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Abstract: Epidemiologic studies examining the relationship between body composition and the
urine metabolome may improve our understanding of the role of metabolic dysregulation in body
composition-related health conditions. Previous studies, mostly in adult populations, have focused
on a single measure of body composition, body mass index (BMI), and sex-specific associations are
rarely explored. We investigate sex-specific associations of two measures of body composition—BMI
and body fat (BF)—with the urine metabolome in adolescents. In 369 participants (age 16–18,
49% female) of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD)
study, we examined sex-specific associations of these two measures of body composition, BMI and BF,
and 1407 (467 unknown) 24 h urine metabolites analyzed by untargeted metabolomics cross-sectionally.
Missing metabolites were imputed. We related metabolites (dependent variable) to BMI and BF
(independent variable) separately using linear regression. The models were additionally adjusted
for covariates. We found 10 metabolites associated with both BMI and BF. We additionally found
11 metabolites associated with only BF, and nine with only BMI. None of these associations was in
females. We observed a strong sexual dimorphism in the relationship between body composition and
the urine metabolome.

Keywords: metabolomics; adolescents; body composition; sex-specific; body mass index; body fat

1. Introduction

Overweightness (including obesity) has reached epidemic proportions. Approximately 39% of
the adult human population is overweight (BMI (body mass index) ≥ 25 to < 30 kg/m2) or obese
(BMI ≥ 30 kg/m2) [1]. The global prevalence of overweightness (BMI > +1 standard deviation above
the median) among adolescents aged 10 to 19 years has increased steadily over the last 40 years,
from 4.3% in 1975 to 17.3% in 2016 [1,2]. Current research suggests that overweightness and obesity
contribute to the increasing risk of chronic diseases [1]. The global burden of disease study estimated
that in 2015, roughly 7% of deaths from any cause and roughly 5% of disability-adjusted life-years
globally were due to high BMI [3]. Metabolic dysregulation, in addition to inflammation and insulin
resistance, may mediate the link between overweightness and many chronic diseases, like Type 2
diabetes or cardiovascular diseases. There is mounting evidence that these links are already present in
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adolescents [1,4,5], implying an increase in risk of future incidence of chronic diseases. Therefore, it is
important to find the metabolic changes already present in adolescence, and to understand the link
between overweightness and disease progression in later life.

Being overweight is known to be related to metabolic changes—for example, through body fat
functioning as an endocrine organ, producing adipokines like leptin or visfatin [6,7]. Additionally,
past studies have shown that overweightness is likely to be a causal influence on the metabolome
phenotype [8]. A recent review [7] that summarizes the current knowledge of the metabolomic
signature of adult obesity concluded that many metabolite groups are altered, including sexual steroids,
amino acids, and acylcarnitines, among others. Interestingly, only a few epidemiological studies
have explored the relationship between body composition and the metabolome in adolescents [9,10].
Cho et al. [9] quantitatively measured the global metabolic repertoire in adolescents, and showed
that endogenous metabolites and inflammation-related metabolites are related to body composition.
Saner et al. [10] investigated metabolomic profiles in obese children and adolescents (ages 6 to 18),
and found associations in post-pubertal males of several metabolites, including fatty acids, triglycerides,
isoleucine, leucine, and glycoprotein with obesity measures. However, overall evidence is scarce
calling for more studies profiling the adiposity metabolome, preferably by untargeted methods.

It is well-known that the body composition of adolescents is sex-specific [5]. While BMI tends
to be comparable between males and females, body fat in females is physiologically higher starting
in late puberty (Tanner stages IV and V). In addition, a sexual dimorphism in metabolism is well
recognized [11]. Thus, investigating sex differences may reveal pathophysiologically relevant variations,
with potential implications for overweightness- or obesity-related health conditions.

We decided to investigate two different measures of body composition to increase our confidence
in the metabolite–body composition associations that are present for both measures. We used BMI,
as it is the most widely used measure for body composition in observational studies [5,12]. It is
well-understood that BMI is a good marker for body composition on the population level [13].
Specifically, in an adolescent population it has been demonstrated that BMI categories correctly
identify children with excess body fat in roughly 85% of cases [5]. However, it has well-documented
shortcomings regarding body fat distribution [14,15]. To address these shortcomings, we also used
body fat percentage, as estimated with skinfold measurements.

Here, we explored the a priori, sex-stratified relationship between these two measures of body
composition, BMI and BF, and the urine metabolome cross-sectionally among adolescents.

2. Results

2.1. Basic Characteristics

The basic characteristics of the participants (180 females, 189 males) are shown in Table 1.
Females had a higher BF, were less physically active, consumed fewer calories, and were less likely to
be overweight than males. Males were less likely to be current alcohol consumers, and more frequently
their mothers were employed and of higher educational status. Roughly 20% of males and 13% of
females were overweight (BMI ≥ 25).
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Table 1. Characteristics of 369 Dortmund Nutritional and Anthropometric Longitudinally Designed
(DONALD) study participants aged 16 to 18 years.

Variable n
Total Male Female

n = 369 n = 189 n = 180

Age (years) 369 17.3 (1.0) 17.2 (1.0) 17.4 (1.0)
Body Fat Percent 368 21.8 (8.0) 16.6 (5.6) 27.3 (6.4)
BMI (kg/m2) 369 22.2 (3.7) 22.5 (4.0) 21.9 (3.2)
Overweight (BMI ≥ 25): Yes 369 62 (16.8%) 39 (20.6%) 23 (12.8%)
Metabolic Equivalent of Task-Hours (met-h/week) 207 41.3 (37.0) 45.9 (43.3) 36.6 (28.8)
Calories (kcal) 364 2189.2 (616.7) 2545.8 (565.4) 1816.5 (415.4)
Protein (%kcal) 364 13.9 (2.8) 14.1 (2.7) 13.7 (2.8)
Fat (%kcal) 364 33.7 (6.6) 33.9 (7.0) 33.6 (6.1)
Carbohydrates (%kcal) 364 50.5 (6.9) 49.8 (7.4) 51.2 (6.3)
Smoking Status 118
Never 56 (15.2%) 28 (14.8%) 28 (15.6%)
Former 35 (9.5%) 13 (6.9%) 22 (12.2%)
Current 27 (7.3%) 12 (6.3%) 15 (8.3%)
Alcohol Status 155
Never 8 (2.2%) 5 (2.6%) 3 (1.7%)
Former 11 (3%) 5 (2.6%) 6 (3.3%)
Current 136 (36.9%) 65 (34.4%) 71 (39.4%)
Maternal Occupation: Working (full or part-time) 364 222 (60.2%) 122 (64.6%) 100 (55.6%)
Maternal Education: >12 Years of Education 365 190 (51.5%) 101 (53.4%) 89 (49.4%)
Breastfeeding Duration (weeks) 363 25.0 (18.3) 24.3 (18.9) 25.7 (17.7)
Maternal Gestational Weight Gain (kg) 348 12.8 (4.1) 12.7 (4.2) 13.0 (4.1)
Maternal BMI (kg/m2) (kg/m2) 358 23.7 (3.7) 23.8 (3.5) 23.7 (3.9)
Smoking Household: Yes 265 86 (23.3%) 43 (22.8%) 43 (23.9%)

Data are presented as mean (standard deviation) for continuous measures and n (column percent) for categorical
measures. Available n values differ because of missing data.

2.2. Linear Regression Models

2.2.1. Summarizing Metabolites into Groups Using Independent Component Analysis

We kept the first seven independent components (IC), according to the scree plot. The composition
of the extracted components are recorded in Table A1. In our sample, no IC was associated with BMI
or BF for either sex. A table of β-estimates with confidence limits can be found in Table A2.

2.2.2. Metabolites Associated with Both BMI and BF

There were 10 metabolites (0.8% of metabolites analyzed) significantly associated with both BMI
and BF in males, and zero metabolites in females (Figure 1). A table of β-estimates with confidence
limits can be found in Table A3. The estimates presented here are back-transformed from the log-scale.

There were four amino acids associated significantly with BMI and BF: guanidinosuccinate
(negative, BMI: 0.97 (0.96 to 0.99), BF: 0.98 (0.97 to 0.99)), isobutyrylglycine (C4) (negative, BMI: 0.97
(0.95 to 0.98), BF: 0.98 (0.97 to 0.99)), isovalerylglycine (negative, BMI: 0.96 (0.95 to 0.98), BF: 0.97
(0.96 to 0.98)), and tigloylglycine (negative, BMI: 0.97 (0.96 to 0.99), BF: 0.97 (0.97 to 0.98)).

In the super-pathway of cofactors and vitamins, nicotinamide N-oxide (positive, BMI: 1.05 (1.02
to 1.08), BF: 1.04 (1.03 to 1.06)) was associated. Additionally, the xenobiotic succinimide (negative, BMI:
0.98 (0.97 to 0.99), BF: 0.99 (0.98 to 0.99)) was associated with both BMI and BF significantly.

Furthermore, we found significant associations with both BMI and BF for the partially characterized
molecule glucuronide of C10H18O2 (12) (positive, BMI: 1.05 (1.03 to 1.07), BF: 1.03 (1.02 to 1.04)) as well
as the unknown metabolites X-21851 (positive, BMI: 1.04 (1.02 to 1.06), BF: 1.02 (1.01 to 1.04)), X-24469
(positive, BMI: 1.03 (1.02 to 1.05), BF: 1.02 (1.01 to 1.03)), and X-24801 (positive, BMI: 1.03 (1.02 to 1.05),
BF: 1.02 (1.01 to 1.03)).
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Figure 1. Metabolites associated with body mass index (BMI) and body fat (BF). Estimates are
back-transformed linear regression beta coefficients, regressing metabolites on body composition (BMI
or BF). BMI is measured in kg/m2 and body fat in percent. Abbreviations: CV, cofactor and vitamins;
PCM: partially characterized molecules; XB: xenobiotics.

2.2.3. Metabolites Associated with Either BMI or BF

There were 20 metabolites (1.6% of metabolites analyzed) significantly associated with either
BMI or BF. Of these, 11 were associated with BF and nine with BMI. All 20 associations were in males,
none in females. A graphical representation of these results is presented in Figure 2. In Table A4,
we present β-estimates and confidence intervals for all metabolites. The estimates presented here are
back-transformed from the log-scale.
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Figure 2. Metabolites associated with either BMI or BF. Estimates are back-transformed linear regression
beta coefficients, regressing metabolites on body composition (BMI or BF). BMI units are kg/m2 and
body fat units are percent. Abbreviations: NT, nucleotide; PCM, partially characterized molecules.

2.3. Metabolites Associated with BMI

The amino acids formiminoglutamate (positive, BMI: 1.03 (1.02 to 1.05)), 7-hydroxyindole sulfate
(negative, BMI: 0.94 (0.92 to 0.97)), and proline (negative, BMI: 0.97 (0.96 to 0.99)) were associated with
BMI. Additionally, the nucleobase thymine (BMI: 0.98 (0.97 to 0.99)) was associated negatively with
BMI. Two lipids were significantly associated with BMI: decanoylcarnitine (C10) (positive, BMI: 1.04
(1.02 to 1.05)) and 5-dodecenoylcarnitine (C12:1) (positive, BMI: 1.05 (1.03 to 1.07)). Three unknown
metabolites (X-12839 (positive, BMI: 1.04 (1.02 to 1.06)), X-21441 (positive, BMI: 1.04 (1.02 to 1.07)),
and X-25003 (negative, BMI: 0.96 (0.94 to 0.98))) were associated with BMI.

2.4. Metabolites Associated with BF

The amino acids 3-methylcrotonylglycine (negative, BF: 0.97 (0.96 to 0.99)) and isovalerylglutamine
(negative, BF: 0.98 (0.97 to 0.99)) were significantly associated with BF. The energy metabolite malate
(negative, BF: 0.97 (0.96 to 0.99)) was significantly associated with BF as well. Additionally, there were
two partially characterized molecules (glutamine conjugate of C8H12O2 (1) (positive, BF: 1.02 (1.01
to 1.04)) and glycine conjugate of C10H14O2 (1) (positive, BF: 1.04 (1.02 to 1.05)) and seven unknown
metabolites (X-11261 (positive, BF: 1.03 (1.01 to 1.04)), X-15486 (positive, BF: 1.04 (1.02 to 1.05)), X-17676
(negative, BF: 0.98 (0.97 to 0.99)), X-24345 (positive, BF: 1.03 (1.02 to 1.05)), X-24350 (positive, BF: 1.04
(1.02 to 1.06)), X-25442 (positive, BF: 1.04 (1.02 to 1.06)), and X-25464 (positive, BF: 1.03 (1.01 to 1.05)))
that were significantly associated.
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3. Discussion

The current study explores the sex-specific cross-sectional associations of two measures of body
composition, BMI and BF, and the urine metabolome and urine metabolite patterns (ICs) in adolescent
boys and girls. Approximately 2.4% of the urine metabolome was associated with body composition
in boys; no association was seen in girls. Our results underscore the presence of changes in the urine
metabolome in relation to body composition already in adolescence. To our knowledge, this is the first
study to relate two measures of body composition to the urine metabolome in adolescents. Our results
strongly suggests sex-specificity in associations.

We advise the reader that the results of the present study were exploratory, and therefore should
not be overemphasized. Any interpretation we give here in relation to the biological process may only
be seen as one of many possible explanations for the reported associations. In fact, many of the reported
compounds have not been reported in conjunction with body composition before. A more in-depth
investigation of these single compounds is, however, outside of the scope of this study. We found
10 metabolites that related to both measures of body composition in males, and none in females.
These metabolites were guanidinosuccinate, isobutyrylglycine (C4), isovalerylglycine, tigloylglycine,
nicotinamide N-oxide, glucuronide of C10H18O2 (12), X-21851, X-24469, X-24801, and succinimide.
Nicotinamide N-oxide [1] and tigloylglycine [2] have been associated with BMI in prior studies.
The other eight molecules are reported in association with body composition here for the first time.
Additionally, we found 20 metabolites associated with either BMI or BF. When metabolites are
significantly associated with both measures of body composition, we should have higher confidence in
their association. As both measures have their own unrelated measurement error while measuring
different aspects of the same concept (body composition), a significant association with both BMI
and BF should indicate that it is more likely related to this underlying concept. The metabolites
associated with only BMI or BF, however, were all associated in the same direction with the other body
composition measurement. Additional discussion of these metabolites can be found in Table A5.

In general, our results reinforced the idea of sexual dimorphism in metabolism. The stronger
association in males is consistent with previous studies in mice [3], adults [4,5], and adolescents [6],
as well as our own recent findings within this study population [7]. One potential explanation is that
sex hormones might modify the relationship between body composition and the urine metabolome.
Specifically, prior studies have shown changes in the type of body composition and overall obesity in
relation to sex hormones and displaying sexual dimorphism in their mode of effect [8–11]. Furthermore,
the sexual dimorphism in the urine metabolome is well-documented [4,12–15]. As sex hormones play
an important role in many metabolic pathways, e.g., they have been shown to regulate the liver energy
homeostasis [16], an interaction between sex hormones, body composition, and the urine metabolome
is plausible. Another explanation, as was shown for urine cortisol levels [5], is that sex differences
relate to other factors of metabolism, such as enzyme activity. Wang et al. [17] showed that lipid and
lipoprotein metabolism is in fact independent of sex hormone administration, even though there are
significant sex differences; however, the mechanism remains to be elucidated. The specific mechanism
of sex difference in metabolism might therefore differ for different pathways, and deserves to be studied
further. Our results may help to explain sex differences in weight-related health conditions.

We used independent component analysis (ICA) to summarize metabolites into fewer components
in the current analysis. We chose ICA because the components are statistically independent, and their
interpretation in biological processes allows for the mixture of different pathways and processes that
contribute to the living system. Because metabolomics takes a snapshot of these processes and systems,
these components hold a large value for understating of processes. In the current study, none of the ICs
we retained were associated with body composition. This suggests that body composition influences
specific metabolic pathways, and not a mixture of different pathways captured by the ICA.

Guanidinosuccinate is produced by the oxidation of argininosuccinic acid, and was associated
with higher measures of body composition in males. The oxidation of guanidinosuccinate occurs
favorably with increased levels of urea, and results in a decline of hepatic levels of arginine [18]. It is
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well-known that the urea cycle is dysregulated with higher adiposity [19]; therefore, reduced renal
function compared to the average adolescent may partly explain our findings. Guanidinosuccinate may
be a marker of the kidneys’ ability to eliminate urea, particularly in males.

Isobutyrylglycine (C4) is a short-chain acylglycine in the catabolism of leucine, isoleucine,
and valine. In newborn screenings, elevated levels of this metabolite are used to diagnose
isobutyryl-CoA dehydrogenase deficiency [20]. Since isobutrylglycine levels decrease with higher
BMI and BF, isobutyryl-CoA dehydrogenase might be upregulated with elevated measures of body
composition. Alternatively, smaller amounts of leucine, isoleucine, and valine might be catabolized
in individuals with abnormal adiposity. However, the present association was independent of
these metabolites.

Isovalerylglycine is an acyl glycine that is produced in the catabolism of leucine [18]. Higher BMI
and BF are associated with the metabolism of leucine in rats [21]; however, no study to date exists
in humans. This metabolite has also been suggested as a biomarker for cheese consumption [22].
Although we did not specifically adjust for cheese intake, the fact that we adjusted for macronutrient
intake suggests that our finding is independent of cheese intake.

Tigloylglycine is an acylglycine that is an intermediate of the isoleucine catabolism [18].
Like isovalerylglycine, it was suggested as a biomarker for the consumption of cheese [18].
Again, we adjusted for nutrition, so an association because of cheese consumption is unlikely.
Urinary acylglycine decreases with higher BMI have been documented before [2]. Similar to other
leucine, isoleucine, and valine metabolites, the enzyme metabolizing this compound might be
upregulated, or the overarching pathway of branched-chain amino acid (BCAA) catabolism might
be dysregulated.

BCAAs have a well-documented association with higher markers of body composition: increased
blood levels of BCAAs correlated with higher levels of body composition [19]. A recent study by Elliot
et al. [23] reported associations between increased urine levels of leucine, isoleucine, and valine and
BMI. Additionally, they reported lower levels of ketoleucine with higher BMI. Ketoleucine is the first
metabolic product in the energy use of leucine [24]. The metabolites we found that decreased with
higher measures of body composition are downstream metabolites of BCAAs, which are produced
through similar processes as ketoleucine from leucine, namely when their respective BCAA is used for
energy in skeletal muscle. As BCAAs are not the first energy source muscles use in response to physical
activity, increased blood levels of BCAAs and decreased levels of their energy pathway downstream
products are in line with decreased physical activity and overabundance of other energy sources in
persons with higher measures of body composition.

Nicotinamide N-oxide is a precursor of nicotinamide adenine dinucleotide (NAD) and a catabolite
of nicotinamide [18,25]. Increased urine nicotinamide N-oxide is associated with high-fat, diet-induced
obesity in mice [26]. In humans, serum levels of another nicotinamide was positively associated with
BMI and waist circumference [1]. This finding suggests that in individuals with higher measures
of body composition, there is a nicotinamide overload, or enzymes catabolizing nicotinamide to
nicotinamide N-oxide are overexpressed or hyper-activated. However, our result is independent of
nicotinamide, which favors the latter explanation.

Succimide is commonly found in anticonvulsant drugs [18]. The fact that a common side effect
of anticonvulsant drugs are changes in weight [27] might provide a potential explanation for the
association with adiposity.

Additionally, there are no available data on the relationship between the unknown metabolites
X-21851, X-24469, and X-24801, or the partially characterized metabolite glucuronide of C10H18O2
(12) and body composition. Besides, since they are without biochemical identities, or only partially
characterized, it is difficult to provide explanations. Nevertheless, with the rapidly developing field of
metabolomics, the identification of these metabolites should not be far from sight.

The present study has some notable strengths. We investigated the associations between body
composition and the urine metabolome using two measures of body composition, in order to achieve
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a more comprehensive relationship between body composition and alteration in urine metabolites.
The sex-specific investigation defined a priori also ensures that sex-specific relationships are well
explored. Additionally, we used 24 h urine samples in a comparatively large study population to study
the urine metabolome with an untargeted approach. To limit the possibility of false positives that
untargeted approaches entail, we controlled for multiple testing by holding the False Discovery Rate
(FDR) at 5%.

However, we acknowledge several limitations to the study. First, our participants are all Caucasians
(Germans), residing in a large city (Dortmund) and surroundings, mostly from a high socioeconomic
background. Thus, the generalizability of our findings is limited. Further, our study sample had very
few individuals in the extremes of body composition, namely in the underweight (BMI < 18.5) and the
obese (BMI ≥ 30) classifications, our findings may only be generalizable to individuals with normal
and overweight body composition status. More associations of metabolites with BF as compared to
BMI may also be due to BF having a larger variation in our study sample. Additionally, we cannot rule
out residual confounding by either unknown or unmeasured (for example, genetic influences) factors.
Lastly, because we only had one measurement of the urine metabolome, we were not able to establish
a relationship of body composition and variability in the urine metabolome.

Future research should try to identify the unknown or partially characterized molecules that
were associated in this study, as they have potential to help elucidate the biological mechanisms
of the relationship between body composition and metabolic function on the pathway to health
outcomes. Additionally, more studies are needed that stratify their metabolomic analysis by sex,
in order to increase our understanding of the physiological differences in metabolism between males
and females. Furthermore, future studies should try to replicate our findings in an independent
adolescent population, and try to extend the analysis to a longitudinal design to elucidate the temporal
relation of body composition with urine metabolome. Additionally, it would be interesting to evaluate
differences between the blood and urine metabolome in a similar study setting, preferably in the same
participants. Overall, metabolomics would benefit greatly from more unified data analysis approaches
to facilitate meta-analysis of different cohorts. Lastly, a similar analysis carried out in a cohort with
a larger proportion of overweight and obese participants would help to disentangle the gradient
relationship between body composition and the urine metabolome.

4. Materials and Methods

4.1. Study Design

The present analysis is conducted within the Dortmund Nutritional and Anthropometric
Longitudinally Designed (DONALD) study. Briefly, the DONALD study is a longitudinal open
cohort study with the aim of analyzing detailed data on diet, growth, development, and metabolism
from infancy to adulthood [28]. All study participants were invited to the study center on a regular
basis, every 3 months until their first birthday, biennially in their second year, and annually thereafter.
The anthropometric measurements are conducted by experienced nurses [28]. Data collected includes
demographic, family, and socioeconomic characteristics, as well as anthropometric measurements,
such as height, body weight, skin fold thickness, and 3 day weighed dietary records [28].
Informed written consent was obtained from parents and from participants themselves on reaching
adolescence. The ethics committee of the University of Bonn, Germany (project identification: 098/06)
approved the study.

4.2. Study Participants

The current study sample were DONALD participants from a previous study that explored BMI
trajectories [29]. These 689 individuals are singletons, full-term (37 to 42 weeks of gestation), and had a
birth weight of at least 2500 g. Of these, 369 participants had a 24 h urine samples between the ages of
16 to 18, from which the urine metabolome were profiled by an untargeted metabolomics approach.
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4.3. Variable Assessment

4.3.1. Outcome: Untargeted Metabolomic Profiling of the Urine Metabolome

Ultra-high-performance liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS) was
used to identify metabolites in the 24 h urine samples. Peak identification was done in the propriety
Laboratory Information Management System (LIMS) of Metabolon Inc. (Morrisville, NC, USA).
Compounds were identified by comparison of their retention time/index (RI), mass-to-charge ratio
(m/z), and chromatographic data (e.g., MS/MS spectral data) to library standards. Structurally unknown
biochemicals were identified by occurrence. Peaks were quantified using area-under-the-curve and
normalized with block correction corrected for inter-day instrument tuning differences. Further details
on the methodology of the metabolic profiling have been reported elsewhere [30]. This analysis resulted
in 1407 annotated features used in this analysis.

4.3.2. Exposure: Body Composition Measures

Body composition parameters were examined at every follow-up by experienced nursing staff. BMI
was calculated using height and weight. BF was calculated from four skin-fold thickness measurements
(biceps, triceps, iliaca, and scapula), using age, puberty status, and sex-specific equations from
Deurenberg et al. [31].

4.3.3. Covariates

We constructed a directed acyclic graph (DAG; cf. supplement) to assess the minimally sufficient
sets of variables to use for covariate adjustment in the analysis of the present data.

Family and socioeconomic characteristics around birth were assessed at the first study visit in
the DONALD study, at around three months after birth. We included maternal employment (full- or
part-time employment vs. no employment), maternal education (>12 vs. ≤12 years of education),
smoking in the household (yes vs. no), maternal BMI (kg/m2), and duration of breast-feeding (weeks).
Dietary intake was assessed annually by three-day weighted dietary records. We calculated individual
means of daily calorie and macronutrient intake, using our continuously updated in-house food
composition database LEBTAB [32]. Macronutrient intake was estimated as percent of calories
consumed. Using the method described by Schofield [33], the metabolic equivalents of task-hours
(met-h) were determined from basal rates. The expanded met-h per week were subsequently calculated
from the Adolescent Physical Activity Recall Questionnaire (APARQ) [34]. Alcohol and smoking
status were assessed via questionnaire. Participants were grouped into current, former, and never
drinkers (or smokers). Missing values were filled backwards for never drinkers (or smokers) and
forwards for current and former drinkers (or smokers). Backwards filling means “never” consumption
was used later to fill in missing values at time points prior to the non-missing answer, e.g., “never”
consumption at age 20 was used to fill a missing value at age 16, since the participant was never
a consumer. Forward filling refers to the same concept but forwards in time, e.g., current alcohol
consumption at age 15 was used to fill a missing value for the current alcohol consumer at age 17.

4.4. Statistical Analysis

Statistical Analysis was performed using SAS software (Version 9.4 of the SAS System for Windows,
copyright 2002–2012 SAS Institute Inc., Cary, NC, USA) and R software (Version 3.6) [35]. All analyses
were a priori and were stratified by sex.

4.4.1. Data Pre-Treatment

Metabolite concentration were normalized by urine osmolality and rescaled to set the median
equal to 1. Because the distributions of most metabolites were skewed, we performed natural
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log-transformation. We excluded metabolites with more than 20% of missing values (n = 140) to keep
the data quality acceptable. Missing values for the remaining 1267 metabolites were imputed.

4.4.2. Imputation of Missing Values

Missing values for all variables were imputed with multiple imputations (as implemented in the
R package “mice” [36]) with 10 imputations and five iterations. We used the random forest method
built into the “mice” package. The variables used as predictors for imputation for each “to be imputed”
variable were selected according to the suggestions of the authors of the mice package [37]: variables
were selected as predictors in the imputation if they had at least a correlation of r = 0.35 with the “to
be imputed” variable, and at least 70% of the observations used for imputation had complete data.
Imputation was stratified by sex.

4.4.3. Summarizing Metabolites into Groups Using the Independent Component Analysis

To reduce intercorrelation among metabolites, we summarized them into fewer interpretable
components using independent component analysis (ICA). We used the “icafast” function from the
“ica” Package [38] to perform the ICA, stratified by sex. We used the mean across all imputed datasets
to extract the component model. The number of components to include in the regression analysis
was selected by visual inspection of the scree plot. We then calculated the component scores for each
imputed dataset according to the mean model. We characterized the components by their correlation
with the metabolites, using the top 20 most correlated metabolites.

4.4.4. Linear Regression Model

In order to model the associations between BMI and BF and the urine metabolome, we fitted a
linear regression model for each of the 1177 log-transformed metabolites and seven ICs as dependent
variables, and either BMI or BF as independent variables. The models were additionally adjusted for the
minimally sufficient set suggested by the DAG, which are physical activity (met-h/week), age, alcohol
and smoking status, nutrition (total energy (kcal), protein (%kcal), fat (%kcal), and carbohydrates
(%kcal)), smoking household, maternal occupation at study entry, maternal education, breastfeeding
duration, and maternal BMI at study entry. If not otherwise specified, variables were measured during
the same follow-up as the 24 h urine sample was taken. We performed multiple testing corrections
by controlling the false discovery rate at five percent with the Benjamini–Hochberg procedure [39].
Metabolites associated with both BMI and BF were considered a signature of body composition.

5. Conclusions

In conclusion, 10 metabolites (10 in males, none in females) were associated with both measures of
body composition, which could collectively be considered a metabolic signature of body composition.
The sexual dimorphism in the relationship between body composition and the urine metabolome may
explain sex differences in body composition-related health conditions.
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Appendix A : Additional Information on Independent Components

Table A1. Names of the Independent Components.

IC Constructed by

Sex: female
IC1 Amino acid (10), unknown (5), lipid (2), nucleotide (2), and xenobiotics (1)
IC2 Amino acid (6), xenobiotics (5), unknown (5), partially characterized molecules (3), and peptide (1)
IC3 Unknown (10), xenobiotics (4), amino acid (3), peptide (2), and lipid (1)
IC4 Unknown (9), xenobiotics (5), amino acid (3), and lipid (3)
IC5 Amino acid (6), lipid (5), unknown (5), partially characterized molecules (2), nucleotide (1), and xenobiotics (1)
IC6 Unknown (12), amino acid (3), xenobiotics (2), lipid (1), partially characterized molecules (1), and peptide (1)
IC7 Amino acid (5), xenobiotics (5), unknown (5), lipid (2), nucleotide (1), partially characterized molecules (1), and peptide (1)

Sex: male

IC1 Unknown (9), xenobiotics (4), amino acid (3), nucleotide (2), energy (1), and lipid (1)

IC2 Amino acid (5), lipid (5), nucleotide (3), xenobiotics (2), unknown (2), carbohydrate (1), partially characterized
molecules (1), and peptide (1)

IC3 Unknown (8), amino acid (5), xenobiotics (3), lipid (2), carbohydrate (1), and energy (1)
IC4 Xenobiotics (13), unknown (6), and lipid (1)
IC5 Xenobiotics (7), unknown (6), partially characterized molecules (4), amino acid (1), lipid (1), and nucleotide (1)
IC6 Unknown (10), lipid (4), partially characterized molecules (4), amino acid (1), and xenobiotics (1)
IC7 Xenobiotics (8), unknown (6), carbohydrate (4), lipid (1), and partially characterized molecules (1)
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Table A2. Regression Coefficients for the ICs and body composition.

IC β Body Mass Index 95% CI p (FDR) β Body Fat Percent 95% CI p (FDR)

Sex: Female

IC1 1.025 0.890 to 1.180 0.991 0.996 0.914 to 1.086 0.991
IC2 0.974 0.832 to 1.141 0.991 1.030 0.943 to 1.125 0.991
IC3 0.979 0.838 to 1.143 0.991 1.024 0.946 to 1.109 0.991
IC4 0.945 0.829 to 1.076 0.991 1.014 0.942 to 1.093 0.991
IC5 0.885 0.733 to 1.070 0.991 1.054 0.942 to 1.179 0.991
IC6 0.930 0.814 to 1.064 0.991 1.057 0.979 to 1.141 0.991
IC7 0.928 0.799 to 1.078 0.991 1.034 0.949 to 1.126 0.991

Sex: Male

IC1 1.012 0.903 to 1.135 1.000 0.986 0.893 to 1.088 1.000
IC2 0.969 0.880 to 1.067 1.000 1.001 0.923 to 1.086 1.000
IC3 1.045 0.940 to 1.162 1.000 0.974 0.891 to 1.064 1.000
IC4 0.980 0.877 to 1.095 1.000 1.053 0.958 to 1.157 1.000
IC5 0.993 0.896 to 1.100 1.000 1.039 0.959 to 1.127 1.000
IC6 0.956 0.872 to 1.048 1.000 1.015 0.943 to 1.093 1.000
IC7 0.991 0.889 to 1.104 1.000 0.952 0.870 to 1.041 1.000

Estimates were generated from linear regression models, with independent components as the dependent variable and body mass index or body fat percent as the dependent variable.
Multiple testing adjustments were performed by controlling the false discovery rate at 5%. Estimates are bac-transformed. The models were additionally adjusted for age, calories
consumed, protein consumed, carbohydrates consumed, fat consumed, maternal gestational weight gain, maternal BMI, breastfeeding duration, smoking status, smoking household,
alcohol status, maternal occupation, maternal education, metabolic equivalent of task-hours. Abbreviations: IC, independent component; FDR, False Discovery Rate
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Appendix B : Regression Coefficient Tables

Table A3. Metabolites associated with both body composition measures.

Biochemical Sub Pathway β Body Mass Index 95% CI p (FDR) β Body Fat Percent 95% CI p (FDR)

Super-pathway: Amino Acid
guanidinosuccinate Guanidino and acetamido metabolism 0.971 0.957 to 0.986 0.046 0.977 0.967 to 0.987 0.014

isobutyrylglycine (C4) Leucine, isoleucine, and valine metabolism 0.967 0.954 to 0.979 0.002 0.976 0.967 to 0.985 0.001
isovalerylglycine Leucine, isoleucine, and valine metabolism 0.965 0.953 to 0.976 0.000 0.972 0.964 to 0.980 0.000

tigloylglycine Leucine, isoleucine, and valine metabolism 0.974 0.961 to 0.987 0.036 0.974 0.965 to 0.983 0.000
Super-pathway: CV

Nicotinamide N-oxide Nicotinate and nicotinamide metabolism 1.050 1.025 to 1.075 0.030 1.043 1.026 to 1.060 0.001
Super-pathway: PCM

Glucuronide of C10H18O2 (12) * Partially characterized molecules 1.047 1.029 to 1.066 0.001 1.028 1.015 to 1.041 0.016
Super-pathway: Unknown

X-21851 1.038 1.020 to 1.057 0.021 1.025 1.012 to 1.038 0.044
X-24469 1.035 1.018 to 1.052 0.025 1.023 1.011 to 1.035 0.044
X-24801 1.032 1.017 to 1.047 0.016 1.024 1.014 to 1.034 0.004

Super-pathway: XB
Succinimide Chemical 0.976 0.965 to 0.986 0.011 0.985 0.978 to 0.993 0.046

Estimates were generated from linear regression models with natural log-transformed biochemicals as the dependent variables, and body mass index or body fat percent as the dependent
variable. Multiple testing adjustment was performed by controlling the false discovery rate at 5%. Estimates are back-transformed. The models were additionally adjusted for age,
calories consumed, protein consumed, carbohydrates consumed, fat consumed, maternal gestational weight gain, maternal BMI, breastfeeding duration, smoking status, smoking
household, alcohol status, maternal occupation, maternal education, metabolic equivalent of task-hours. * Compound was not identified by a standard, but we are confident in its identity.
Abbreviations: CV, cofactors and vitamins; PCM, partially characterized molecules; XB, xenobiotics; FDR, False Discovery Rate.
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Table A4. Metabolites associated with either BMI or BF.

Biochemical Sub-Pathway Body Mass Index 95% CI p (FDR) Body Fat Percent 95% CI p (FDR)

Super-Pathway: Amino Acid

Formiminoglutamate Histidine metabolism 1.033 1.016 to 1.051 0.041 1.019 1.007 to 1.031 0.162
3-methylcrotonylglycine Leucine, isoleucine, and valine metabolism 0.971 0.954 to 0.988 0.091 0.975 0.963 to 0.986 0.021

Isovalerylglutamine Leucine, isoleucine, and valine metabolism 0.978 0.966 to 0.991 0.120 0.980 0.972 to 0.989 0.016
7-hydroxyindole sulfate Tryptophan metabolism 0.944 0.915 to 0.973 0.050 0.961 0.940 to 0.982 0.060

proline Urea cycle; arginine and proline metabolism 0.974 0.962 to 0.986 0.023 0.988 0.979 to 0.997 0.281

Super-Pathway: Lipid

decanoylcarnitine (C10) Fatty acid metabolism (acyl carnitine, medium chain) 1.035 1.017 to 1.054 0.046 1.023 1.010 to 1.036 0.083

5-dodecenoylcarnitine (C12:1) Fatty acid metabolism
(acyl carnitine, monounsaturated) 1.048 1.027 to 1.070 0.009 1.025 1.010 to 1.041 0.110

Super-Pathway: Nucleotide

Thymine Pyrimidine metabolism, thymine containing 0.978 0.966 to 0.989 0.046 0.987 0.979 to 0.995 0.169

Super-Pathway: PCM

Glutamine conjugate of C8H12O2 (1) * Partially characterized molecules 1.030 1.013 to 1.047 0.065 1.025 1.013 to 1.036 0.021
Glycine conjugate of C10H14O2 (1) * Partially characterized molecules 1.044 1.019 to 1.069 0.071 1.036 1.019 to 1.054 0.023

Super-Pathway: Unknown

X-11261 1.032 1.013 to 1.051 0.111 1.025 1.012 to 1.039 0.045
X-12839 1.042 1.020 to 1.065 0.048 1.024 1.009 to 1.040 0.175
X-15486 1.039 1.015 to 1.064 0.118 1.035 1.018 to 1.052 0.021
X-17676 0.981 0.969 to 0.993 0.142 0.983 0.975 to 0.991 0.034
X-21441 1.043 1.020 to 1.067 0.047 1.029 1.013 to 1.046 0.078
X-24345 1.040 1.015 to 1.065 0.123 1.033 1.016 to 1.050 0.044
X-24350 1.040 1.014 to 1.067 0.156 1.038 1.020 to 1.056 0.020
X-25003 0.957 0.936 to 0.979 0.044 0.976 0.960 to 0.992 0.192
X-25442 1.041 1.016 to 1.067 0.120 1.038 1.020 to 1.055 0.015
X-25464 1.039 1.017 to 1.062 0.076 1.030 1.015 to 1.046 0.037

Estimates were generated from linear regression models, with natural log-transformed biochemicals as the dependent variable and body mass index or body fat percent as the dependent
variable. Multiple testing adjustments were performed by controlling the false discovery rate at 5%. Estimates are back-transformed. The models were additionally adjusted for age,
calories consumed, protein consumed, carbohydrates consumed, fat consumed, maternal gestational weight gain, maternal BMI, breastfeeding duration, smoking status, smoking
household, alcohol status, maternal occupation, maternal education, metabolic equivalent of task-hours. * Compund was not identified by a standard, but we are confident in its identity.
Abbreviations: CV, cofactors and vitamins; PCM, partially characterized molecules; XB, xenobiotics. Associations in females are highlighted in italic. The significant association for each
metabolite is highlighted in bold.
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Appendix C : Additional Discussion for Metabolites Associated with Either BMI or BF

Table A5. Additional discussion for metabolites associated with either BMI or BF.

Biochemical Sub-Pathway Sex Body Composition Discussion

Super-Pathway: Amino Acid

7-hydroxyindole sulfate Tryptophan metabolism male BMI

Part of the serotonin-related pathway of
tryptophan [18]. A relationship to mood and
depression, which has been documented to be
influenced by weight and the perception thereof
in adolescents [40], is a possible explanation for
this association.

Formiminoglutamate Histidine metabolism male BMI

Measurements in urine after oral application of
histidine are used to determine folate deficiency
[18]. Higher levels of this metabolite in the urine
of individuals with higher adiposity might point
to an increased need for folate. In fact,
overweightness was previously shown to be
associated with decreased levels of folate [41].

Proline Urea cycle; arginine and proline metabolism male BMI

Proline was inversely associated with adiposity
in our study. This is in agreement with findings
in children, in which lower levels of the
metabolite have been observed in overweight
children [42], but is in contrast to findings in
adults [43,44]. This suggests that the relationship
of adiposity with proline varies with the
developmental stage of life.

3-methylcrotonylglycine Leucine, isoleucine, and valine metabolism male BF

A catabolite of leucine. Elevated levels of this
metabolite in urine are usually found in patients
with a deficiency of 3-methylcrotonyl-CoA
carboxylase, an inborn error of the metabolism
[18]. Decreased levels in our sample could be
explained by hyperactivation of
3-methylcrotonyl-CoA carboxylase or disruption
of the leucine metabolism.

Isovalerylglutamine Leucine, isoleucine and valine metabolism male BF No information
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Table A5. Cont.

Biochemical Sub-Pathway Sex Body Composition Discussion

Super Pathway: Lipid

5-dodecenoylcarnitine (C12:1) Fatty acid metabolism
(acyl carnitine, monounsaturated) male BMI Medium-chain acylcarnitines (MCACs),

see decanoylcarnitine (C10)

Decanoylcarnitine (C10) Fatty acid metabolism (acyl carnitine, medium chain) male BMI

Decanoylcarnitine (C10) is a medium-chain fatty
acid acylcarnitine that was significantly
associated with higher measures of body
composition. In fact, urine decanoylcarnitine has
been shown to differentiate young men with
normal weight from those with obesity [45],
and differentiates individuals with metabolically
healthy obesity from those with metabolically
abnormal obesity [46]. Additionally, it is among
a group of acylcarnitines that is positively related
to fat oxidation [47]. It was suggested previously
that high levels of medium-chain acylcarnitines
(MCACs) reflect distal β- oxidation for energy
use. C6 and C10 in particular are used as
markers for MCAC flux [48]. Higher levels of
MCAC have also been related to a disrupted
branched-chain amino acid (BCAA) metabolism
[49,50]. Additionally, increased levels of MCAC
were suggested as markers for insulin resistance
in overweight and obese individuals [51].
Increased levels of C10 in our sample are in line
with the findings of previous studies in adults
and children, reporting either higher levels of
closely related acylcarnitines or C10 exactly [19].
However, most of these were using different
tissues (e.g., blood or muscle fiber) as their
biospeciminen [19].

Super Pathway: Nucleotide

Thymine Pyrimidine metabolism, thymine containing male BMI

Change within increasing adiposity is in line
with cytosine per thymine change present in a
single-nucleotide polymorphism (SNP) that is
associated with BMI and BF [52]. This supports
evidence that adiposity has a genetic component.
Future studies should explore the relation
between this SNP and adiposity
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Table A5. Cont.

Biochemical Sub-Pathway Sex Body Composition Discussion

Super-Pathway: PCM

Glutamine conjugate of C8H12O2 (1) * Partially characterized molecules male BF No information

Glycine conjugate of C10H14O2 (1) * Partially characterized molecules male BF No information

Super-Pathway: Unknown

X-12839 male BMI No information

X-21441 male BMI No information

X-25003 male BMI No information

X-11261 male BF No information

X-15486 male BF No information

X-17676 male BF No information

X-24345 male BF No information

X-24350 male BF No information

X-25442 male BF No information

X-25464 male BF No information

* Compound was not identified by a standard, but we are confident in its identity. Abbreviations: BF, body fat percentage; BMI, body mass index; CV, cofactors and vitamins; PCM,
partially characterized molecules; XB, xenobiotics.
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