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Abstract: Obsessive-compulsive disorder (OCD) is a chronic and debilitating mental disorder. Deep
brain stimulation (DBS) is a promising approach for refractory OCD patients. Research aiming at
treatment outcome prediction is vital to provide optimized treatments for different patients. The pri-
mary purpose of this systematic review was to collect and synthesize studies on outcome prediction
of OCD patients with DBS implantations in recent years. This systematic review (PROSPERO regis-
tration number: CRD42022335585) followed the PRISMA (Preferred Reporting Items for Systematic
Review and Meta-analysis) guidelines. The search was conducted using three different databases
with the following search terms related to OCD and DBS. We identified a total of 3814 articles, and
17 studies were included in our review. A specific tract confirmed by magnetic resonance imaging
(MRI) was predictable for DBS outcome regardless of implant targets, but inconsistencies still exist.
Current studies showed various ways of successful treatment prediction. However, considering
the heterogeneous results, we hope that future studies will use larger cohorts and more precise
approaches for predictors and establish more personalized ways of DBS surgeries.

Keywords: obsessive-compulsive disorder; deep brain stimulation; treatment outcome; systematic review

1. Introduction

Obsessive-compulsive disorder (OCD) is a debilitating mental disorder, characterized
by recurrent obsessions and compulsions that affects 2.3% of people worldwide [1]. Without
proper diagnosis and treatment, OCD has a chronic waxing and waning course, with about
65% of patients achieving full remission within 5 years [2,3]. This imposes a large economic
burden on the patients and the countries [4].

Improvements in treatment for OCD patients have been made. Currently, pharma-
cotherapies and psychotherapies have become major parts of OCD treatment. Researchers
and years of clinical practices have proven its usefulness [5,6]. The “response” of the
treatment (a drop of at least 25% on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS)
from the baseline) will be achieved in the majority of patients after pharmacotherapies or
psychotherapies or both [7]. However, some patients could not experience the benefits
from those treatments, and even those that responded will have some residual symptoms.
In those cases, augmentations are recommended [8–10], but when a patient has failed to
respond to all typical treatment options, neuromodulation and neurosurgery approaches
will be preferred [11]. Deep brain stimulation (DBS) was approved by the US Food and
Drug Administration (FDA) in 2009 as a viable treatment for refractory OCD patients. It
provides an invasive but reversible way of stimulation for specific deep brain areas and
uses electrodes to release currents and modulate aberrant neural activities. The anterior
limb of the internal capsule (ALIC), nucleus accumbens (NAc), subthalamic nucleus (STN),
ventral capsule/ventral striatum (VC/VS), and inferior thalamic peduncle (ITP) are the
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most regularly employed targets [12–14]. However, as with other traditional treatments, the
exact neural mechanism of DBS remains unclear, and still some patients failed to experience
partial responses after implantation, as per previous meta-analyses [15,16].

Taking into account the side effects and potential damage caused by DBS surgery,
and to achieve better cost effects, it is important to identify good or poor DBS candidates
prior to the implantation, and an outcome predictor is what we need [17]. Several attempts
have been made to build prediction models with demographic or clinical data, neuropsy-
chological patterns, genetic data, as well as neuroimaging data, but no agreement has yet
been reached [18–20]. Patients with late onset of OCD and sexual/religious dimensions
responded better to DBS treatment, according to a meta-analysis published in 2015 [13].
Another review focused on tractography results and suggested that activation of particular
white matter pathways (WMP) may have the potential for predicting outcomes [21]. Con-
sidering that more patients have received DBS during recent years, with additional data to
be analyzed, we proposed this systematic review to explore factors that were predictable or
correlated with DBS outcomes in refractory OCD patients. We expected to integrate studies
with different aspects, and to provide choices for future researchers to optimize treatment
outcomes. Additionally, existing clinical trial limitations were examined, and new research
directions were suggested.

2. Methods

Our review followed Preferred Reporting Items for Systematic Reviews and Meta-
analysis (PRISMA) guidelines [22]. This review was registered in the PROSPERO (Centre for
Reviews and Dissemination, University of York; http://www.crd.york.ac.uk/PROSPERO,
accessed on 23 May 2022). Registration number-CRD42022335585. We conducted our
search on 23 May 2022, looking for articles in PubMed, Scopus, and Embase. The search
terms were as follows: (obsess*) OR (compuls*) OR (OCD) AND (deep brain stimulation)
OR (DBS). Searching strategies for each database are listed in the Supplementary Table S1.

After retrieving articles from databases, duplicates were removed. Next, two authors
independently screened the titles, keywords, and abstracts of the articles. The full-article
screening was conducted by two authors for eligibility. For this step of study selection, we
used the following inclusion criteria: (a) written in English; (b) primarily investigated OCD
patients with DBS implants; (c) consisted of correlation analyses between pre-stimulus
clinical, neuroimaging or other factors and treatment outcome; (d) randomized trials or
retrospective studies; (e) participants ≥ 5; (f) full text available. OCD patients in the studies
should meet the diagnostic criteria of the Diagnostic and Statistical Manual of Mental
Disorders (DSM) or International Classification of Diseases 10th revision (ICD-10), and
severity of the disease was assessed using the Y-BOCS scale. Implantation targets of DBS
were not limited, but the surgical procedure must be described in detail. Discrepancies
during the phases of selection were resolved by discussion, until consensuses were reached.
When the data selection finished, we extracted the main characteristics of each study after
the final inclusion, which included authors, published date, DBS targets, analyzed factors,
and results.

We used the Quality Assessment Tool for Before-After (Pre-Post) Studies With No
Control Group from the National Heart, Lung, and Blood Institute (NHLBI) to assess the
risk of bias of each study [23]. This tool consists of 12 items, each item can be rated as yes,
no or other. If the item was judged as yes, then it scores 1, otherwise it scores 0. Studies
with total scores higher than 8 were ranked as good, those lower than 6 were ranked as
poor, and those scored between were ranked as fair. Two reviewers conducted the quality
assessment independently, and discrepancies were resolved by discussion.

3. Results
3.1. Study Selection

A total of 3814 articles were identified from 3 databases. We first removed 1799 du-
plicates. Second, we screened keywords and abstracts for articles containing both DBS
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and OCD. A total of 431 articles were left for the full-text assessment. Then, we removed
284 articles that were not articles, including reviews, conference papers, proceeding or
abstracts, book sections, commentaries or case reports. In addition, 126 articles were
rejected by authors for not providing correlation analyses for treatment outcomes and
pre-stimulus factors, and 4 articles only investigated acute DBS effect instead of long-term
outcome [24–27]. Finally, 17 articles were included in this review. The PRISMA flow chart
of our study selection is shown in Figure 1.
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Figure 1. PRISMA flow chart of articles selection.

3.2. Main Characteristics

Tables 1 and 2 show the characteristics of the studies that were included. Eight studies
were published within the past year, accounting for nearly half of the included studies.
Most of the studies (n = 14) recruited less than 20 patients. The baseline Y-BOCS score
ranges from 18 to 40. The largest Y-BOCS reduction was 100% at the last follow-up date,
with an average reduction degree of roughly 50%. Here, responders were defined as those
who experienced a ≥25% Y-BOCS drop compared to the baseline, and the majority of the
studies (n = 12) recorded a response rate of around 60~75%.

The ALIC/NAc area was the most popular target for DBS implantation (n = 10). The
four contact points were implanted individually for this implantation procedure, but were
not necessarily equally distributed on both sides, and were considered to demonstrate their
effect predominantly by stimulating the ALIC [28–31]. Raymaekers, S., et al. managed to
place all four contacts in ALIC in some of their patients [32]. Specifically, one ventral contact
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was placed in the grey matter ventral to ALIC and the other three contacts in the more
posterior parts of ALIC [33]. Li, N., et al. also planted electrodes directly in the bilateral
ALIC and compared it with NAc target only and STN target only [34]. According to their
article, they put at least one contact in a more posterior, ventral, and medial direction,
namely the bed nucleus of the stria terminalis (BNST). Other chosen target areas included
the STN (n = 3), NAc alone (n = 2), VC/VS (n = 2) and ITP (n = 1).

3.3. Outcome Predictors
3.3.1. Neuroimaging Data

Magnetic resonance imaging (MRI) was the most preferred method for prediction.
Nine researchers employed MRI or related approaches, including diffusion tensor imaging
(DTI), diffusion MRI (dMRI) and resting-state functional MRI (rs-fMRI). Using connectomic
and tractographic analyses, seven of them provided positive results, suggesting that con-
nectivity or network level changes were associated with or predictable with DBS clinical
outcomes. They all mentioned a tract connecting the ALIC to the thalamus and prefrontal
cortex [34–40]. Within this “hyperdirect pathway”, Li, N., et al. found that the fiber T-score
of the identified tracts was associated with clinical outcome, and it was predictable even
across cohorts with different targets (STN and ALIC) [34]. van der Vlis, T., et al. found that
the degree of lead connectivity of fiber tracts, which highly overlapped with the work of
Li, N., et al. was correlated with Y-BOCS reduction [36]. Using tractography-activation
models (TAM), Hartmann, C.J., et al. showed that modulation of the right anterior middle
frontal gyrus was associated with a better response, and high activation in the right inferior
frontal gyrus was related to less response [37]. Germann, J., et al. used the volume of
tissue activated (VTA) to construct probabilistic voxel-wise efficacy maps to investigate
the relationship between VTAs and clinical outcome [40]. They identified a region in the
center of the ALIC that was associated with a better outcome. Using a similar method,
Baldermann, J.C., et al. found that a tract within the ALIC that passed by the ventral
striatum then reached the BNST was predictive of positive DBS outcome, and negative
outcome was related to fibers around the medial forebrain bundle (MFB), the posterior
limb of the anterior commissure and the inferior lateral fascicle [35]. Mosley, P.E., et al.
investigated structural connectivity and suggested that a fiber tract passing through the
midbrain to the ventrolateral PFC and a fiber tract connecting the NAc with the amygdala
were highly associated with Y-BOCS reduction [39]. Liebrand, L.C., et al. focused on
the distance between DBS contacts and two fiber bundles and concluded that treatment
response was better when the active contact was closer to the MFB and more distant to
the anterior thalamic radiation (ATR) [30]. However, the research from Widge, A.S., et al.
demonstrated a negative result with this tract [41]. They compared the VTAs, and found
that no tract reliably predicted continuous YBOCS improvement of VC/VS DBS.

For the two studies using rs-fMRI, Germann, J., et al. found that functional connectivity
in the bilateral amygdala region was associated with clinical outcomes of ITP-DBS [40].
Chen, X., et al. demonstrated an inhibitory effect on the brain network induced by VC/VS
DBS, and showed that pretreatment cortico-subcortical communication strength of part of
PFC was predictive for mood and anxiety level changes [38]. Specifically, patients with
lower pretreatment cortico-subcortical communication strength in left ventral lateral PFC
were believed to be more suitable for receiving DBS treatment.

3.3.2. Neural Activities

Two studies used a task electroencephalogram (EEG) to look inside the neural activ-
ities. Sildatke, E., et al. found that enhanced pre-surgical error-related negativity (ERN)
amplitudes were correlated with worse treatment outcomes [42]. Schüller, T., et al. dis-
covered a frontal-striatal network modulated by theta oscillation [43]. This network was
related to pre-DBS OCD symptoms, but irrelevant to Y-BOCS change. Interestingly, a
study showed that theta and high beta-band oscillations were inversely correlated with
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post-surgery OCD symptom severity, but it only recruited two patients and was not eligible
for our inclusion [44].

Welter, M.L. et al. used micro-electrodes to record neuronal activities of different
parts of STN, which was the stimulation target of this trial, during the DBS implant
surgeries [45]. They found OCD symptom improvement was significantly correlated with
STN local neuronal activities, however, in different patterns. Y-BOCS scores were correlated
with the perioperative mean discharge frequency and mean interburst interval of STN
neurons. Global Y-BOCS scores and obsession subscores were additionally correlated to
the burst frequency and intraburst frequency. Unlike those EEG studies, this study found
no relationship between oscillatory activities of STN neurons and the outcome.

Table 1. Characteristics of OCD in the included studies.

# Authors Participants Baseline Y-BOCS Scores Last Follow-Up
Date (Month) Y-BOCS Reduction Response Rate

1 Raymaekers, S.,
et al. [32] 24 30~40 76.5 ± 44.85 5~95%, 45% for median 1 67% 2

2 Mallet, L.,
et al. [46] 14 31~36 46 3 19~86%, mean 51.2% 75%

3 Graat, I.,
et al. [29] 70 34 ± 3 12 13.5 ± 9.4 69%

4 de Koning, P.P.,
et al. [47] 15 33.1 ± 3.4 >12 17 ± 6.0 66.7%

5 Haq, I.U.,
et al. [48] 6 33.2 ± 2.1 24 12.5 ± 11.3 66.7%

6 Schüller, T.,
et al. [43] 17 4 25~37 12 33.33 ± 21.5% 75%

7 Welter, M.L.,
et al. [45] 12 31.8 ± 3.1 10 19.5 ± 9.5 5 41.7%

8 Hartmann, C.J.,
et al. [37] 6 31~37 24 −3~86% 66.7%

9 Baldermann,
J.C., et al. [35] 22 31.3 ± 4.3 12 30.4 ± 20.1% 63.6%

10 Li, N., et al. [34]

ALIC: 22
STN: 14
NAc: 8 6

Combined: 6

ALIC: 31.3 ± 4.4
STN: 33.4 ± 3.7
NAc: 30 ± 7.75

Combined: 36.2 ± 1.8

ALIC: 12
STN: 12
NAc: 3

Combined: optimized

ALIC: 31.0 ± 20.5%
STN: 41.2 ± 31.7%
NAc: 47.8 ± 23%

Combined: 50.0 ± 12.6%

ALIC: 63.6%
STN: 57.1%
NAc: not

mentioned
Combined: 100%

11 van der Vlis, T.,
et al. [36] 8 33.12 ± 3.34 10~74 10.5 ± 7.6 63%

12 Mosley, P.E.,
et al. [39] 9 32.7 ± 2.6 12 17.4 ± 2.0 7 88.9%

13 Chen, X.,
et al. [38] 11 28.5 ± 6.3 8 12 21.5 ± 6.7 Not mentioned

14 Widge, A.S.,
et al. [41] 8 28~35 2~4 Not mentioned 62.5% 9

15 Liebrand, L.C.,
et al. [30] 12 32.7 ± 4.1 12 14.2 ± 9.5 62.5%

16 Germann, J.,
et al. [40] 5 33~38 12 39.4~72.7% 100%

17 Sildatke, E.,
et al. [42] 15 29.4 ± 5.4 6 or 12 −54~35% 33.3% 10

1 Median improvement in Y-BOCS score was 66% 4 years after implantation and 45% at the last follow-up. Data
came from a previous random controlled trial. 2 A total of 75% in the first year, and 67% for the last follow-up.
Here, we define a Y-BOCS reduction of 25% as responders. 3 A total of 11 of 14 participants remained for
assessment at month 46. 4 Data came from a previous clinical trial, but only 17 of 20 were included in this study.
The rest of the statistics were from the previous article. 5 The YBOCS score was collected at the end of the 3-month
active stimulation. Patients might undergo a period of shame stimulation prior to the active stimulation. The
improvement of OCD symptoms was then defined as the differences between Y-BOCS score before and after
active stimulation. 6 Patients in the NAc cohort experienced different stimulation settings, and the response rate
was not given. 7 One patient did not respond to treatment. 8 After 12 weeks of stable stimulation, stimulators
were turned off for 1 week and Y-BOCS scores were assessed twice during DBS-off and DBS-on. 9 This article
defined responders as ≥35% Y-BOCS drop. They did not limit the analysis to YBOCS collected at specific time
points but used all available data points for which they also had recorded DBS settings. 10 Response rate was
33.3% at the follow-up visit and 53.3% at the end of the study.
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Table 2. Characteristics of DBS and predictors in included studies.

# Authors Published Date DBS Targets Analyzed Factors Main Results

1 Raymaekers, S., et al. [32] 2017 ALIC/BNST 1 Clinical
characteristics

The BDI at baseline was the
only predictor inversely

related to the evolution of
the Y-BOCS

2 Mallet, L., et al. [46] 2019 STN
Clinical and

demographic
characteristics

A significant positive
relationship between

post-surgery OCD severity
and the age at onset.

3 Graat, I., et al. [29] 2021 ALIC/NAc 2
Clinical and

demographic
characteristics

Insight into illness was a
significant predictor

of response.

4 de Koning, P.P., et al. [47] 2016 ALIC/NAc Neuroendocrine
hormones 3

No significant correlation
between clinical symptoms

and neuroendocrine
outcomes.

5 Haq, I.U., et al. [48] 2011 ALIC/NAc Induced laugh
condition

Larger percentage of laugh
conditions for individual
patients correlated with

greater reduction in YBOCS
at 24-month follow-up

6 Schüller, T., et al. [43] 2021 ALIC/NAc EEG

No significant correlation
between medial frontal

cortex theta modulations
and DBS-induced
symptom change

7 Sildatke, E., et al. [42] 2022 ALIC/NAc EEG

Larger error-related
negativity amplitude was
correlated with attenuated
symptom improvement.

8 Welter, M.L., et al. [45] 2011 STN Local neural
activity

Y-BOCS improvement was
significantly correlated with

STN neuronal activities.

9 Hartmann, C.J., et al. [37] 2016 ALIC/NAc DTI

Modulation of the right
dorsolateral prefrontal

cortex was associated with
an excellent response.

10 Baldermann, J.C., et al. [35] 2019 ALIC/NAc dMRI

A network was identified
and was predictive of

beneficial effects in DBS
for OCD.

11 Li, N., et al. [34] 2020 ALIC/NAc, STN dMRI

A bundle connected frontal
regions to the STN was
associated with clinical

response in cohorts
targeting either structure.

12 van der Vlis, T., et al. [36] 2021 VC/VS dMRI

A subpart of the ALIC that
connects PFC with the STN
and medial nucleus of the

thalamus is associated with
optimal clinical response.
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Table 2. Cont.

# Authors Published Date DBS Targets Analyzed Factors Main Results

13 Mosley, P.E., et al. [39] 2021 NAc dMRI

A right-hemispheric tract
connected the BNST to the
amygdala was associated
with YBOCS reduction.

14 Chen, X., et al. [38] 2021 ALIC/NAc fMRI

Presurgical communication
at ventrolateral PFC could

differentiate mood
improvements of DBS.

15 Widge, A.S., et al. [41] 2021 VC/VS dMRI
No tract could reliably

predict clinical response
or complications.

16 Liebrand, L.C., et al. [30] 2019 ALIC/NAc 2 dMRI

Stimulation closer to the
MFB was significantly

correlated with
better outcome.

17 Germann, J., et al. [40] 2022 ITP fMRI and dMRI

A network composed of the
bilateral amygdala and

prefrontal region 24 and 46
was associated with

symptom improvement.

BDI: Beck Depression Inventory; dMRI: diffusion magnetic resonance imaging; DTI: diffusion tensor imaging;
EEG: electroencephalogram; fMRI: functional magnetic resonance imaging; IC: internal capsule; MFB: the medial
forebrain bundle; PFC: prefrontal cortex; vALIC: ventral part anterior limb of the internal capsule; 1 DBS electrodes
were mostly implanted into bilateral ALIC, but the sites were more posterior, ventral, and medial to BNST in
some of the patients. 2 It was described by the author that more contacts were placed in ventral ALIC; thus, the
ALIC may be accounted for most of the stimulation effects. 3 Including copeptin, thyroid-stimulating hormone
(TSH), prolactin, growth hormone (GH) the dopamine metabolite homovanillic acid (HVA).

3.3.3. Clinical and Demographic Data

Three studies investigated clinical and demographic factors and all obtained positive
results. Clinical factors were evaluated by several scales, commonly used questionnaires
including the Montgomery and Asberg Depression Rating Scale (MADRS), the Hamilton
Anxiety Rating Scale (HAM-A), the Hamilton Depression Rating Scale (HAM-D), the Global
Functioning Evaluation Scale (GAF), the Brief Anxiety Scale (BAS) and the Beck Depression
Inventory (BDI). Two investigations found that having OCD later in life was associated
with higher Y-BOCS declination, but this relationship was not strong enough to be used as
a predictor [29,46].

De Koning, P.P., et al. observed variations in plasma levels of certain neuroendocrine
metabolites, including thyroid-stimulating hormone (TSH), prolactin, growth hormone
(GH) the dopamine metabolite homovanillic acid (HVA). Unfortunately, there was not any
significant difference statistically [47].

Haq, I.U., et al. quantitatively investigated the smile, laughter and euphoria response
during intraoperative testing [42]. These emotional conditions were originated in the
region near the NAc, and can be modulated by DBS. The percentage of stimulus conditions
that induced laughter was correlated with long-term DBS outcome. However, the smile
conditions were irrelevant to Y-BOCS changes, and the laughter conditions did not show
any connection with short-term outcome.

3.4. Quality Assessment

The results of the quality assessment are presented in Supplementary Table S2. Only
five studies were rated as good quality [32,35,42,43,48]. One study was deemed as poor [36].
Despite some items which were considered to be not applicable in the assessment, we
noticed some common defects. First of all, most of the studies did not recruit enough
participants for providing credible results (item 5). Secondly, despite the fact that most of
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the participants in the included studies came from previous clinical trials and they usually
underwent repetitive outcome measurements, most of the studies did not provide results of
multiple Y-BOCS assessments, which failed to meet the criteria of item 11, “Were outcome
measures of interest taken multiple times before the intervention and multiple times after
the intervention”. This was partially because the correlation analyses only required scores
at the baseline and the last follow-up date.

4. Discussion

Although DBS-induced changes in connectivity strength were common in cortical and
subcortical regions [38], a unitary “hyperdirect pathway”, which connected the ventrolat-
eral prefrontal cortex (vlPFC) to the thalamus and STN, was outperformed in predicting
positive DBS outcomes. This bundle passes through some areas that were previously
thought to play a critical role in the neural model of OCD, including the anterior cingulate
cortex (ACC) [34,49] and the ALIC. Although this model was initially identified through
the investigation of ALIC-targeted OCD patients, the prediction effect persisted among
different DBS targets [34,40].

Since medication responders experience changes in this connectivity as well [38],
researchers were able to learn more about how the limbic system and the established
cortico-thalamo-basal ganglia network are involved in the mechanism of OCD and its
treatment response. On the other hand, it has been confirmed that DBS could affect the
stimulation loci and other distal regions where the neural fibers project, and this theory
can answer the question of why the hyperdirect pathway could present with a predictable
pattern across different targets, since nearly all the targets are located in or alongside
the pathway.

Then, there is the first question, which is as follows: how to select the best target
for a patient when all of the available targets appear to be operating together in an inte-
grated bundle? Individualized DBS implantations have previously been proposed [14,50].
Considering OCD as a highly heterogeneous disease, one theory is that patients can re-
ceive personalized target selection according to their symptom dimensions. Previous fMRI
studies have highlighted that different patterns of functional connectivity or brain region
activities may contribute to different behavioral changes [51–53]. More specifically, we
could dig into the neural cognitive factors, including decision making, cognitive flexibility,
response inhibition, and working memory, to figure out a target that is responsible for these
deficits [11,54].

A case report of two patients suffering from symmetry or sexual-religious obsessions
received bilateral STN and NAc DBS implantation and achieved the largest Y-BOCS declina-
tion when left STN and NAc electrodes were activated together [55]. The author tried other
ways of stimulation and they relieved the symptoms to varying degrees but none with a
satisfactory result. Despite the small sample size, these data could support our hypothesis.
On the other hand, we proposed that a personalized approach does not necessarily change
targets between brain regions. Several studies provided an alternative way to distribute
the four contacts in the ALIC/NAc area [29,30,56], all of which displayed better outcomes
compared to the classical way. This was based on the fact that one brain region could
receive and project different fibers into distributed regions. So, future studies might be
conducted in larger cohorts in order to analyze more patients and brain regions.

However, the bundle did not apply to all OCD patients. Given that the demographic
and clinical characteristics of enrolled patients varied widely, the brain structures could
be anatomically different from each other, for example, age-related brain atrophy, normal
anatomical variations and potentially anatomical alterations related to OCD. Nevertheless,
most of the included studies used normative connectivity data for MRI analysis, thus
neglecting the personal differences and might cause bias, and failed to serve as the basis
for decision-making during the surgery [34,39,57]. Moreover, although tractography has
been a useful method in finding an optimized way of DBS implantation, it still cannot
precisely demonstrate the pathway [30]. Tractography indirectly presents pathways of
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least hindrance to diffusion instead of reconstructing axons directly. So, the resolution
is rather low [14,58]. In addition, most of the included studies used low strength MRI
(3T or less) and the number of patients was limited; while diffusion data are sensitive to
artifacts, distinct results may emerge under these circumstances [59,60]. Considering that
greater magnetic field strengths can cause the heating of DBS devices and subsequent brain
damage, low strength MRI is much safer for scanning post-DBS neuroimaging data [61].
Researchers have been trying to eliminate this effect by optimizing MRI equipment and
DBS devices [62] and it might be necessary to conduct studies with better tools and a larger
cohort in the future to reach a more precise, as well as stable, result.

Unlike structural MRIs, fMRI is more sensitive to artifacts and distortion linked to
DBS devices [63]. Hence, it covered the change in brain activities, especially those regions
near the DBS target. In EEG research, a similar issue occurs. Instead of analyzing pre-DBS
data, researchers nowadays tend to perform unilateral stimulation or develop algorithms
to remove artifacts [38]. These methods assist researchers to gain insights into DBS-induced
distant network effects, but could not solve the puzzle of signal loss. Investigating local
field potential (LFP) will mend what is the missing. Recently, some researchers used novel
DBS devices that are able to collect LFP with electrodes. It can provide information of
neural activities of DBS targets and brain regions nearby. It has been proven that LFPs are
related to DBS-induced therapeutic effects [64,65]. LFP can be a potential prediction factor
for DBS treatment outcome. In addition, since LFP can be recorded by the DBS device itself,
it may help to build a close-loop DBS model in the treatment of OCD and other psychiatric
disorders [66,67]. As there was only one included study that focused on the local neural
activities [45], we hope that more studies will be carried out in the future.

Clinical, demographic, or behavioral factors are rather easy to obtain, but the re-
sults are not satisfying. Like other researches that aimed to predict CBT or medication
outcomes, we could not come to a consensus about which factor weighs more on predic-
tion [13,18,29,68,69]. It is easy to highlight that the sample size of patients available for
data analysis was too small to obtain stable results, and there were more limitations for
these types of research. To begin with, in a complex disease such as OCD, severe or refrac-
tory patients are usually comorbid with other mental disorders, which includes anxiety,
depression, or personality disorders. Second, since DBS itself can only reduce the Y-BOCS
score by 25~58% [70], patients might still require pharmacotherapies or psychotherapies.
What makes DBS more complicated is that DBS devices seem to provide therapeutic effects
even if they are not activated [33,71–73]. This could be related to the micro-lesion impact
that stereotactic surgery causes.

To address this question, a wash-out period for outcome assessment is required,
but this was not common in those studies. The therapeutic conditions as a whole are
complicated and contain numerous confounding elements. Third, as we noticed, the
standard of refractory OCD varied between different studies. Clinical and behavioral
data can also fluctuate between research groups, since scores of clinical scales are heavily
influenced by the assessors, and behavioral tasks usually consist of various components
of brain cognition. Finally, as we mentioned before, the anatomic structures of brains
differ between patients, so the contacts’ place might be slightly apart from the target, and
cause a different stimulation effect. All of these variables are difficult to regulate, and with
uncertain factors such as clinical or behavioral data, negative results will be not surprising
at all.

Aside from the limitations of those published studies, we discovered some aspects
of treatment prediction that had never been addressed or were only seldom investigated.
One was the long-term outcome of the DBS treatment. A typical model of changes in OCD
symptom severity after DBS treatment involved a sharp decline in Y-BOCS scores right
after implantation, then a rather stable platform period, and a slight increase trend as time
went by [32]. Current research has primarily concentrated on separating responders from
non-responders, with little attention being paid to long-term prediction. Future studies
might need to answer the questions about how we can predict whether the treatment effect
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would be maintained or not, which factors propose a responder that would become less
responding, and how long the DBS effect will endure. These questions aim to provide
better treatment for responders and might inform psychiatrists when and how to program
the DBS system.

In terms of data processing, we recommend analyzing the collected data utilizing AI
techniques. This is not a fresh idea, since several articles have employed machine learning
approaches for prediction [68,74,75]. What we wish to emphasize is that it has enormous
value in prediction or correlation studies. AI techniques can process and sort out data
that classic statistical regression methods could not properly manage, and provide insights
into potential biomarkers. Another reason is that, as we have previously stated, a larger
number of patients is required to compensate for the present constraints and to achieve
more consistent results and AI techniques will help researchers deal with big data more
efficiently and precisely.

5. Conclusions

DBS is now believed to be a promising treatment for refractory OCD patients. Al-
though determining the specific brain mechanism for DBS is difficult, we can still find
links between therapy and other social or biological aspects. In this review, we found that
MRI was a powerful tool for finding predictors. Albeit having some technical limitations,
MRI studies found some similar results and provided information for more personalized
DBS treatment, despite certain technical constraints. These also informed us that other
neuroimaging techniques, such as magnetoencephalography (MEG) or positron emission
tomography (PET), may also help in the identification of predictors. Although convenient
to gather and analyze, the results of clinical and demographic data were frequently in-
consistent due to the disease’s complexity. To sum it up, predictive studies are useful for
optimizing DBS treatment, as well as promoting the adherence and treatment outcomes for
refractory OCD patients.
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