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Background. Salmonella Typhimurium (STm) remain a prominent cause of bacteremia in sub-Saharan Africa.
Complement-fixing antibodies to STm develop by 2 years of age. We hypothesized that STm-specific CD4+ T cells
develop alongside this process.

Methods. Eighty healthy Malawian children aged 0–60 months were recruited. STm-specific CD4+ T cells pro-
ducing interferon γ, tumor necrosis factor α, and interleukin 2 were quantified using intracellular cytokine staining.
Antibodies to STm were measured by serum bactericidal activity (SBA) assay, and anti-STm immunoglobulin G
antibodies by enzyme-linked immunosorbent assay.

Results. Between 2006 and 2011, STm bacteremias were detected in 449 children <5 years old. STm-specific
CD4+ T cells were acquired in infancy, peaked at 14 months, and then declined. STm-specific SBA was detectable
in newborns, declined in the first 8 months, and then increased to a peak at age 35 months. Acquisition of SBA
correlated with acquisition of anti–STm–lipopolysaccharide (LPS) immunoglobulin G (r = 0.329 [95% confidence
interval, .552–.062]; P = .01) but not anti–STm–outer membrane protein or anti–STm-flagellar protein (FliC).

Conclusions. Acquisition of STm-specific CD4+ T cells in early childhood is consistent with early exposure to
STm or cross-reactive protein antigens priming this T-cell development. STm-specific CD4+ T cells seem insufficient
to protect against invasive nontyphoidal Salmonella disease, but sequential acquisition of SBA to STm LPS is asso-
ciated with a decline in its incidence.
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Nontyphoidal Salmonella (NTS), mainly Salmonella
enterica serovars Typhimurium (STm) and Enteritidis,
commonly causes bacteremia among young children in
sub-Saharan Africa [1, 2]. Although NTS bacteremia is
undergoing considerable epidemiological change [3, 4],
the case fatality in children continues to exceed 20% [1].

Important risk factors for NTS bacteremia include age
<2 years, malnutrition, severe malarial anemia, and
human immunodeficiency virus (HIV) infection [1].
In resource-poor settings, lack of diagnostic services, in-
creasing multidrug resistance, and the nonspecific na-
ture of clinical presentation all compromise effective
diagnosis and treatment of these children [1].

Evidence from whole-genome sequencing of STm,
the most common NTS serovar isolated in Malawi, sug-
gests that a pathovar characterized by multilocus se-
quence type 313 dominates invasive NTS (iNTS)
disease in Africa [5]. Rarely seen in industrialized coun-
tries, sequence type 313 has undergone genomic degra-
dation which suggests both the loss of an enteric
lifestyle and possible human-host adaptation [6, 7].
Mouse models of disease caused by this facultative in-
tracellular pathogen implicate innate immune cell
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phagocytosis, T-cell immunity, and antibody-mediated immu-
nity [8, 9]. If iNTS is to be controlled effectively through public
health interventions or vaccination, human studies are needed
to establish the key immune components that constitute natu-
rally acquired immunity in young children.

Most Malawian children acquire anti-Salmonella immuno-
globulin G (IgG) and immunoglobulin M antibody and bacter-
icidal activity against NTS by 2 years of age [10]. Antibodies
targeting NTS can effect bacterial killing through activation of
complement cascade and assembly of the membrane attack
complex [10]. Antibodies opsonize NTS and, together with
C3b deposition, facilitate internalization by phagocytes and
subsequent killing of NTS through oxidative burst [11]. These
immune processes are critical for preventing extracellular
growth and dissemination of NTS [10]. Although it is known
that CD4+ T cells orchestrate macrophage effector functions
through interferon (IFN) γ and tumor necrosis factor (TNF)
α [12, 13] and that HIV-infected individuals with low CD4
counts are particularly susceptible to iNTS disease [14], the
contribution of CD4+ T-cell–mediated control of NTS in hu-
mans has not been well studied. We therefore explored the hy-
pothesis that in the first 2 years of life CD4+ T-cell immune
responses to STm develop in parallel with the development of
anti-STm antibodies. Contrary to our expectations, we have
found that although acquisition of STm-specific CD4+ T-cell
immunity occurs together with antibody to STm protein anti-
gens, these are evident before the development of serum bacter-
icidal activity. This STm-specific CD4+ T-cell immunity seems
insufficient to protect against iNTS disease in Malawian chil-
dren, which declines in incidence in parallel with the later
development of antibodies targeting STm LPS O-antigen.

METHODS

Setting and Bloodstream Infection Surveillance
Queen Elizabeth Central Hospital is a 1250-bed teaching hospi-
tal and the largest government hospital in Malawi, providing
free health care to Blantyre district (population approximately
1 million). It is the only inpatient pediatric facility for non–fee-
paying patients in Blantyre. The Malawi-Liverpool-Wellcome
Trust Clinical Research Programme has undertaken routine
bloodstream infection surveillance of febrile children presenting
to Queen Elizabeth Central Hospital since 1997. Blood cultures
are obtained from febrile children whose thick films are negative
for malaria parasites or who are critically ill, irrespective of ma-
laria infection. Blood culture is undertaken using a pediatric
bottle (BacT/Alert PF BioMerieux), and isolates identified
using standard techniques [15].

Healthy Study Participants
A total of 80 healthy children (Table 1), in 8 predefined age
categories ranging from 0 to 60 months, were prospectively

recruited at a large community health center in Blantyre, Mala-
wi, from March 2009 to January 2011. Children with malaria
parasitemia, a positive HIV antibody test, severe anemia (hemo-
globin <7 g/dL), malnutrition (weight-for-height z score ≤2), or
other chronic illness were excluded from the study. Ethical ap-
proval for the study (protocol P.08/09/815) was obtained from
College of Medicine Research Ethics Committee, and written
informed consent was obtained from the parent or guardian
of every participating child.

Characterization of CD4+ Memory T-Cell Subsets
Whole blood was collected in ethylenediaminetetraacetic
acid–anticoagulated tubes; 200 μL of blood was stained with
antibodies (CD3 –allophycocyanin (APC), CD4-Pacific Blue,
CD45RO–fluorescein isothiocyanate, and CCR7-phycoerythrin
[all Becton Dickson]) and red blood cells lysed with 2 mL of
1× fluorescence-activated cell sorting (FACS) lysing solution
(Becton Dickson). Cells were washed with phosphate-buffered
saline (PBS; Sigma Aldrich) and fixed in 200 μL of 1% formal-
dehyde/PBS. Up to 20 000 events on a CD4+ T-lymphocyte gate
were acquired immediately with a CyAN ADP flow cytometer
(Beckman Coulter) and analyzed using FlowJo software (ver-
sion 7.6.5, Tree Star). Lymphocytes were gated by their forward
scatter and side scatter characteristics. We defined naive T cells

Table 1. General Characteristics and Nutritional and
Hematological Profile

Parameter
Female

Participants
Male

Participants All Participants

Participants,
No. (%)

35 (43.7) 45 (56.3) 80 (100)

Age, median
(range), mo

13.2 (0–52.5) 10 (0–47) 10.2 (0–52.5)

Weight,
median
(range), kg

9.5 (3.5–17)a 10 (6–16.9)b ND

Height,
median
(range), cm

73.5 (48–97)a 74 (52–95)b ND

Weight for
height z
score,
median
(range)

0.89 (−1.9–4.6)a 1.4 (−2–4)b ND

Lymphocyte
count,
median
(range),
×103/μL

6.3 (2.9–13.46) 5.3 (2.2–10.4) 5.4 (2.2–13.6)

Hemoglobin,
median
(range),
g/dL

11.5 (7.6–18.1) 11.2 (8.0–17.7) 11.4 (7.6–18.1)

Abbreviation: ND, not determined.
a Twenty-five children aged 1–60 months were included.
b Thirty-five children aged 1–60 months were included.
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as CD4+CD45RO−CCR7+, effector memory (EM) T cells as
CD4 + CD45RO + CCR7−, and central memory (CM) T cells
as CD4+CD45RO+CCR7+.

Detection of CD4+ T cells Producing Cytokines
After whole blood for intracellular cytokine staining assay was
collected in sodium heparin tubes, 450 μL of blood was stimu-
lated with 50 μL of a bead-beaten STm strain D23580 [16] at the
final concentration of 1 μg/mL or phorbol 12-myristate 13-
acetate (PMA) at 1 μg/mL and ionomycin at 10 μg/mL (all
Sigma Aldrich), and costimulated with anti-CD28/49d (Becton
Dickson) for 6 hours at 37°C. At 2 hours, intracellular cytokine
release was inhibited with BD Golgi Stop (Becton Dickson), and
200-μL samples were lysed with 2 mL of 1× FACS lysing solu-
tion and then permeabilized with 500 μL of 1× permeabilizing
solution (Becton Dickson). Cells were washed with PBS/0.5% bo-
vine serum albumin (BSA) buffer (Sigma Aldrich) and stained
with 3 μL of surface antibodies (CD3-APC cyanine 7 and
CD4-PB) and 5 μL of intracellular cytokine antibodies (IFN-γ–
phycoerythrin, TNF-α–fluorescein isothiocyanate, and interleu-
kin (IL) 2–APC [all Becton Dickson]). Cells were fixed and events
acquired as described above. CD3+CD4+ T cells producing IFN-
γ, TNF-α, and IL-2 were defined as CD3+CD4+IFN-γ+, CD3+

CD4+TNF-α+, and CD3+CD4+IL-2+. Further analysis for poly-
functional CD4+ T cells producing single, double, and triple cy-
tokines were analyzed by Boolean gates using FlowJo software.

Quantification of STm-Specific Serum Bactericidal Activity
Serum bactericidal activity (SBA) assays were performed as de-
scribed elsewhere [10].Briefly, serum or PBS was mixed with STm
D23580 [5], adjusted to 1.0 × 106 CFU/mL, and incubated at 37°C
for 180 minutes. Test samples were serially diluted and plated in
triplicate on Luria-Bertani agar. Salmonella colony counts were
done after 24 hours of incubation, and results were reported as
log10 change in NTS count (CFU/mL) from the baseline.

Quantifying Anti-NTS IgG Antibody by Enzyme-Linked
Immunosorbent Assay
Enzyme-linked immunosorbent assay plates (Nunc-Immuno)
were coated overnight using 100 μL of carbonate-bicarbonate
buffer (Sigma Aldrich) per well containing the following antigens
adjusted to 5 μg/mL: STm-LPS (Alexis Biochemicals), STm–

outer membrane protein (OMP) and STm-flagellar protein
(FliC) (kind gift from Adam Cunningham and Ian Henderson
[17]), and Escherichia coli–LPS 0127:B8 (Sigma Aldrich). Plates
were washed with wash buffer (PBS plus 0.05% Tween 20) and
blocked with 200 μL of blocking buffer (PBS plus 1% BSA) per
well for 1 hour at 37°C. Test serum at 1:20 in dilution buffer (PBS
plus 0.05% Tween 20 plus 1% BSA) was serially diluted 3-fold
and incubated at 37°C for 1 hour. After washing, 100 μL of
1:2000 secondary goat anti-human IgG-AP antibodies (Southern
Biotech) were added and incubated for 1 hour at 37°C. Finally,
after washing, 100 μL of SigmaFast p-nitrophenyl phosphate

substrate was added to each plate and read after 30 minutes
with a Bio Tek reader ELx800 (Bio Tek Instruments) at 405 nm.

Statistical Analyses
We distinguished phases of the immune response as follows.
Nonlinear regression models were fit to data relating STm-
specific T cells and SBA responses with age. The inflection points
of the resultant curves were taken to represent the boundaries of
qualitatively different phases of immune response. We call the
first period before the boundary the early response, and the sub-
sequent period the late response. The immune responses within
these early and late periods were then modeled using linear re-
gression. GraphPad Prism software (version 5.0) was used to
generate graphs and analyze the data.

RESULTS

Age Distribution of STm Bloodstream Infection in Children
<5 Years Old in Malawi
Between January 2006 and December 2011, STm bacteremia
was detected in 449 children <5 years of age presenting to
Queen Elizabeth Central Hospital, of whom 359 (80%) were
<2 years old. The median age at STm bloodstream infection
was 13 months (range, 0–60 months; Figure 1).

Development of Memory CD4+ T-Cell Subsets in Children <5
Years Old
To provide a context for the subsequent assessment of function-
al T-cell memory, we first assessed the overall development of
T-cell subsets in this Malawian population. Newborns are path-
ogen inexperienced [18], and therefore CD4+ T cells develop
memory with age, enabling them to mount rapid immune re-
sponses to previously encountered pathogens. Naive, EM, and

Figure 1. Age distribution of Salmonella Typhimurium (STm) bactere-
mia in children <5 years old at Queen Elizabeth Central Hospital, Blantyre,
Malawi, 2006–2011 (N = 449); dashed line represents median age (13
months).
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CM CD4+ T cells can be differentiated by their extracellular ex-
pression of CD45RO and CCR7 [19, 20]. As expected [21], we
found that the proportion of CD4+CD45RO−CCR7+ naive
T cells decreased with age (r² = 0.246; slope, −0.58 [95% confi-
dence interval (CI), −.83 to −.34]; P≤ .01; Figure 2A). The pro-
portion of CD4+CD45RO+CCR7− EM (r² = 0.119; slope, 0.035
[95% CI, .012–.057]; P≤ .01) and CD4+CD45RO+CCR7+ CM
(r² = 0.455; slope, 0.43 [95% CI, .32–.55]; P ≤ .01) T cells in-
creased with age (Figure 2B and 2C).

Early Acquisition of STm-Specific CD4+ T-Cell Immune
Responses
We next sought to explore the hypothesis that CD4+ T-cell im-
mune responses to STm develop in parallel with acquisition of
antibody-mediated immunity. Contrary to our hypothesis, we
found that STm-specific CD4+ T cells producing cytokines
were present early in life, peaked at 14 months and then de-
clined (Figure 3A). This was further analyzed by using the

nonlinear model peak points to define early and late STm-spe-
cific CD4+ T cells. This showed early acquisition of STm-specif-
ic CD4+ T-cell immunity (r² = 0.129; slope, 0.021 [95% CI,
.002–.041]; P = .031), followed by a decrease in older children
(r² = 0.157; slope, −0.005 [95% CI, −.009 to −.0006]; P = .024;
Figure 3B and 3C). These changes in intracellular cytokine pro-
files mirrored changes in IFN-γ– and TNF-α– rather than IL-2–
secreting cells (see Supplementary Figure 1). STm-specific
CD4+ cytokine responses did not correlate with PMA-stimulat-
ed CD4+ T-cell cytokine responses (r = 0.109 [95% CI, −.128 to
.371]; P = .426; Table 2), indicating that these responses to STm
antigens were not simply due to a general maturation of the im-
mune system (Figure 3D and Supplementary Figure 2). Gener-
ation of antigen-specific multiple cytokine-producing cells is
widely thought to indicate maturation of antigen-specific
CD4+ T-cell responses [22]. Maturation of STm-specific
T-cell responses in these healthy children (either double or tri-
ple cytokine producers) peaked mostly between 13–24 months

Figure 2. Development of memory CD4+ T-cell subsets in the first 5 years of life. Percentage are shown of naive CD4+ T cells: CD4+CD45RO−CCR7− (A;
n = 73), effector memory CD4+ T cells: CD4+CD45RO+CCR7− (B; n = 73), and central memory CD4+ T cells: CD4+CD45RO+CCR7+) (C; n = 73) were plotted
against age. Memory CD4+ T cells were determined by linear regression, represented by solid central lines, and 95% confidence intervals are represented by
dashed lines.
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Figure 3. Early acquisition of Salmonella Typhimurium (STm)–specific CD4+ T-cell immune responses. Percentage are shown for STm-specific CD4+

T cells producing total (A; n = 68), early (B; n = 36), and late (C; n = 32) cytokine and phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulated CD4+

T cells producing total cytokine (D; n = 62). Nonlinear polynomial regression models of third order were fit to data relating specific T-cell cytokine response to
age. STm-specific T cells response within early and late periods was determined by linear regression, represented by solid central lines; dashed lines
represent 95% confidence intervals.

Table 2. Association Between Immune Variables

Parameter (s) XY Pairs Spearman r 95% CI P Value

NTS vs PMA CD4+ cytokine+ 55 0.109 −.128 to .371 .426

SBA vs anti–STm-LPS IgG antibody titers 55 0.329 .552–.062 .01

SBA vs anti–STm-OMP IgG antibody titers 57 0.044 −.226 to .308 .741
SBA vs anti–STm-FliC IgG antibody titers 58 −0.001 −.266 to .264 .992

SBA vs anti–E. coli-LPS IgG antibody titers 50 0.031 −.257 to .314 .830

CD4+ cytokine+ vs anti–STm-OMP IgG antibody titers 65 0.137 −.117 to .375 .275
CD4+ cytokine+ vs anti–STm-FliC IgG antibody titers 67 0.174 −.075 to .404 .157

CD4+ cytokine+ vs anti–STm-OMP IgG antibody titers (early)a 39 0.405 .088–.647 .01

CD4+ cytokine+ vs anti–STm-FliC IgG antibody titers (early)a 38 0.394 .080–.637 .01
CD4+ cytokine+ vs anti–STm-LPS IgG antibody titers (early)a 36 −0.257 −.547 to .087 .129

Abbreviations: CI, confidence interval; E. coli, Escherichia coli; FliC, flagellar protein; IgG, immunoglobulin G; LPS, lipopolysaccharide; NTS, nontyphoidal Salmonella;
OMP, outer membrane protein; PMA, phorbol 12-myristate 13-acetate; SBA, serum bactericidal activity; STm, Salmonella Typhimurium.
a Early refers to parameters of participants aged <14 months.
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and subsequently declined, whereas for IL-2+TNF-α+CD4
T cells, the response was sustained (data not shown).

Delayed Acquisition of STm-Specific SBA
To confirm previous observations made in Blantyre by MacLen-
nan et al, we used the same SBA assay and clinical STm strain
D23580 [10]. In line with the previous findings, STm-specific
SBA declined in the first 8 months of life and then increased
to a peak at 35 months (Figure 4A). To further analyze these
trends in NTS-specific SBA, we divided the periods into early
and late phases according to peak and nadir points, as before.
We found that STm-specific SBA declined in the first 8 months
of life (r² = 0.323; slope, 0.292 [95% CI, .125–.459]; P≤ .01) and
then increased between 8 and 35 months (r² = 0.319; slope,
−0.121 [95% CI, −.193 to −.048]; P≤ .01; Figure 4B and 4C).
This STm-specific increase in SBA occurred later than that
seen in T-cell immunity to STm (Figures 3–5).

Correlation of STm-Specific SBA With Presence of Antibodies
Targeting STm-LPS
Previous work in HIV-infected Malawian adults showed that
excess anti-LPS IgG antibodies can inhibit complement-mediated
killing of NTS in vitro, whereas antibodies to OMPs can medi-
ate bactericidal activity [17].To clarify the antigenic targets of the
STm-specific antibody in children, we measured serum anti-
bodies to STm LPS, OMP, FliC, and E. coli 0127:B8 LPS. We
found that anti–STm-LPS IgG antibody titers mirrored the pattern
seen with SBA assay (Figure 4A and Supplementary Figure 3A).
Anti–STm-OMP antibody titers were lowest at birth and increas-
ing with age, whereas anti–STm-FliC IgG and anti–E. coli–LPS
IgG antibody titers showed no particular trend with age (Sup-
plementary Figure 3B–3D). The correlation between SBA and
anti–STm-LPS IgG titers (r = 0.329 [95% CI, .552–.062];
P = .01), and the lack of correlation between SBA and anti–
E. coli-LPS titers suggests that SBA is due to STm-specific rather

Figure 4. Acquisition of Salmonella Typhimurium (STm)–specific serum bactericidal activity (SBA) among children. The log10 change in STm (in colony-
forming units [CFU] per milliliter) relative to the control condition was plotted against age. The y-axis was inverted. Nonlinear regression polynomial model
is represented by solid lines (A; n = 65). SBA responses within early (B; n = 29) and late (C; n = 27) periods was determined by linear regression, represented
by solid central lines; dashed lines represent 95% confidence intervals.
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than nonspecific LPS antibodies (Table 2). A lack of a correla-
tion with anti–STm-OMP and anti–STm-FliC suggest that
these targets do not substantially contribute to SBA in these
children.

STm-Specific CD4+ T-Cell Immune Responses in Early
Childhood Associated With Generation of Anti-STm Protein
Antibodies
Having shown that STm-specific CD4+ T cells peak in early life
(Figure 5), we investigated whether this immune memory was
linked to the generation of anti–STm-OMP and anti–STm-FliC
IgG antibodies. We found that STm-specific CD4+ T-cell im-
mune responses correlate with anti–STm-OMP and anti–STm-
FliC IgG antibodies in early childhood (r = 0.405 [95% CI,
.088–.647; P = .01] and r = 0.394 [95% CI, .080–.637; P = .01], re-
spectively) and not anti–STm-LPS IgG antibodies (r = −0.257
[95% CI, −.547 to .087]; P = .129; Table 2). This contemporane-
ous development of antibodies to STm OMP and T-cell
immunity is in line with the conventional paradigm of the
T-cell–dependent immune response to a protein antigen [23, 24].

DISCUSSION

NTS infection in African children is associated with life-
threatening bacteremia. Here we extend previous observations
to show that STm-specific CD4+ T-cell immunity is acquired
early in childhood in parallel with antibody to STm protein

antigens but precedes the development of complement-fixing
antibody immunity. These findings suggest exposure to STm
or cross-reactive protein antigens induces STm-specific CD4+

T-cell immune responses early in life, presumably within the
gut-associated lymphoid tissues [25]. Enteric pathogens colo-
nize the gastrointestinal tract soon after birth, even in exclusive-
ly breastfed babies [26]. However, the incidence and frequency
of Salmonella colonization of the gastrointestinal tract in this
population, and whether repeated Salmonella infections are re-
quired to generate this natural immunity, is not known. Most
Malawian children are initially exclusively breastfed but are
then weaned onto mixed feeding after 3 months of age [27,
28]. This switch in food seem s to coincide with the observed
emergence of STm-specific T cells and the appearance of
anti–STm-OMP and anti–STm-FliC IgG antibodies. It is uncer-
tain why STm-specific T-cell immunity declines in older chil-
dren following evidence of immune maturation, but this
could be due to decreased exposure of the immune system to
STm and homing of residual specific CM CD4+ T-cell memory
to lymphoid tissues. To what extent this T-cell and B-cell im-
munity protects against NTS then becomes a key question.

Both previous [10] and current surveillance in Malawi show
that 80% of STm bacteremia cases occur in children <24 months
among under five children, with a peak at 13 months. Acquisi-
tion of STm-specific CD4+ T cells in early childhood parallels
the age-related increase in incidence of STm bacteremia, sug-
gesting that the early acquisition of T-cell immunity to NTS

Figure 5. Sequential acquisition of T cells and antibodies to Salmonella Typhimurium (STm) in children. Age distribution of STm bloodstream infection in
children <5 years old at Queen Elizabeth Central Hospital (Blantyre, Malawi; 2006–2011) was superimposed with kinetics of STm-specific CD4+ T-cell
immune responses and STm-specific serum bactericidal activity (y-axis was inverted) in children aged 0–60 months. Abbreviations: CFU, colony-forming
units; SBA, serum bactericidal activity.
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alone is insufficient to protect against iNTS disease and that ad-
ditional immune modalities are required. The association of an
age-related decline in incidence of STm bacteremia with in-
creasing levels of STm-specific complement-fixing antibodies
is suggestive of protective immunity [10]. Indeed, both a previ-
ous study [10] and the current one found that STm-specific
SBA is detectable in newborns (consistent with passively
acquired maternal antibody) and that the natural decline in
this antibody with age coincides with an increase in the
incidence of iNTS.

The strong relationship between anti–STm-IgG antibodies
targeting STm-LPS and SBA, and a lack of correlation with
STm-OMP, STm-FliC, or E. coli–LPS support previous evi-
dence that anti–STm-LPS IgG antibodies mediate this SBA
[29–31] and suggest that these antibodies recognize the variable
component of LPS (O-antigen). In some HIV-infected adults
with dysregulated humoral immunity and hypergammaglobuli-
nemia, excess IgG antibody to STm-LPS prevents killing of NTS
[17], but this is at levels much higher than those found in
healthy HIV-uninfected children and adults and was not appar-
ent in our studies.

Our findings do not preclude an important role for T cells in
elimination of salmonellae from the intracellular niche. Clear-
ance of disseminated Salmonella infection is thought to require
a specific Th1 response [32]. Mastroeni [33] hypothesized,
based on murine models, that protective immunity to Salmonel-
la infection is acquired in a stepwise fashion constituting innate
cells, T cells, and then antibody. Preexisting antibodies against
Salmonella reduce murine bacteremia by preventing early infec-
tion [34]. Protection induced by heat-killed salmonellae corre-
lates with anti-Salmonella antibody titers [35], with SBA
attributable to anti-LPS antibodies [29] and with binding of Sal-
monella-specific antibodies. These facilitate the development of
T-cell immunity by enhancing bacterial uptake through opsoni-
zation and also antigen presentation by macrophages [36].

Based on our human studies, it is likely that the early devel-
opment of T cells specific for STm protein antigens and subse-
quent cognate interactions with B cells leads to antibody
production against these antigens, class-switching, affinity mat-
uration and memory formation [23].We speculate that, in view
of the complex nature of the Salmonella antigens presented dur-
ing natural exposure, these STm protein-specific T cells may
also provide bystander (hapten-carrier) help to B cells specific
for STm-LPS. LPS alone is a T-cell–independent type 2 antigen,
but when taken up by antigen presenting cells in combination
with STm proteins, has potential to act in the same way that
polysaccharide-conjugate vaccines generate isotype-switched
memory B-cell immunity [37].

In conclusion, STm-specific CD4+ T cells seem insufficient to
protect against iNTS disease, but sequential acquisition of SBA
to STm LPS is associated with a decline in incidence of iNTS.
STm-specific CD4+ T cells may drive the development of

protective antibody responses through bystander interactions
with B cells. Given the burden of iNTS in sub-Saharan Africa
[2], a vaccine is urgently required. STm LPS O-antigen has con-
siderable potential as a vaccine target, and there are currently
several groups developing conjugate vaccines for this purpose
to overcome the short-lived T-independent antibody response
generated by polysaccharide alone [38]. Immunization with
STm-OMP and STm-FliC induce both T cells and antibodies
in animal models and are therefore also being investigated as
vaccine candidates, either separately [39] or covalently linked
to O-antigen as glycoconjugates [40].
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