
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal of Biomedical Informatics 118 (2021) 103794

Available online 30 April 2021
1532-0464/© 2021 Elsevier Inc. This article is made available under the Elsevier license (http://www.elsevier.com/open-access/userlicense/1.0/).

Original Research 

A predictive model of clinical deterioration among hospitalized COVID-19 
patients by harnessing hospital course trajectories 

Elizabeth Mauer a, Jihui Lee a, Justin Choi b, Hongzhe Zhang a, Katherine L. Hoffman a, 
Imaani J. Easthausen a, Mangala Rajan b, Mark G. Weiner a, Rainu Kaushal a, 
Monika M. Safford b, Peter A.D. Steel c, Samprit Banerjee a,* 

a Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States 
b Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States 
c Emergency Medicine, Weill Cornell Medicine, New York, NY, United States   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Prediction 
Machine learning 
EMR 
Deterioration 
Intubation 

A B S T R A C T   

From early March through mid-May 2020, the COVID-19 pandemic overwhelmed hospitals in New York City. In 
anticipation of ventilator shortages and limited ICU bed capacity, hospital operations prioritized the develop
ment of prognostic tools to predict clinical deterioration. However, early experience from frontline physicians 
observed that some patients developed unanticipated deterioration after having relatively stable periods, 
attesting to the uncertainty of clinical trajectories among hospitalized patients with COVID-19. Prediction tools 
that incorporate clinical variables at one time-point, usually on hospital presentation, are suboptimal for patients 
with dynamic changes and evolving clinical trajectories. Therefore, our study team developed a machine- 
learning algorithm to predict clinical deterioration among hospitalized COVID-19 patients by extracting clini
cally meaningful features from complex longitudinal laboratory and vital sign values during the early period of 
hospitalization with an emphasis on informative missing-ness. To incorporate the evolution of the disease and 
clinical practice over the course of the pandemic, we utilized a time-dependent cross-validation strategy for 
model development. Finally, we validated our prediction model on an external validation cohort of COVID-19 
patients served in a demographically distinct population from the training cohort. The main finding of our 
study is the identification of risk profiles of early, late and no clinical deterioration during the course of hos
pitalization. While risk prediction models that include simple predictors at ED presentation and clinical judge
ment are able to identify any deterioration vs. no deterioration, our methodology is able to isolate a particular 
risk group that remain stable initially but deteriorate at a later stage of the course of hospitalization. We 
demonstrate the superior predictive performance with the utilization of laboratory and vital sign data during the 
early period of hospitalization compared to the utilization of data at presentation alone. Our results will allow 
efficient hospital resource allocation and will motivate research in understanding the late deterioration risk 
group.   

1. Introduction 

The COVID-19 pandemic has disrupted the United States (US) 
healthcare system in unprecedented ways. As of October 7, 2020, more 
than seven million confirmed cases of COVID-19 and over two hundred 
thousand deaths were recorded in the US alone [16]. New York City 
(NYC) was the epicenter during the initial surge of the pandemic in the 
US from early March to mid-May 2020. It served as an early example for 
hospital systems nationwide preparing for their own surge of cases. 

COVID-19 patients overwhelmed NYC hospital systems with shortages 
in supply of intensive care unit (ICU) beds, ventilators, inpatient floor 
beds, and personal protective equipment (PPE). Adequate surge staffing 
necessitated redeployment of medical professionals to unfamiliar roles, 
including physicians who were confronted by a novel disease and 
challenged to triage patients with unpredictable clinical courses [17]. 
Care management and telemedicine protocols had to adapt rapidly to 
unknown disease progression. 

In anticipation of ventilator shortages and limited ICU bed capacity, 
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hospital operations prioritized the development of prognostic tools to 
predict clinical deterioration. As a result, several prognostic tools for 
clinical deterioration have been published, a systematic review of 
which, though not comprehensive, is reported here [11]. This systematic 
review validated the findings of 17 studies in an external cohort of 411 
patients admitted to a London hospital and found areas under the 
receiver operating characteristic (AUROC) curve ranged from 0.56 to 
0.78 across the models. They concluded that no prognostic model 
demonstrated consistently higher net benefit compared to admission 
oxygen saturation on room air and age. 

Most of these models utilize as predictors the clinical characteristics 
of patients at the time of ED presentation or hospital admission and 
ignore the longitudinal clinical trajectory in the course of hospitaliza
tion. Prognostic models that do consider longitudinal clinical trajec
tories often do so by reducing the longitudinal information into discrete 
instances e.g., few recorded values [10] or minimum/maximum value 
prior to prediction [21] or by over-simplifying the information into a 
few summary measures like linear trends [8]. Moreover, these features 
are sensitive to missing data which are typically imputed with single or 
multiple imputations [10,21]. Imputing missing data assumes the un
derlying missing data mechanism is missing completely at random 
(MCAR) or missing at random (MAR) and is arguably only reliable when 
the missing rate is 30% or less. Not only are missing rates amongst many 
clinical laboratory (lab) markers high (because lab tests are often only 
drawn when necessitated), but by extension MCAR and MAR assump
tions are violated because missingness is informative of clinical course. 
In this paper, we develop novel features from complex longitudinal 
clinical trajectories that account for informative missingness and also 
preserve clinical meaningfulness. 

Additionally, most published prognostic models focus on a binary 
outcome in order to identify patients who develop severe disease at 
some point (whether needing ICU resources, intubation, or experiencing 
in-hospital mortality) or on the contrary, to identify patients who will 
not need intensive resources and can be safely discharged. Such models 
are unable to distinguish when deterioration occurs in the course of 
hospitalization due to the binary nature of the outcome. In their early 
experience, frontline physicians observed that some patients developed 
unanticipated deterioration after having relatively stable periods, 
attesting to the uncertainty of clinical trajectories among hospitalized 
patients with COVID-19 [19,23]. Therefore, we develop prognostic tools 
operationalizing outcome as a time to event, or survival outcome, in 
order to distinguish stable patients who do not need ventilation from 
patients who might deteriorate at a later stage in their hospital course 
and from patients who deteriorate early in the hospital course. This will 
allow efficient hospital resource allocation (e.g. ICU beds, ventilators, 
staffing) as well as inform transfer decisions in healthcare settings 
without intensive care capabilities. 

Uniquely positioned within the New York-Presbyterian (NYP) 10- 
hospital healthcare system, we developed predictive models of clinical 
deterioration among hospitalized COVID-19 patients by using machine- 
learning algorithms and harnessing longitudinal lab and vital sign values 
during hospitalization. We present novel methodology for extracting 
linear and complex non-linear trend features from longitudinal lab and 
vital sign values while considering informative missingness. The meth
odology of feature extraction from longitudinal laboratory values and 
vital signs is innovative in the following ways: 1) taking into account 
informative missingness of features extracted from longitudinal records 
(recorded with different frequency and time period for each patient); 2) 
eliminates the need to delete or impute informative missing records in 
the calculation of linear trends of recorded values, their frequency, their 
variability and whether they belong within a clinically normal range; 3) 
non-linear trends of records are captured by constructing clusters of 
longitudinal trajectories that take into account informative missingness 
and the fact that records are captured over different time-periods and 
frequency for each patient; and finally, 4) all defined features are simple, 
categorical and clinically interpretable. In order to account for timing of 

deterioration, we modelled deterioration as a survival outcome, or time 
to event outcome, in which time to event represented time to intuba
tion/death. A key feature of a prognostic model is the definition of the 
index time at which the predictive model is supposed be applied in 
clinical practice. The index time determines which patients are included 
in the model because predictors are recorded prior to the index time and 
outcome necessarily occurs after the index time. In this paper, we 
considered 1) an early index time (i.e., 24 h since hospitalization) that 
has the advantage of predicting clinical deterioration early on in the 
course of hospitalization and 2) an index time during any point during 
the hospitalization (e.g. a randomly selected time-point) that ensures 
more accuracy due to the longer period of observation. Both definitions 
of index time have the potential to inform efficient hospital resource 
allocation by predicting time of clinical deterioration. Further, to 
incorporate the evolution of clinical practice over the course of the 
pandemic, we utilized a time-dependent cross-validation strategy for 
model development. Finally, we validated our final prediction model on 
an external cohort of COVID-19 patients being served in a different 
hospital in NYC from the training cohort. 

2. Methods 

2.1. Study population 

The study included a prospective cohort of COVID-19 adult patients 
admitted to two New York Presbyterian hospitals: Weill Cornell Medi
cine (NYP-WCM) and Lower Manhattan Hospital (NYP-LMH), from 
March 3 (date of first positive case) to May 15, 2020. Inclusion required 
(1) hospital admission through the Emergency Department (ED) with at 
least 24 h free of invasive mechanical ventilation, (2) a positive reverse 
transcription polymerase chain reaction assay for the severe acute res
piratory syndrome coronavirus 2 (SARS-CoV-2) virus upon hospital 
admission, (3) age at least 18 years, and (4) at least one lab or vital sign 
value recorded before 24 h of hospitalization. The WCM Institutional 
Review Board approved the study with waiver of informed consent. 

2.2. Primary outcome 

The primary outcome was intubation, defined as the requirement of 
invasive mechanical ventilation at any point during the hospital stay, or 
in-hospital mortality with no preceding intubation. The outcome for 
some patients was not observed due to hospital transfer, discharge, or 
last chart review for patients still in the hospital as of the date of data- 
extraction. For that reason, a time-to-event or survival analysis was 
performed that takes censoring of outcome into account. The index time 
started at 24 h post hospital admission for each patient, which we will 
refer to as the 24-hour index time. A subsequent analysis considered 
index time as a randomly selected time between this 24-hour index time 
and the patient-specific end time (i.e. intubation, death, discharge, 
transfer, or last chart review), which we will refer to as the random index 
time. A timeline diagram depicting 24-hour and random index time is 
included in Supplemental Fig. 1. 

2.3. Predictor variables 

Predictor variables collected at ED presentation included de
mographic characteristics, comorbidities, presenting symptoms, ED 
supplemental oxygen requirements, and initial chest X-ray results. 
Additional predictor variables included standardized features of longi
tudinal lab and vital sign values extracted from the EMR from patient- 
specific date of ED admission through index time. The following lab 
values were included in the analysis: white blood cell count, neutrophil 
percent, hemoglobin, platelet count, sodium level, blood urea nitrogen 
(BUN), potassium, glucose, albumin, total bilirubin, troponin-I, inter
national normalization ratio, procalcitonin, pH (arterial and venous), 
pO2 (arterial), pCO2 (arterial and venous), carbon dioxide, creatinine, D- 
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dimer, ferritin level, erythrocyte sedimentation rate, C-reactive protein, 
lactate W/B (arterial), total Sequential Organ Failure Assessment 
(SOFA) aggregate score, FiO2, SpO2, PaO2, SF ratio and PF ratio. Vital 
signs included temperature, heart rate, blood pressure (systolic and 
diastolic), respiratory rate, and SpO2. Level of supplemental oxygen 
support was also monitored from ED presentation to index time. There 
were six levels of supplemental oxygen support: room air (i.e. no sup
port), oxygen mask or nasal cannula, high-flow nasal cannula, non- 
rebreather mask, non-invasive mechanical ventilation, and invasive 
mechanical ventilation. 

2.4. Feature extraction of laboratory values and vital signs 

The lab and vital sign measurements among the predictors were 
longitudinal in nature as they could have been measured repeatedly for a 
patient’s hospital stay. The longitudinal trajectories of lab and vital signs 
are likely to represent the complexities of a patient’s response to the 
disease and its treatment in the hospital. Therefore, it is necessary to 
extract meaningful and informative information from the labs and vital 
signs. Existing methods for extracting features from longitudinal mea
surements of lab values and vital signs are often limited to simple linear 
trends that are sensitive to missing data or utilize the first or last 
available values which ignore the time point at which they are measured 
[10,21]. We present a methodology to extract features from longitudinal 
trajectories of lab values and vital signs that is novel in the way it cap
tures both linear and non-linear trends and in the way these trends take 
into account an informative missing data mechanism. Missing EMR data 
is typically imputed either by single or multiple imputation methods 
[2,5,25] that assume the underlying missing data mechanism to be 
missing at random. Moreover, missing values should not be imputed 
when the missing rate is >30%, which is often the case for certain labs. 
While utilizing feature extraction algorithms (e.g. neural networks) can 
result in superior predictive performance, they have limited clinical 
relevance. Our feature extraction method retains the clinical relevance 
and interpretability of the features. 

The mechanisms of recording data for labs and vitals are different. 
Vital signs come from machine-enabled automatic extraction, and thus 
are frequently recorded. Meanwhile, lab values are recorded following a 
physician’s order that depends on the patient’s clinical course, and thus 
are sparse and missing lab values are likely to be informative. Therefore, 
we conceptualize our feature extraction pipeline into three domains 
below. Definition of features may differ depending on the index time (24- 
hour or random) and types of measurements (lab values or vital signs) (See 
Table 1). 

2.4.1. Handling of missing lab values 
It is often the case that a patient has no value for an otherwise 

important lab marker because their clinical course did not necessitate it. 

On the other hand, a patient having a value for this marker may inform 
of a perhaps declining clinical course. During the early stages of the 
pandemic when there were shortages of personal protective equipment, 
lab tests were administered more judiciously. Therefore, the mechanism 
of missingness of labs is likely informative or missing not at random. Out 
of 38 measurements (32 labs and 6 vital signs), 9 (23.7%) measurements 
had a >50% missing rate, which makes imputing missing values inap
propriate. To capture the informative missingness, a missing indicator of 
lab values was included as a feature. The same definition of missing 
indicator was used for both 24-hour and random index time. Vital signs 
are automatically extracted with much higher frequencies than lab 
values and missing indicator is either irrelevant or uninformative. 

2.4.2. Trend features 
To capture the longitudinal trends of lab values and vital signs, we 

defined a collection of trend features that represent the patient’s clinical 
course. Linear trends are typically defined as regression coefficients of 
labs or vitals with time. In the presence of missing values, traditional 
trend features would delete otherwise usable lab markers that have a 
high degree of missingness. We used a novel principle of defining trend 
features so that missing values are handled without deleting observa
tions; i.e. we coded missing values as ‘zero’ in a derived feature such that 
the non-missing ‘zero’ of the derived feature and the missing value code 
‘zero’ reflect similar information. The trend features were defined as 
correlations with time so that they remain unit-free and allows us to 
avoid the exclusion of missing data. The correlation coefficient was 
further discretized to three levels (− 1, 0, +1); a strong positive corre
lation between +0.3 and +1 was coded as +1, a strong negative corre
lation between − 1 and − 0.3 was coded as − 1, and a weak/no 
correlation between − 0.3 an d 0.3 was coded as 0. Defining trend fea
tures in this fashion allowed us to code a missed lab data point as ‘zero’ 
to indicate a zero trend or no change over time. 

In addition to the modification of trend features described above to 
handle missing data, we constructed four new sets of trend features of 
lab values and vital signs that capture a more nuanced picture of clinical 
deterioration using the same principles to deal with missing data. Spe
cifically, the trend in daily frequency by which a certain lab is ordered, 
or the trend in daily variability of a lab marker or vital sign, or the trend 
in frequency by which a lab marker or vital sign is above or below the 
normal range, lend insights into clinical deterioration. For that reason, 
we defined trend by calculating the correlation coefficient with time, in 
the manner described above, of the following features: 1) originally 
recorded values, 2) number of values recorded per calendar day, 3) 
variance of values recorded within a calendar day, and 4) (lower/upper) 
abnormal values. The second and third sets were calculated to monitor 
the change in daily frequency and variability of lab values. A strong 
positive trend in daily frequency and variability may imply clinical 
deterioration while a strong negative trend may indicate improvement 
or stabilization of the condition therefore requiring less clinical atten
tion. Vital signs were excluded for these two sets because the frequency 
and variability of automatic extraction of vital signs are not informative. 
Due to small number of calendar days from ED presentation to 24-hour 
post hospitalization, these two sets were calculated only for random 
index time. Using the principle of defining unit-free features in order 
avoid exclusion of missing data, lab values or vital signs outside their 
clinical normal range were labeled as lower- or upper- abnormal and the 
trend of the occurrence of each was tracked over time. Lower- and 
upper- abnormalities were considered separately due to their different 
clinical implication. A strong positive trend indicates a deteriorating 
condition in that labs or vitals are more likely to be outside their clinical 
normal range over time. Meanwhile, a strong negative trend indicates a 
clinical improvement with less chance of lower- or upper- abnormality 
in labs and vitals. As noted before, a missing lab value will be coded as a 
‘zero’ trend in their lower- or upper- abnormal equating them to 
consistent normal lab values. 

Table 1 
Features of labs and vitals for 24-hour and random index time.  

Feature Labs Vitals 

24- 
hr 

random 24- 
hr 

random 

Missing indicator Y Y N N 
Trend 1) Originally recorded values Y Y Y Y 

2) Number of values recorded 
per calendar day 

N* Y N N 

3) Variance of values recorded 
per calendar day 

N* Y N N 

4) (Lower/Upper) abnormal 
values 

Y Y Y Y 

Clustering LGMM Y Y Y N 
DTW + Hierarchical clustering N N N Y 

‘Y’ if the feature was calculated, ‘N’ if not. 
* Except SOFA score and variables used for defining SOFA score. 
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2.4.3. Clustering of trajectories 
Although trend features capture linear trends over time, certain lab 

or vital signs might present non-linear trends (e.g. initial improvement 
with a rapid decline). To capture the non-linearity of a large number of 
features in an automated data-driven fashion, we performed unsuper
vised cluster analysis of trajectories of lab values and vital signs in order 
to identify sub-groups of individuals who have similar trajectories of lab 
values and vital signs. We adopted two different methods for clustering 
the trajectories of lab and vital values – namely latent growth mixture 
models (LGMM) [20] and dynamic time warping (DTW) [3,4]. 

LGMM was used in the analysis of lab values with both 24-hour and 
random index time. LGMM assumes the existence of a finite number of 
latent clusters within a sample of longitudinal data and identifies the 
distinct pattern of trajectories within each latent cluster. We varied the 
number of clusters and determined the number of clusters based on the 
Bayesian Information Criterion (BIC) [22]. As the LGMM with two 
clusters was chosen for majority of lab values based on BIC, we fitted the 
LGMM with two clusters for all lab values for consistency. Patients with 
missing lab values were classified into a separate cluster, which resulted 
in the total of 3 clusters of trajectories. 

For vital signs, two different strategies were employed for identifying 
clusters of trajectories. In the 24-hour index time analysis, the LGMM 
with two clusters was fitted. As vital signs were more densely observed 
than lab values, the average in a window of 2 h with a rolling overlap of 
1 h was used for LGMM. Meanwhile, the random index time analysis of 
vital signs involved aligning temporal sequences of vital signs because 
each patient has a different length and frequency of recorded vital signs. 
We assumed that patients may exhibit a similar pattern of vital signs 
over time but the timing of certain state of vital signs may be different. 
DTW takes two sets of longitudinal data with different lengths and cal
culates the distance required for obtaining the optimal match of each. 
We implemented DTW with a constraint that the first [last] record of the 
one longitudinal data is matched with the first [last] record of the other 
longitudinal data. Pairwise distance between temporal sequences of 
vital signs via DTW was then calculated and clusters were determined 
using hierarchical clustering [13]. Compared to LGMM, the clustering of 
trajectories using DTW accounts for heterogeneity in timing of state of 
vital signs across patients and captures the changes in vital signs 
regardless of different length of observations. 

2.5. Model development and cross validation (NYP-WCM Cohort) 

We used a subset of the final cohort (patients last located at NYP- 
WCM) in order to train models for predicting time to intubation or 
death from index time. Predictor features for modelling included fea
tures recorded at the time of ED presentation and our novel lab and vital 
sign features derived up to index time (24-hour or random index time). 
The primary goal of our prediction modelling is to aid clinical decision 
making by providing a time-dependent predictive risk e.g. risk of intu
bation/death after 24 or 48 h post index time. For that reason, we uti
lized a time-dependent concordance index (Harrell’s C-index) [12] for 
assessing predictive accuracy at these various time points. In pre- 
processing, missing values at presentation were imputed by K-nearest 
neighbors. 

To test the utility of our developed lab and vital sign features, we ran 
a sequence of models testing different combinations of the 3 domain 
groups of features (missing labs, trend features, and clustering of tra
jectories). These models included: 1) just baseline features recorded at 
the time of ED presentation, 2) baseline features and missing lab in
dicators, 3) baseline features and trend features, 4) baseline features and 
cluster features, 5) baseline features, missing lab indicators, and trend 
features, 6) baseline features, missing lab indicators, and cluster fea
tures, 7) baseline features, trend features, and cluster features, and 8) 
baseline features, missing lab indicators, trend features, and cluster 
features. All features besides baseline features were derived up to the 
index time of evaluation (24-hour or random index time). 

2.5.1. Time-dependent cross validation 
Unique to our prediction problem was the rapidly evolving care 

landscape at the surge of the COVID-19 pandemic in NYC. Medical 
professionals were redeployed to unfamiliar roles and challenged to 
triage patients with unpredictable clinical courses. The introduction of a 
novel disease required adaptation of care management and telemedicine 
protocols over time. In order to mimic this real-world phenomenon, we 
implemented a cross-validation strategy accounting for admission date. 
The training data was divided into five equally sized folds in the order of 
the admission date (see Fig. 1). Models were trained on the first fifth of 
the data (patients admitted earliest at the start of the pandemic) and C- 
indices calculated on the next fifth. In sequential fashion, methods 
learned on the data by adding the next fifth of patients and testing on the 
succeeding fifth. 

Within each training step, cross-validation tuned specified hyper- 
parameters. Pre-processing steps were carried out within each fold 
that included eliminating predictors with near-zero variance and highly 
correlated predictors based on a 0.70 correlation coefficient cutoff. 

2.5.2. Black-box method 
We chose random survival forests (RSF) for right-censored time-to- 

event [14] outcome for our black-box method for two reasons – first, 
random forests is based on decision trees which naturally model higher 
order interactions between predictors and second, it has well validated 
open-source code that implements time-dependent c-indices. RSF is an 
extension of Breiman’s random forest (RF) method [6]. As in RF, RSF 
consists of individual trees grown from multiple bootstrapped samples of 
the data to create an ensemble of individual trees (forests) that reduces 
generalization error due to the introduction of randomness [6,18]. 

In our case, optimal node splitting was determined by the log-rank 
test. Ensemble C-indices were obtained for each fold of cross- 
validation and averaged for estimated predictive performance. Forests 
were built with 1000 trees and the number of variables randomly 
selected at node splits was set as the square root of the total number of 
predictor variables. 

2.5.3. Interpretable methods 
We further implemented two interpretable methods to compare their 

performance with RSF in order assess the need of a black-box method. 
The first of which was classification and regression trees (CART) for 
survival outcome as outlined by Breiman et al. [7]. A simplified version 
of random forests, CART produces one learner tree, lending to inter
pretation by allowing a user to follow decision rules at node splits down 
the tree. To prevent overfitting, we tuned the cost complexity (cp) 
parameter within each fold via 5-fold cross validation. In CART, the cp 
parameter controls the growth of the tree by regularizing the size of the 
tree. C-indices were averaged across the outer cross-validation folds to 
estimate the predictive accuracy. 

The second interpretable method we implemented was Cox propor
tional hazards regression. Because we had over 300 predictors for 
modelling, within each cross validation fold we performed a Cox pro
portional hazards elastic net (Cox-Elastic Net) regression with a 
shrinkage penalty, tuned through inner 10-fold cross-validation. From 
the fitted elastic net, we arbitrarily selected the top predictors with non- 

Fig. 1. Time-dependent cross-validation scheme.  
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zero coefficients, up to a maximum of 10. These predictors were used to 
build a final Cox proportional hazards model within each fold. C-indices 
were averaged across outer cross-validation folds for estimated predic
tive performance. 

2.5.4. Interpretation and risk stratification 
As RSF is an ensemble of a large number of trees, it is not readily 

interpretable. We provided a ranking of the important predictors using a 
measure of variable importance (VIMP) that is based on Breiman-Cutler 
(BC) [6] and Ishwaran-Kogalur (IK) [14,15] VIMP. In addition, we 
stratified patients into three risk profiles - early, late, and no deterio
ration - based on the bottom 10%, middle 10–70%, and top 30% of the 
ensemble predicted survival probability distribution at 24 h post index 
time (probability distribution of being alive and remaining intubation- 
free at 24 h post index time). Kaplan-Meier estimates of survival prob
abilities and 95% confidence intervals were then calculated and plotted 
for each risk profile and time point of evaluation. 

2.6. External validation cohort (NYP-LMH) 

Lastly, we applied the final RSF model on the cohort of patients last 
located at NYP-LMH in order to test performance. We calculated C- 
indices at 12, 24, and 48 h post index time. Cutoff values of the ensemble 
predicted survival probabilities at 24 h post index time were determined 
from the stratification of risk profiles in the training cohort and used to 
stratify the patients in the validation cohort into risk profiles. Kaplan- 
Meier estimates of survival probabilities and 95% confidence intervals 
were calculated and plotted for each risk profile and time point of 
interest. 

3. Results 

There were 1,045 patients in the NYP-WCM training cohort and 292 
patients included in the NYP-LMH validation cohort. Median ages were 
66 and 70, respectively. The NYP-WCM cohort had more male patients 
and fewer patients with age 65 years or more compared to the validation 
NYP-LMH cohort. Majority of the NYP-WCM patients were of white race 
whereas majority of NYP-LMH cohort were of Asian race (Table 2). The 
NYP-WCM patients had a higher frequency of requiring supplemental 
oxygen within 3 h of ED arrival, End State Renal Disease (ESRD), any 
cancer, any immunosuppression, symptoms of fever, symptoms of dys
pnea and a lower rate of COPD compared to NYP-LMH cohort (see 
Table 2). 

Almost 30% (N = 295, 28%) of NYP-WCM patients experienced 
invasive ventilation or in-hospital mortality compared with 24% (N =
69) of NYP-LMH patients. There were 1339 patients included in analyses 
involving random index time (1047 from NYP-WCM and 292 from NYP- 
LMH), determined as having any lab or vital sign value recorded by this 
random time point. 

3.1. Feature extraction 

Our feature extraction pipeline was applied to thirty-two lab values 
and six vital signs that are reported in section 2.4. When using 24-hour 
post hospitalization as the index time, 5 features were calculated for 
each lab value including missing indicator, trend of originally recorded 
values, trend of lower- and upper- abnormality, and clusters of trajec
tories using LGMM. Accounting for two additional trend features for 
SOFA score (frequency and variance of values recorded per calendar 
day), a total of 160 features were calculated for labs. The same set of 
features with the exception of the missing data indicator was calculated 
for each vital sign resulting in a total of 24 vital sign features. 

In the NYP-WCM training cohort, <1% of patients underwent an 
arterial blood gas test between ED presentation and 24-hour post hos
pitalization and had recorded pH, pCO2, and lactate W/B. On the other 
hand, lab values with the lowest rate of missing (≤1%) were white blood 

Table 2 
Patient characteristics at ED presentation: training (NYP-WCM) and validation 
(NYP-LMH) Cohorts.   

NYP- 
WCM 

NYP-LMH Overall 

(N =
1045) 

(N = 292) (N =
1337) 

Demographics 
Age    
>=65 551 

(52.7%) 
186 
(63.7%) 

737 
(55.1%) 

Race    
White 400 

(38.3%) 
61 
(20.9%) 

461 
(34.5%) 

Black 144 
(13.8%) 

39 
(13.4%) 

183 
(13.7%) 

Asian 109 
(10.4%) 

115 
(39.4%) 

224 
(16.8%) 

Other 220 
(21.1%) 

47 
(16.1%) 

267 
(20.0%) 

Not Specified 172 
(16.5%) 

30 
(10.3%) 

202 
(15.1%) 

Sex    
Male 622 

(59.5%) 
157 
(53.8%) 

779 
(58.3%) 

BMI (kg/m^2)    
<25 351 

(33.6%) 
137 
(46.9%) 

488 
(36.5%) 

25 to <30 347 
(33.2%) 

78 
(26.7%) 

425 
(31.8%) 

>=30 332 
(31.8%) 

69 
(23.6%) 

401 
(30.0%) 

Missing 15 (1.4%) 8 (2.7%) 23 (1.7%) 
Active and/or former smoker/vaper 295 

(28.2%) 
86 
(29.5%) 

381 
(28.5%) 

ED Supplemental Oxygen 
Required supplemental oxygen within the 

first 3 h of arrival 
576 
(55.1%) 

142 
(48.6%) 

718 
(53.7%) 

Comorbidities 
Diabetes Mellitus (DMI, DMII) 321 

(30.7%) 
96 
(32.9%) 

417 
(31.2%) 

Hypertension (HTN) 594 
(56.8%) 

170 
(58.2%) 

764 
(57.1%) 

Chronic Obstructive Pulmonary Disease 
(COPD) 

51 (4.9%) 26 (8.9%) 77 (5.8%) 

Chronic Kidney Disease (CKD) 51 (4.9%) 16 (5.5%) 67 (5.0%) 
End Stage Renal Disease (ESRD) 73 (7.0%) 16 (5.5%) 89 (6.7%) 
Coronary Artery Disease (CAD) 157 

(15.0%) 
47 
(16.1%) 

204 
(15.3%) 

Any Cancer 85 (8.1%) 13 (4.5%) 98 (7.3%) 
Any Immunosuppression 35 (3.3%) 0 (0%) 35 (2.6%) 
Symptoms 
Fever 734 

(70.2%) 
168 
(57.5%) 

902 
(67.5%) 

Cough 724 
(69.3%) 

191 
(65.4%) 

915 
(68.4%) 

Diarrhea 279 
(26.7%) 

81 
(27.7%) 

360 
(26.9%)  

Nausea or vomitingNausea or 
vomiting 

202 
(19.3%) 

55 (18.8%) 257 
(19.2%) 

Myalgias 218 
(20.9%) 

51 (17.5%) 269 
(20.1%) 

Dyspnea 683 
(65.4%) 

157 
(53.8%) 

840 
(62.8%) 

Initial Chest X-ray Findings 
Unilateral Infiltrate 110 

(10.5%) 
43 (14.7%) 153 

(11.4%) 
Bilateral Infiltrates 764 

(73.1%) 
193 
(66.1%) 

957 
(71.6%) 

Pleural Effusion 57 (5.5%) 14 (4.8%) 71 (5.3%) 
Other 58 (5.6%) 21 (7.2%) 79 (5.9%) 
Outcome 
intubation and/or in-hospital 

mortality 
295 
(28.2%) 

69 (23.6%) 364 
(27.2%)  
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cell, hemoglobin, platelet count, and total SOFA aggregate score. Mea
surements with the strongest trend in originally recorded values (either 
+1 or − 1) included glucose level (75.7%), white blood cell count 
(74.0%), BUN (73.6%), and platelet count (73.3%). 

Clusters of trajectories for both lab values and vital signs were 
determined using LGMM for the 24-hour index time. Three clusters from 
LGMM were coded as 1, 2, and 9 where patients in Cluster 1 presented 
low/decreasing values of labs or vitals over time compared to those in 
Cluster 2 (high/increasing) on average. Cluster 9 indicates those with 
missing labs and plays an important role in comparing groups with 
certain trajectories of lab values to those with no lab tests. 

Panels in Fig. 2 illustrate the clusters of trajectories of three lab/vi
tals in the NYP-WCM training cohort: FiO2 (left), level of supplementary 
oxygen (center), and respiratory rate (right). A solid line is the locally 
weighted scatterplot smoothing (LOESS) curve of individual trajectories 
of patients in one cluster. The shades are 95% confidence interval for the 
LOESS curve. The lines and shades are color-coded for LCMM clusters. 
Cluster 1 in these three panels represents patients with more stable 
condition, but the interpretation of clusters may be different for other 
labs and vitals. 

3.2. Predictive performance 

The predictive performance, determined by cross-validated c-indices 
in the training cohort (NYP-WCM), of the proposed methods are pre
sented in Table 3. 

Specifically, the c-indices at 12, 24 and 48 h post index time were 
obtained for three predictive methods (RSF, CART and Cox-Elastic Net) 
and three model scenarios: Model 1 – prediction made at 24-hour index 
time and predictors restricted to those obtained at ED presentation only, 
Model 2 – prediction made at 24-hour index time with predictors at ED 
presentation along with all derived lab and vital sign predictor features 
for 24-hour index time, and Model 3 – prediction made at random index 
time with predictors at ED presentation along with all derived lab and 
vital sign predictor features for random index time. The predictive 
performance of the multiple model scenarios presented in Table 3 sug
gests that predictors restricted to those at ED presentation show weak 
predictive performance of the outcome at 12, 24 and 48 h from the index 
time. Use of longitudinal features for the 24 h and random index time 
improves predictive performance substantially especially for the risk of 
intubation/death evaluated at 12 h and 24 h post-index time. The ability 
of all models to predict the outcome at 48 h post-index time is lower than 
that at 12 and 24 h post index time. A comparison of the predictive 
performance (model 2 of Table 3) using time-dependent cross-validation 
versus using conventional cross-validation showed that the time- 
dependent CV gave slightly more conservative estimates of predictive 

performance compared to conventional CV (Supplemental Table 1). 

3.3. Comparative performance of features 

We compared the predictive performance (cross-validated c-index) 
of each set of features extracted from lab values and vital signs i.e. 
missing lab indicators, trend features and clusters of trajectories (non- 
linear features) with the best performing ML algorithm – random sur
vival forests and 24-hour index time. Specifically, we progressively 
added each group of features in 8 separate models as shown in Table 4. 
The cluster features have the highest gain in predictive performance 
(model 4 vs 1), followed by the missing lab indicators (Model 2 vs 1) and 
trend features (Model 3 vs 1). In the presence of cluster features and 
missing lab features (Model 6), trend features do not improve the pre
dictive performance (Model 8). 

3.4. Predictor importance 

The predictive performance of RSF, a black box method, outperforms 
the interpretable methods such as Cox-Elastic Net and CART in terms of 

Fig. 2. Examples of LGMM clusters of trajectories. FiO2 (left), level of supplemental oxygen (center), respiratory rate (right) Red is for Cluster 1 and blue is for 
Cluster 2. Solid line: locally weighted scatterplot smoothing (LOESS) curve Shades: 95% confidence interval. 

Table 3 
Cross-validated C-indices: Training Cohort (NYP-WCM).   

Model 1 Model 2 Model 3 

12 hrs 
RSF 0.698 0.933 0.943 
CART 0.725 0.813 0.850 
Cox-Elastic Net 0.724 0.839 0.894 

24 hrs 
RSF 0.690 0.920 0.927 
CART 0.688 0.689 0.831 
Cox-Elastic Net 0.687 0.792 0.868 

48 hrs 
RSF 0.648 0.852 0.891 
CART 0.661 0.565 0.821 
Cox-Elastic Net 0.660 0.708 0.845 

‘hrs’=hours since index time where index time contingent on model scenario. 
‘CART’=Classification and Regression Tree for survival. 
‘Cox-Elastic Net’=Cox proportional hazards regression with predictors chosen 
through elastic net regression. 
‘Model 1’=predictors at ED presentation alone; index time defined at 24 h of 
hospitalization. 
‘Model 2’=predictors at ED presentation including longitudinal laboratory and 
vital sign features extracted up to 24 h; index time defined at 24 h of hospital
ization. 
‘Model 3’=predictors at ED presentation including longitudinal laboratory and 
vital sign features extracted up to random index time; index time defined at 
random time as discussed in text. 
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predictive accuracy. We chose the RSF model at 24-hour index time 
utilizing baseline features and all domain features (i.e. scenario 2 for 
RSF of Table 3 or analogously scenario 8 of Table 4) as our final model 
for validation in the NYP-LMH cohort. The top most important pre
dictors determined as those that explain 70% of the total cumulative 
importance are shown in Fig. 3. 

We found that three of the top five strongest predictors were LGMM 
cluster features for FiO2, level of supplemental oxygen, and respiratory 
rate. Specifically, the identification of cluster 2 for FiO2 (patients with 
increasing levels over time) was the strongest predictor (compared to 
stable/decreasing or no data), followed by the identification of cluster 2 
for level of supplemental oxygen (patients with increasing levels over 
time compared to stable/decreasing or no data), and the identification of 
cluster 1 for respiratory rate (patients with lower initial respiratory rates 
which remain stable over time compared to higher initial respiratory 
rates which increase over time or no data). Fig. 2 represents the cluster- 
specific average trajectories for each of these measures. Patients not 
belonging to either cluster 1 or cluster 2 for each measure had no data 
available and were identified as cluster 9 (not shown). Besides these 
three cluster features, indicators of no available data for PaO2 and 
troponin I were also among the top five. Having no data for these 
measures is informative as physicians most likely did not suspect 
deterioration. 

3.5. Risk stratification 

Three risk profiles (early, late and no deterioration) were created 
from the ensemble predicted survival probabilities at 24 h post index 
time. The probability of being alive and remaining intubation-free 
through 24 h after a stable initial 24 h of hospitalization ranged from 
0% to 85.6% for the early deterioration risk profile, >85.6% to 98.6% 
for the late deterioration risk profile, and >98.6% for the no deterio
ration risk profile. 

Notably, these results demonstrate that patients in the late deterio
ration risk profile have lower probability of deteriorating at the begin
ning of their hospital stay and the probability of deterioration increases 
during the later phase of their hospitalization (Fig. 4). 

Specifically, 55% of patients deteriorate by 24 h after an initial stable 
condition within 24 h of hospitalization in the early deterioration risk 
profile compared to 1% in the late deterioration risk profile and 0% in 
the no deterioration risk profile. By 5 days after index time, 77%, 24%, 
and 2% deteriorate and by 10 days after index time, 84%, 39%, and 5% 
of patients deteriorate, respectively (Fig. 4). 

Table 5 shows the differences in patient characteristics at ED pre
sentation between these risk profiles. The frequency of a number of 
patient characteristics decreased with decreasing risk profile, including 

the proportion of patients ≥ 65 years of age, patients reporting a history 
of smoking/vaping, requiring supplemental oxygen within the first 3 h 
of ED arrival, presenting with dyspnea, and initial chest radiograph in
filtrates. In addition to these characteristics, male sex and the presence 
of several comorbid conditions, particularly diabetes mellitus, hyper
tension, end stage renal disease, and coronary artery disease, further 
distinguished between the late deterioration and no deterioration 
groups. Of note, the no deterioration group had a higher proportion of 
patients present with GI symptoms (diarrhea, nausea or vomiting). 

Supplemental Table 2 shows the differences in distribution of the top 
predictors between the risk profiles. As noted earlier, three of the top 
five strongest predictors were LGMM cluster features for FiO2, level of 
supplemental oxygen, and respiratory rate. These findings further sup
port the previously discussed trends in respiratory status characteristics 
across risk profiles. There was decreasing representation in the following 
predictor clusters with decreasing risk profile: FiO2, cluster 2 and level 
of supplemental oxygen, cluster 2. Cluster 2 for both of these predictors 
represents increasing oxygenation requirements over time. (Fig. 2) In 
terms of respiratory rate, 46% (N = 48/105) of patients in the early 
deterioration group fell into cluster 1 compared to 62% (N = 389/626) 
of patients in the late deterioration group and 92% (N = 288/314) of 
patients in the no deterioration group. Cluster 1 represents low and 
stable values over time (Fig. 2). 

3.6. Validation cohort 

The RSF model developed in the training NYP-WCM cohort was 
applied to the NYP-LMH validation cohort which yielded c-indices of 
0.913, 0.824, and 0.790 at 12, 24, and 48 h post 24-hour index time, 
respectively. Applying risk stratification to the validation cohort based 
on ensemble predicted survival probabilities at 24 h post index time 
produced similar trajectories to the training cohort (Fig. 5). 

Specifically, 20% of patients deteriorate by 24 h after a stable initial 
24 h of hospitalization in the early deterioration risk profile compared to 
3% in the late deterioration risk profile and 0% in the no deterioration 
risk profile. By 5 days after index time, 47%, 16%, and 0% deteriorate, 
and by 10 days after index time, 67%, 36%, and 0% of patients deteri
orate, respectively (Fig. 5). Compared to the training NYP-WCM cohort, 
the early deterioration risk profile deteriorated less rapidly in the vali
dation NYP-LMH cohort. Only 5% of patients in this group from NYP- 
LMH were intubated or died within 12 h post 24-hour index time 
compared to 31% from NYP-WCM. At 24 h, 20% deteriorated compared 
to 55% and at 48 h 37% deteriorated compared to 64%. The other two 
risk profiles had similar trends of deterioration between the two cohorts. 
Importantly, patients classified into the no deterioration risk profile 
within the validation NYP-LMH cohort had no deterioration. For those 

Table 4 
Comparative predictive performance of features (c-index).   

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

12 hrs         
RSF 0.698 0.892 0.807 0.924 0.892 0.941 0.911 0.933 

24 hrs         
RSF 0.690 0.850 0.793 0.894 0.869 0.924 0.895 0.920 

48 hrs         
RSF 0.648 0.776 0.745 0.827 0.803 0.839 0.835 0.852 

All models employed 24-hour index time. 
‘RSF’=Random Survival Forest. 
‘Model 1’=baseline features. 
‘Model 2’=baseline features, missing lab indicators. 
‘Model 3’=baseline features, trend features. 
‘Model 4’=baseline features, cluster features. 
‘Model 5’=baseline features, missing lab indicators, trend features. 
‘Model 6’=baseline features, missing lab indicators, cluster features. 
‘Model 7’=baseline features, trend features, cluster features. 
‘Model 8’=baseline features, missing lab indicators, trend features, cluster features. 
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in the early deterioration risk profile, 61% went on to deteriorate at 
some point during hospitalization compared to 20% in the late deteri
oration risk profile. 

4. Discussion 

We developed predictive models of clinical deterioration using 
machine-learning algorithms among hospitalized COVID-19 patients by 
harnessing longitudinal lab and vital sign values during the early period 
of hospitalization. Our main innovation was to develop a pipeline to 
extract clinically meaningful features of longitudinal trajectories of lab 
values and vital signs paying particular attention to informative missing 
values. Our features are defined simply and categorically so that they 
retain clinical interpretation while capturing subtle nuances of in- 
hospital clinical trajectories. Specifically, we conceptualized three sets 
of features for lab values and vital signs - linear trends, missing value 
indicators and clusters of trajectories (non-linear trends) and found that 

trajectory clusters provide the highest gain in predictive performance 
followed by missing indicators and trend features. We also found su
perior predictive performance of random survival forests with the uti
lization of lab and vital sign data during the early period of 
hospitalization compared to the utilization of data at ED presentation 
alone. We demonstrated through external validation that our model 
accurately predicts clinical trajectories of hospitalized COVID-19 
patients. 

The main finding of this study is that we identified a late deterio
ration risk profile in which the probability of being alive and remaining 
intubation free in the next 24 h after a stable initial 24 h of hospitali
zation was high, despite deterioration later during hospitalization. Key 
features of the late deterioration risk profile compared to no deteriora
tion included older age (≥65), a history of smoking/vaping, and initial 
presence of dyspnea, supplemental oxygen requirement, and chest 
radiograph infiltrates. The strongest predictors were high/increasing 
FiO2, level of supplemental oxygen, and respiratory rate. These results 

Fig. 3. Predictor importance from RSF on training cohort (NYP-WCM). The top most important predictors determined as those that explain 70% of the total cu
mulative importance are shown. ‘age_gt65’=≥65 years of age. For labs and vitals, predictors are labeled as ‘<feature>_<lab/vital>’. Features are labeled as below: 
‘cluster_1_9’=Low/decreasing (Cluster 1) compared to high/increasing (Cluster 2) or no data/missing value (Cluster 9). Clusters were identified using LGMM. 
‘cluster_2_9’=High/increasing (Cluster 2) compared to low/decreasing (Cluster 1) or no data/missing value (Cluster 9). Clusters were identified using LGMM. 
‘nodata’=No available data or missing lab or vital sign ‘n_per_day_trend’=Trend in the number of values recorded per calendar day Labs and vital signs are labeled as 
below: ‘supp_oxygen’=Level of supplemental oxygen. ‘resp_rate’=Respiratory rate. 
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suggest that our algorithm can distinguish between late and no deteri
oration despite the appearance of a stable clinical trajectory at the 24- 
hour mark of hospitalization. Although prediction of early or no dete
rioration is supported by clinical judgement and can be achieved with 
prognostic models that include simpler predictors at ED presentation 
[11], our results indicate that prognostic models with predictors at ED 
presentation may not be sufficient to identify this third risk group of 
patients showing late deterioration with high degree of accuracy. The 
ability to predict in-hospital clinical deterioration from the early period 
of hospitalization would allow efficient hospital resource allocation (e.g. 
ICU beds, ventilators, staffing) as well as inform early clinical in
terventions, such as transfer decisions in healthcare settings without 
intensive care capabilities. Thus, the major strength of our study is the 
development of an informatics tool that extracts clinically meaningful 
features from the complex longitudinal information of a patient’s clin
ical course in order to accurately predict late deterioration of hospital
ized COVID + patients. Such a set of standardized features defined in 
this way is useful in a variety of operational and research endeavors 
beyond that observed for deterioration of COVID + patients that require 
predictive modeling using Electronic Medical Records (EMR). 

Clinical data during pandemics presents many complexities. For 
example, within the NYP hospital system in March 2020 there was no 
default ED lab order set for suspected COVID-19 patients; however, in 
early April as clinical experience matured a COVID-19 clinical order set 
was implemented with incomplete penetrance. In this case, the presence 
of lab values in the EMR from an ED admission could reflect clinical 
necessity or more simply the date of ED admission. As another example, 
care teams had to don PPE when in close contact with COVID-19 pa
tients, reducing the frequency of lab studies performed in order to pre
serve PPE supply and mitigate the spread of infection. These 
circumstances inflated the frequency of lab values for patients with 
suspected deterioration compared to patients with suspected stability. 
These examples illustrate the complexities in the utilization of EMR data 

to predict clinical deterioration. To this end, our pipeline of extracting 
predictors from the EMR with a particular focus on informative missing- 
ness is essential in reducing selection bias in prognostic model devel
opment and ensures higher accuracy and greater generalizability. 

Adding to the strength of our methods was the utilization of a time- 
dependent cross-validation scheme to account for the rapid changes in 
the clinical knowledge of the disease and its care. The COVID-19 
pandemic overwhelmed NYC hospitals from early March to mid-May 
2020 [24]. Hospitals responded to a saturation of intensive care re
sources with the conversion of alternative spaces to ICUs, redeployment 
of clinical staff to unfamiliar environments and the rapid development 
and dissemination of management protocols of a novel disease. It is 
important during a pandemic to recognize that these evolving circum
stances can introduce biases into model development and produce lack 
of generalizability. Our time-dependent cross-validation strategy esti
mated predictive performance conservatively compared to conventional 
cross-validation. 

It is important to emphasize the methodological importance of our 
study while simultaneously acknowledging its limitations. While we 
have demonstrated the need and advantage of including longitudinal 
clinical trajectories to predict late deterioration, such predictions cannot 
be obtained with a simple risk calculator that requires as input only a 
few easily available risk factors by the bedside; rather the predictive 
model has to be embedded within the EMR system with an automated 
feature extraction tool. Such implementation would have to overcome 
challenges of big data management platforms that include but are not 
limited to existence of multiple data standards, structures, types and 
format; rapid growth in data necessitating re-training the model on a 
periodic basis as new variants of the virus emerge; unavailability of 
open-source tools (such as R) to execute the predictive models and high 
costs. Although it is feasible to overcome these barriers, implementing 
our risk prediction model in the EMR system has additional challenges 
due to complexities of feature extraction. For that reason, we prioritized 

Fig. 4. Kaplan-Meier estimates by risk profile: training cohort (NYP-WCM).  
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a feature extraction pipeline that is easy to implement in code, has 
clinical interpretation and does not need computation intensive impu
tation strategies to handle missing data. An exception to this principle 
are the clusters of lab and vital trajectories, which can be computa
tionally intensive to implement in real-time. A solution to this compu
tational burden would be to define these trajectories once sufficient data 
is collected and assign a new patient to one of these clusters based on the 
distance of the new patient’s trajectory to the average trajectory of a 
cluster. Moreover, additional research is needed in order isolate 
currently unidentified clinical characteristics that predict late deterio
ration and that could be used for simplified risk prediction tools used for 
clinical care. 

Another challenge of predictive model implementation in the real 
world setting is the mechanism and timing of alerting the clinician 

regarding the concern about deterioration, the expected response to the 
alert, and the effectiveness of the response. Alert fatigue [1] is a well- 
recognized, but unintended consequence of decision support where ac
curacy and actionability are poor. As ML algorithms are trained to 
optimize accuracy, they need to be made sensitive to clinician behavior 
by explicitly adding additional optimization criteria. Even if such short- 
term issues are overcome, there could be additional medium and longer- 
term issues with implementation such as automation bias and rein
forcement of outmoded practice [9]. Specifically, clinicians may become 
complacent about the monitoring of a patient classified in the “no 
deterioration” group (automation bias) although a few in that group 
may still deteriorate. This issue is compounded for a black-box model. 
On the other hand, as members of the “late deterioration” group are 
successfully identified and intervened on, the models would need to be 
retrained to avoid the risk of reinforcing outmoded practice [9]. 
Retraining the models would need the costly endeavor of a continuously 
learning system which would reinforce a feedback loop between prog
nosis and practice could result in self-fulfilling predictions. Such chal
lenges and barriers of implementing a predictive model is not particular 
to our case. The uniqueness of the pandemic where surge in cases 
created inpatient bed capacity issues, we believe our predictive model is 
still useful in making critical triage decision for patient disposition. 

Another limitation of our study is that it was developed using patient 
data within one hospital at the surge of the pandemic in NYC. It is un
known how our model generalizes to other healthcare systems and other 
geographical regions or to other time-periods of the COVID-19 
pandemic. As with any prognostic tool, the underlying model must be 
continually developed and validated for generalizability. However, 
NYP-WCM included one of the largest COVID-19 patient populations in 
NYC at the surge of the pandemic from early March through mid-May 
and included a diverse patient population. Moreover, we validated our 
final model on patients at NYP-LMH, which represents a demographi
cally distinct patient population. These strengths help compensate for 
this limitation. 

Lastly, while we demonstrated substantial improvement in predic
tive performance with Random Survival Forests compared to inter
pretable methods, we did not consider more novel machine learning 
algorithms such as deep learning for survival outcomes that has the 
potential for improvement in prediction accuracy. 

5. Conclusion 

In summary, we developed an informatics pipeline that harnesses 
complex longitudinal clinical characteristics (laboratory values and vital 
signs) of hospitalized COVID+ patients and accurately predicts clinical 
deterioration with high accuracy and identifies a risk profile of patients 
who are initially stable but deteriorate later in their hospitalization 
course. Prediction models that include simple risk factors of patients 
recorded at ED presentation or clinical judgement are unable to isolate 
this group of patients showing late deterioration. The ability to detect 
clinical deterioration at different stages of hospitalization would allow 
efficient hospital resource allocation (e.g., ICU beds, ventilators, staff
ing) as well as inform early clinical interventions, such as transfer de
cisions in healthcare settings without intensive care capabilities. The 
major strength of our methodology is our pipeline to extract clinically 
meaningful and easily implementable features from longitudinal tra
jectories with a particular emphasis on informative missing-ness and our 
time-dependent cross-validation strategy that reflects the changing 
course of this novel disease. 
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Table 5 
Patient Characteristics at ED Presentation by Risk Profile: Training Cohort (NYP- 
WCM).   

Early 
deterioration 

Late 
deterioration 

No 
deterioration 

(N = 105) (N = 626) (N = 314) 

Demographics 
Age    
>=65 68 (64.8%) 369 (58.9%) 114 (36.3%) 

Race    
White 39 (37.1%) 241 (38.5%) 120 (38.2%) 
Black 12 (11.4%) 89 (14.2%) 43 (13.7%) 
Asian 7 (6.7%) 72 (11.5%) 30 (9.6%) 
Other 26 (24.8%) 121 (19.3%) 73 (23.2%) 
Not Specified 21 (20.0%) 103 (16.5%) 48 (15.3%) 

Sex    
Male 63 (60.0%) 395 (63.1%) 164 (52.2%) 

BMI (kg/m^2)    
<25 34 (32.4%) 228 (36.4%) 89 (28.3%) 

25 to <30 29 (27.6%) 202 (32.3%) 116 (36.9%) 
>=30 40 (38.1%) 187 (29.9%) 105 (33.4%) 
Missing 2 (1.9%) 9 (1.4%) 4 (1.3%) 

Active and/or former smoker/ 
vaper 

37 (35.2%) 184 (29.4%) 74 (23.6%) 

ED Supplemental Oxygen 
Required supplemental 

oxygen within the first 3 h 
of arrival 

88 (83.8%) 365 (58.3%) 123 (39.2%) 

Comorbidities 
Diabetes Mellitus (DMI, DMII) 38 (36.2%) 206 (32.9%) 77 (24.5%) 
Hypertension (HTN) 67 (63.8%) 390 (62.3%) 137 (43.6%) 
Chronic Obstructive 

Pulmonary Disease (COPD) 
8 (7.6%) 36 (5.8%) 7 (2.2%) 

Chronic Kidney Disease (CKD) 6 (5.7%) 38 (6.1%) 7 (2.2%) 
End Stage Renal Disease 

(ESRD) 
4 (3.8%) 55 (8.8%) 14 (4.5%) 

Coronary Artery Disease 
(CAD) 

24 (22.9%) 108 (17.3%) 25 (8.0%) 

Any Cancer 8 (7.6%) 59 (9.4%) 18 (5.7%) 
Any Immunosuppression 3 (2.9%) 24 (3.8%) 8 (2.5%) 
Symptoms 
Fever 77 (73.3%) 433 (69.2%) 224 (71.3%) 
Cough 72 (68.6%) 432 (69.0%) 220 (70.1%) 
Diarrhea 29 (27.6%) 161 (25.7%) 89 (28.3%) 
Nausea or vomiting 16 (15.2%) 103 (16.5%) 83 (26.4%)  

Myalgias 22 
(21.0%) 

123 
(19.6%) 

73 (23.2%) 

Dyspnea 80 
(76.2%) 

415 
(66.3%) 

188 
(59.9%) 

Initial Chest X-ray Findings 
Unilateral Infiltrate 9 (8.6%) 80 (12.8%) 21 (6.7%) 
Bilateral Infiltrates 90 

(85.7%) 
454 
(72.5%) 

220 
(70.1%) 

Pleural Effusion 10 (9.5%) 38 (6.1%) 9 (2.9%) 
Other 5 (4.8%) 36 (5.8%) 17 (5.4%) 
Outcome 
Intubation and/or in-hospital 

mortality 
86 
(81.9%) 

195 
(31.2%) 

14 (4.5%)  
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