mRNA in HGFs. HGFs were treated
with inactivated EBV (5000 copies/mL) or TNF-α (1 ng/mL) for the indicated times. “-” indicates
treatment with virus-treated stock solution as a control. RT-PCR analysis was performed to detect the
expression of IL-6 and IL-8 mRNA with specific primers. IL-6 and IL-8 mRNA levels were normalized
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA levels, and they are shown as fold
increase. EBV, Epstein–Barr virus; IL, interleukin; HGFs, human gingival fibroblasts; TNF-α, tumor
necrosis factor-α; RT-PCR, real-time polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase.

2.2. EBV Promoted the Production of IL-6 and IL-8 in HGFs

We next investigated the effect of EBV on the production of IL-6 and IL-8. HGFs were
incubated with or without inactivated EBV for 48 h, and the amounts of both cytokines were
measured using an enzyme-linked immunosorbent assay (ELISA). As shown in Figure 2A,
the production of both IL-6 and IL-8 was induced by EBV in HGFs in a copy-dependent
manner. Although CMV alone could induce the production of IL-6 and IL-8, significantly
more inflammatory cytokines were produced by treatment with EBV than by treatment
with CMV.

LPS, the major pathogenic component of the cell wall of P. gingivalis, can activate host
immune responses, including the production of inflammatory cytokines and chemokines,
leading to the progression of periodontal disease [1]. LPS from E. coli and lipoteichoic acid
(LTA) from S. aureus were employed as stimulators for the production of inflammatory
cytokines in HGFs. To compare the effects of EBV on HGFs, we also tested LPS and LTA.
As shown in Figure 2B, the levels of IL-6 and IL-8 in HGFs were highest when the cells
were treated with EBV rather than with P. gingivalis LPS, E. coli LPS, or LTA. These findings
suggested that EBV contributes to the progression of periodontal disease by promoting the
production of inflammatory cytokines.
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Figure 2. EBV induced the release of IL-6 and IL-8 from HGFs. (A) HGFs were treated with
inactivated EBV or CMV at the indicated copy numbers (copies/mL) for 48 h. Culture supernatants
were collected, and IL-6 and IL-8 levels were measured using ELISA. (B) HGFs were treated with
inactivated EBV (5000 copies/mL), CMV (5000 copies/mL), P. gingivalis LPS (500 ng or 1 µg/mL), E.
coli LPS (100 or 200 ng/mL), or S. aureus LTA (5 or 10 µg/mL) for 48 h, and then, IL-6 and IL-8 levels
in the supernatants were detected using ELISA. Experiments were performed in triplicate, and
data are presented as mean ± standard deviation (pg/mL). EBV, Epstein–Barr virus; IL, interleukin;
HGFs, human gingival fibroblasts; CMV, human cytomegalovirus; LPS, lipopolysaccharide; LTA,
lipoteichoic acid (LTA); ELISA, enzyme-linked immunosorbent assay.

2.3. NF-κB Was Involved in the Production of IL-6 and IL-8 Induced by Inactivated EBV in HGFs

NF-κB is an inducible cellular transcriptional factor that regulates a wide variety of
cellular genes involved in the control of the inflammatory and immune responses [24].
NF-κB is normally present in the cytoplasm in association with its inhibitory protein IκB.
Upon stimulation, signaling events are initiated, leading to the activation of the IκB kinase
(IKK) complex, which promotes the phosphorylation of IκB on two specific serine residues
(Ser32/36) in IκBα. This phosphorylation leads to the degradation of IκB by the 26S
proteasome and, thus, the nuclear translocation of NF-κB [24]. Because NF-κB is part of
one of the most important pathways mediating the generation of IL-6 and IL-8 [24,25],
we examined whether inactivated EBV can activate NF-κB, and, if so, whether NF-κB
is involved in the expression of these cytokines induced by inactivated EBV. To assess
whether EBV can activate NF-κB, gingival fibroblasts were stimulated with inactivated
EBV for different times and analyzed for IκBα and NF-κB (p65) expression using western
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blot analysis. As shown in Figure 3A, degradation of IκBα was observed as early as
15 min after stimulation of these cells by inactivated EBV. We also observed that inactivated
EBV stimulated the nuclear translocation of NF-κB p65. To further examine whether
NF-κB activation by inactivated EBV in HGFs occurred at the transcriptional level, we
employed luciferase assays using a reporter plasmid whose expression is controlled by
NF-κB. Figure 3B shows that inactivated EBV stimulated the activation of NF-κB-dependent
genes, such as 4xκB-luc, in a copy number-dependent manner. These results suggest that
EBV could activate the NF-κB pathway in HGFs.

Figure 3. Activation of NF-κB by EBV and its involvement in inactivated EBV-induced IL-6 and
IL-8 production. (A) Inactivated EBV-induced degradation of IκBα and translocation of p65 to
the nucleus. HGFs were treated with inactivated EBV (5000 copies/mL) for the indicated time
periods. Cytoplasmic extracts were fractionated using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and immunoblotted with anti-IκBα and GAPDH antibodies. Nuclear extracts were
immunoblotted with anti-p65 and PCNA antibodies. (B) Activation of NF-κB-dependent gene
expression by inactivated EBV. The 4xκB-luc reporter plasmid at 20 ng was transfected into HGFs,
which were incubated for 24 h and stimulated with the indicated amount of inactivated EBV for
an additional 8 h. The luciferase activity of each cell lysate was then measured. All experiments
were performed in triplicate, and the data are presented as the fold increase in luciferase activity
(mean ± standard deviation) relative to the control. (C) Effects of BAY11-7082 on inactivated EBV-
induced IL-6 and IL-8 production. HGFs were pretreated with various concentrations of BAY11-
7082 for 1 h and then incubated with inactivated EBV (5000 copies/mL) for an additional 24 h. The cell
culture supernatants were analyzed for IL-6 and IL-8 levels using ELISA. NF-κB, nuclear factor kappa
B; EBV, Epstein–Barr virus; IL, interleukin; HGFs, human gingival fibroblasts; ELISA, enzyme-linked
immunosorbent assay; PCNA, proliferating cell nuclear antigen.
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We further examined whether NF-κB is involved in the induction of the expression of
IL-6 and IL-8 in HGFs by inactivated EBV. We used an NF-κB selective inhibitor, BAY11-
70582. Gingival fibroblasts were preincubated with various concentrations of BAY11-
70582 before stimulation with inactivated EBV, and the amounts of these cytokines were
determined (Figure 3C). We found that BAY11-70582 inhibited the production of IL-6 and
IL-8 induced by EBV. These results showed that NF-κB signaling contributed to the EBV-
induced production of IL-6 and IL-8 in HGFs.

2.4. EBV Promoted RANKL-Induced Osteoclast Differentiation

Osteoclasts originate from the monocyte/macrophage lineage and demineralize and
degrade the bone matrix [19]. Osteoclast differentiation is regulated by the binding of
RANK present on the surface of preosteoclasts to its ligand RANKL, which leads to the acti-
vation of NF-κB [19]. To examine the effect of EBV on RANKL-induced osteoclastogenesis,
macrophage-like RAW264.7 cells were treated with different copy numbers of EBV in the
presence of recombinant RANKL. Although RANKL stimulation induced the formation
of osteoclast-like tartrate-resistant acid phosphatase (TRAP)-positive multinuclear giant
cells, interestingly, EBV treatment upregulated their number in a copy number-dependent
manner (Figure 4A). Higher magnification images also revealed that EBV increased both the
number and size of osteoclast-like cells in a copy number-dependent manner (Figure 4B).

Figure 4. Induction of RANKL-induced osteoclast differentiation by EBV. RAW264.7 cells were seeded
in a 96-well plate and treated with recombinant RANKL (50 ng/mL) in the absence or presence of the
indicated copy numbers of EBV (copies/mL) for 4 days, followed by TRAP staining. (A) The number
of TRAP-positive multinucleated cells present in each well was counted. “VS” indicates treatment
with virus-treated stock solution. (B) TRAP-positive multinucleated cells were observed by light
microscopy. RANKL, receptor activator of nuclear factor kappa B ligand; EBV, Epstein–Barr virus;
TRAP, tartrate-resistant acid phosphatase.
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3. Discussion

Although there is evidence for an association between EBV and periodontitis, the way
in which EBV affects the pathogenesis and progression of periodontitis has not been well
understood. It is known that excessive and/or continuous production of inflammatory
cytokines occurs in response to the presence of periodontopathic bacteria and their prod-
ucts, such as LPS, in the periodontal tissue of periodontitis patients and is an important
determinant for the onset and progression of periodontal disease. To clarify this issue,
it is important to identify and characterize any complex proinflammatory cytokine net-
work involved in periodontal pathogenesis and its link to EBV. In the present study, we
investigated the effects of inactivated EBV on the expression of inflammatory cytokines in
HGFs. We demonstrated that EBV could activate NF-κB and could subsequently promote
the production of IL-6 and IL-8 in HGFs.

IL-6 activity is involved in the stimulation of acute-phase protein synthesis, leukocyte
recruitment, B-cell differentiation, and T-cell activation in many chronic inflammatory
diseases [26]. IL-8, a potent neutrophil chemoattractant and activator, has been associated
with the pathogenesis of periodontal diseases and the accumulation and degranulation
of neutrophils, with the subsequent destruction of normal tissue [27]. These cytokines
could also stimulate bone resorption by promoting the formation of osteoclasts [28]. Many
investigators have detected IL-6 and IL-8 in gingival cavity fluid (GCF), and their levels in
GCF are closely associated with the severity of inflammatory responses and periodontal
tissue destruction [28–33]. Reinhardt et al. reported that because IL-6 levels in GCF
of periodontitis patients were higher than IL-1 levels, IL-6 plays an important role in
the progression of periodontal disease [33]. It has been shown that, primed by IL-1β,
IL-8 markedly upregulates neutrophils for elastase release, giving rise to a significant
amplification of periodontal inflammation [32]. We observed that the production of IL-
6 and IL-8 induced by EBV was significantly stronger than that induced by P. gingivalis
LPS. Because these inflammatory cytokines are multifunctional and exert their effects in
a paracrine and autocrine fashion to modulate the inflammatory and immune responses
of HGFs, these findings suggested that EBV contributes to the progression of periodontal
disease by promoting the production of inflammatory cytokines.

A number of highly inducible genes encoding cytokines and chemokines contain
NF-κB-binding sites in their proximal promoters [24], and activation of NF-κB plays a
central role in virus-dependent cytokine expression and pathology. We observed that
EBV could stimulate the degradation of IκBα and the phosphorylation of NF-κB p65 and
NF-κB-dependent genes, such as 4xκB-luc. Inhibition of NF-κB reduced the production
of IL-6 and IL-8 induced by inactivated EBV in HGFs. Although our data suggested that
NF-κB was involved in EBV-induced cytokine production in HGFs, EBV also results in the
activation of other transcription factors, as well as members of signaling pathways, such
as mitogen-activated protein kinases. Thus, further study is needed to understand what
kind of signaling pathway is involved in the induction of inflammatory cytokines by EBV
in HGFs.

Because inactivated EBV was used for the stimulation of HGFs, our results suggest
that infection with EBV is not required for the induction of inflammatory cytokines and
NF-κB activation in HGFs. EBV infects B cells and replicates in the epithelial cells of the
oropharynx, suggesting that EBV can interact with other cell types, such as T cells and
thymocytes [7,16]. EBV can also interact with monocytes and neutrophils and can modulate
the expression of inflammatory cytokines, such as IL-1, IL-8, macrophage inflammatory
protein-1α, and granulocyte-macrophage colony-stimulating factor, without penetrating
these cells [20–23]. Tanner et al. reported that EBV glycoproteins gp350 and gp220 induced
the production of IL-6, so contact between the structural proteins of the virus, such as
glycoproteins, and the cells might be necessary for the induction of cytokine expression by
inactivated EBV [34]. These observations, including our results, suggest that even when
EBV has not infected B cells, it contributes to the onset and progression of periodontitis by
simple contact with and subsequent activation of macrophages, fibroblasts, and neutrophils
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in the vicinity of B cells, resulting in the production and release of inflammatory cytokines.
Although CD21 and Toll-like receptors are also expressed in oral cells [18,35], it is necessary
to clarify which receptors are involved in EBV-induced inflammatory cytokines in HGFs.

A major clinical symptom of periodontal disease is alveolar bone loss due to exces-
sive resorption by osteoclasts [1,18]. P. gingivalis affects osteoclast formation in various
ways, such as by interacting directly with osteoclast precursors, including bone mar-
row macrophages, or indirectly by activating HGFs and osteoblasts, which aid osteoclast
formation [18]. LPS is also involved in osteoclast differentiation via inducing RANKL
expression [18,19]. In this study, we found that EBV could induce the differentiation of
RAW264.7 cells into osteoclast-like cells. Most recently, we also reported that the human
immune response to EBV infection may induce human osteoclast activation and cause
erosive arthritis in humanized NOD/Shi-scid/IL-2Rγnull (hu-NOG) mice [36]. In addition,
we observed that EBER and osteoclasts were detected in the periodontium of EBV-infected
hu-NOG mice (data not shown). These observations, including the results of this study,
suggest that EBV may be involved in the onset and progression of inflammatory bone dis-
eases, such as periodontal disease and rheumatoid arthritis. Although EBV does not infect
mice, presenting a challenge for biomedical research, the mechanism by which EBV induces
osteoclast differentiation and whether EBV actually promotes alveolar bone resorption
in vivo are important issues that need to be addressed in the near future.

We previously demonstrated that P. gingivalis can induce EBV reactivation through
epigenetic regulation [8]. Significantly high levels of butyric acid have been found in
the saliva of periodontitis patients, which could efficiently induce the expression of the
EBV lytic switch activator BZLF1 [37]. We assume that the interaction between EBV and
periodontopathic bacteria leads to the following negative chain of pathological events in
the oral cavity: (1) poor oral hygiene causes the accumulation of butyric acid-producing
periodontopathic anaerobic bacteria, such as P. gingivalis and F. nucleatum; (2) butyric acid
induces EBV reactivation; (3) EBV induces the production of high concentrations of inflam-
matory cytokines in various types of cells and the formation of osteoclasts without infection;
(4) progression of gingival inflammation and alveolar bone resorption; (5) periodontitis
escalation.

Periodontitis and EBV are spreading worldwide. Although additional basic and
clinical studies are needed, reducing the amount of EBV, as well as the number of bacteria,
may be valuable for the prevention and treatment of periodontitis.

4. Materials and Methods
4.1. Cell Culture

HGFs were maintained at 37 ◦C in Dulbecco’s modified Eagle’s medium (Sigma Aldrich,
St. Louis, MO, USA) with 10% heat-inactivated fetal bovine serum (FBS) (Thermo Fisher
Scientific Inc., Rockford, IL, USA), penicillin (100 U/mL), and streptomycin (100 µg/mL). The
Ethics Committee of Nihon University School of Dentistry at Matsudo approved the study
(EC03-041, EC10-040, and EC14-023), and written informed consent was obtained from
each patient after a full explanation of the protocol. The mouse macrophage-like cell line
RAW264.7 was purchased from Dainippon Pharmaceutical (Osaka, Japan) and maintained
in α-minimal essential medium (WAKO, Osaka, Japan) supplemented with 10% FBS and
penicillin/streptomycin.

4.2. Reagents and Plasmids

Inactivated EBV (strain: B95-8) and CMV (strain: AD-169) were purchased from Zep-
toMetrix (Buffalo, NY, USA). These viruses were isolated from cell culture medium or
patient plasma and were purified to a high degree. The viral surface proteins were chemi-
cally or enzymatically processed while leaving nucleic acids intact. A virus-treated solution
(ZeptoMetrix, Buffalo, NY, USA) was added to the cells as a control. Human recombinant
TNF-α was purchased from Roche Diagnostics Deutschland GmbH (Mannheim, Germany).
P. gingivalis LPS was obtained from Invivogen (St. Louis, MO, USA). Escherichia coli LPS
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and Staphylococcus aureus LTA were purchased from Sigma Aldrich. Antibodies for, IκBα,
p65, PCNA, and GAPDH were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA, USA). BAY11-7082, an inhibitor of IκB-α phosphorylation, was purchased from Sigma
Aldrich. The reporter plasmid used, which expresses firefly luciferase under the control of
NF-κB (pGL3-κB luc), was described previously [38,39].

4.3. Preparation of mRNA and Real-Time Polymerase Chain Reaction

The experimental procedures for RNA purification and RT-PCR were performed
as previously described [39]. Briefly, HGFs were washed once with ice-cold phosphate-
buffered saline (PBS) and homogenized with QIAshredder (Qiagen, Hilden, Germany), and
total RNA was purified using RNeasy Mini Kits (Qiagen). For cDNA synthesis, 1 µg of total
RNA was reverse transcribed using RNA PCR kits (PrimeScript; Takara Bio, Shiga, Japan).
The resulting cDNA mixture was subjected to RT-PCR analysis using SYBR Premix Ex Taq
solution (Takara Bio) containing 10 µM sense and antisense primers. The primer sequences
for each amplified gene were as follows: IL-6, forward (5′-CCA TAC CAG GTG CCT TTT
GT-3′) and reverse (5′-GAG ACT GGG AAC AGC TGA GG-3′); IL-8, forward (5′-CCA TAC
CAG GTG CCT TTT GT-3′) and reverse (5′-GAG ACT GGG AAC AGC TGA GG-3′); IL-8,
forward (5′-CTT GTC ATT GCC AGC TGT GT-3′) and reverse (5′-TGA CTG TGG AGT TTT
GGC TG-3′); and GAPDH, forward (5′-ACC AGC CCC AGC AAG AGC ACA AG-3′) and
reverse (5′-TTC AAG GGG TCT ACA TGG CAA CTG-3′). The PCR assays were performed
using TP-800 Thermal Cycler Dice Real-Time System (Takara Bio) and were analyzed using
the software provided by the device manufacturer. The thermal cycling conditions were
40 cycles at 95 ◦C for 5 s, 60 ◦C for 30 s, and 72 ◦C for 1 min. All RT-PCR experiments were
performed in triplicate, and the specificity of each product was verified by melting curve
analysis. The calculated gene expression levels were normalized to GAPDH mRNA levels.

4.4. Cytokine Measurements

Cytokine concentrations were measured using human ELISA kits for IL-6 and IL-8
(R&D Systems, Minneapolis, MN, USA) in HGF culture supernatant using the experimen-
tal procedures recommended by the manufacturer. All experiments were performed in
triplicate, and data are presented as mean ± standard deviation.

4.5. Preparation of Whole-Cell and Nuclear Extracts

HGFs (2 × 105 cells/mL) were treated with or without inactivated EBV. The cells were
then washed with cold PBS and resuspended in lysis buffer (Cell Signaling Technology,
Inc., Danvers, MA, USA) and protease inhibitors (Roche Diagnostics GmbH, Mannheim,
Germany), incubated on ice for 10 min, and centrifuged for 15 min at 15,000 rpm. The
supernatant was then collected (whole-cell extract) and stored at −80 ◦C until use. To
prepare the nuclear extract, precipitated cells were resuspended in cytoplasmic lysis buffer
(Chemicon International, Temecula, CA, USA) and incubated for 15 min on ice. The cells
were vortexed and then centrifuged for 10 min at 15,000 rpm, and the supernatant was
removed. The cell pellets were washed twice with cytoplasmic buffer to remove any trace
of proteins from the cytoplasmic extracts, resuspended in nuclear lysis buffer (Chemicon
International, Temecula, CA, USA), and incubated on ice for 15 min. The cell suspensions
were then sonicated for 10 s and centrifuged for 15 min at 15,000 rpm, and the supernatant
fractions were stored at −80 ◦C. Pierce Microplate BCA Protein Assay Kit - Reducing
Agent Compatible kits (Thermo Fisher Scientific, Inc., Waltham, MA, USA) were used to
standardize the protein concentration in all samples.

4.6. Western Blot Analysis

The experimental procedures for western blot analysis were performed as previously
described [38,39]. Briefly, equal amounts of the protein samples (20 µg) were separated
using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a
polyvinylidene fluoride membrane (EMD Millipore Corporation, Billerica, MA, USA). The
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membrane was probed with the appropriate antibodies, and immunoreactive proteins were
visualized using SuperSignal West Pico enhanced chemiluminescence kits (Thermo Fisher
Scientific, Inc.). Protein bands were detected using the ChemiDoc XRS System (Bio-Rad,
Hercules, CA, USA).

4.7. Transfection and Luciferase Assay

HGFs (1 × 105 cells/mL) were transfected with 20 ng of pGL3-κB luc using FuGENE
6 transfection reagent (Roche Diagnostics) according to the manufacturer’s protocol [38,39].
Subsequently, 24 h after transfection, the cells were treated with EBV for an additional
8 h. These cells were then harvested using Passive Lysis Buffer (Promega Corporation,
Madison, WI, USA), and the extracts were assessed for luciferase activity using the Dual-
Luciferase Assay System (Promega) as previously described [38,39]. All experiments were
performed in triplicate, and the data are presented as the fold increase in luciferase activity
(mean ± standard deviation (SD)) relative to controls.

4.8. Osteoclast Formation and TRAP Staining

RAW264.7 cells were seeded in 96-well culture plates (4 × 103 cells/well). After
culturing overnight, the medium was replaced with 200 µL of α-minimal essential medium
containing 10% FBS and 50 ng/mL soluble RANKL (R&D Systems) in the absence or
presence of the indicated copy numbers of EBV. The cultures were then incubated at
37 ◦C for 4 days. The medium was replaced every other day. Cells were fixed with 4%
paraformaldehyde and stained for TRAP activity as described previously [40].
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