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Objective. At present, there is no consensus on the best strategy for interpreting the cardiopulmonary exercise test’s (CPET) results.
This study is aimed at assessing the potential of using computer-aided algorithms to evaluate CPET data for identifying chronic
heart failure (CHF) and chronic obstructive pulmonary disease (COPD). Methods. Data from 234 CPET files from the
Pulmonary Institute, at Sheba Medical Center, and the Givat-Washington College, both in Israel, were selected for this study.
The selected CPET files included patients with confirmed primary CHF (n =73), COPD (n =75), and healthy subjects (n = 86).
Of the 234 CPETs, 150 (50 in each group) tests were used for the support vector machine (SVM) learning stage, and the
remaining 84 tests were used for the model validation. The performance of the SVM interpretive module was assessed by
comparing its interpretation output with the conventional clinical diagnosis using distribution analysis. Results. The disease
classification results show that the overall predictive power of the proposed interpretive model ranged from 96% to 100%,
indicating very high predictive power. Furthermore, the sensitivity, specificity, and overall precision of the proposed interpretive
module were 99%, 99%, and 99%, respectively. Conclusions. The proposed new computer-aided CPET interpretive module was
found to be highly sensitive and specific in classifying patients with CHF or COPD, or healthy. Comparable modules may well
be applied to additional and larger populations (pathologies and exercise limitations), thereby making this tool powerful and

clinically applicable.

1. Introduction

In the last three decades, clinical exercise testing, in general,
and cardiopulmonary exercise testing, in particular, have
emerged as an increasingly important tool for patient evalu-
ation in clinical medicine due to a growing awareness of the
limitations of traditional resting cardiopulmonary measure-
ments [1]. As noted in the American Heart Association
(AHA) Scientific Statement of 2010 [2] “CPET provides a
wide array of unique and clinically useful incremental infor-
mation that heretofore has been poorly understood and
underutilized by the practicing clinician.” Other authors [3]
have pointed out that the data generated from CPET are
one of the most challenging sets of results to interpret. They

also claim that the resources available to help physicians in
the interpretation of CPET results are limited. They state that
“...although the American Thoracic Society (ATS)/Ameri-
can College of Chest Physicians (ACCP) statement [4] is
comprehensive, it must be approached with “zeal” in order
not to be overwhelmed” [3].

Almost all published CPET interpretive strategies are
performed manually following expert-based guidelines
[4-8]. These interpretation strategies, including flow charts
and tables, are cumbersome, complicated, time-consuming,
force dichotomous decision making, and partly subjective.
They require extensive knowledge and understanding of the
meaning and implications of the many CPET variables. As
such, potential exists for inconsistent and sometimes
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inaccurate interpretation of CPET results [9, 10]. This may be
at the core of why such a valued and noninvasive procedure
(CPET) is underused [2, 11].

At present, there is no consensus on any reported inter-
pretation strategy for CPET test results [4, 10]. In a recent
study, Chacey et al. [12] carried out a retrospective review
of 77 randomly chosen CPET files to determine the presence
of inconsistencies in CPET interpretation from the guidelines
issued by ATS/ACCP [4]. They reported that 78% of inter-
preted CPET studies contained at least one inconsistency.
Furthermore, except for Schmid et al. [10], none of the avail-
able algorithms were clinically validated [4, 10, 13].

The present study is aimed at assessing the potential of
using computer-aided algorithms to evaluate CPET data to
identify individuals suffering from chronic heart failure
(CHF) or chronic obstructive pulmonary disease (COPD)
or are healthy.

In trying to achieve the above goal, we have used classifi-
cation modules using machine learning algorithms (MLA)
such as the support vector machine (SVM). MLAs are
increasingly being used in clinical research [14, 15]. Their
modeling flexibility makes them valuable tools, especially to
describe complex relationships between the outcome and
the predictors. Furthermore, in contrast to the standard sta-
tistical methods, they do not make any parametric assump-
tions, which may be potentially advantageous in small
studies where the assumptions of classical methods often do
not hold. SVM models are used for combining biomarkers
through machine learning algorithms in which numerous
variables are integrated by a computer program that is first
taught to associate one specific clinical value with a combina-
tion of dataset [16]. The learned algorithm is then applied to
new datasets. It is a model-free method that provides efficient
solutions to classification problems without any assumptions
regarding the distribution and interdependency of the data.
Therefore, it is well suited to be used in studies encompassing
multiple factors with minor effects, limited sample sizes, and
limited knowledge of underlying biological relationships
among attributes [17, 18]. Unsupervised clustering and
supervised categorization schemes employed by the SVM
facilitate the analysis of large amounts of high-dimensional
feature vectors (entailing, in this case, a large set of patient
descriptors) [19]. Using clustering techniques enables the
automated definition of homogeneous subgroups within the
data. In supervised SVM classification, one can learn to
model a particular category of patients or discriminate
between pathologies and their severity [20].

We hypothesized that a supervised computerized learn-
ing algorithm, when given appropriate data from CPET stud-
ies, would achieve an acceptable agreement for a major or
primary diagnosis with the diagnosis made by conventional
manual interpretation.

2. Methods

2.1. Participants. This study used 234 retrospective CPET
files (177 men and 57 women), of which 148 were previously
diagnosed as having either primary illness, CHF (n =73) or
COPD (n=75), or were considered healthy (n=286). The
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CHF and the COPD patients (n = 148) were clinically diag-
nosed and treated in the cardiology or the pulmonary depart-
ments at the Sheba Medical Center in Ramat-Gan. It should
be pointed out that some of the studied patients presented
with the coexistence of CHF and COPD, and their final group
assignment was based on the most prominent clinical find-
ings and symptoms (primary or secondary). The CPET files
of the healthy participants were obtained through the CPET
database at the exercise physiology laboratory of the Givat-
Washington College in Israel. The equipment and all tests’
protocols were the same in the two laboratories. The primary
criteria for inclusion in the study cohort were valid and con-
firmed diagnosis of either CHF, COPD, or healthy, techni-
cally sound CPET, technically good pulmonary function
Test (PFT), maximal effort or symptom-limited CPET tests
(respiratory exchange ratio (RER) > 1.00;  test duration > 6
min) and age > 25 years old). Healthy normal subjects were
older than 25 years, have no history of chronic diseases, have
normal cardiorespiratory fitness, and are otherwise in good
health. Senior cardiologists and pulmonologists made all
clinical diagnoses. The conventional clinical diagnoses of
the CHF and COPD patients were made according to the
ATS and the American Heart Association (AHA) respective
guidelines [21-23] and included some or all of the following
procedures; for COPD: spirometry, bronchodilator revers-
ibility, blood tests, chest X-ray or CT scan, sputum examina-
tion, and electrocardiogram (ECG) and for CHF: blood tests,
chest X-ray, ECG, echocardiogram, stress test, cardiac CT
scan, MRI, and, coronary angiogram. CPETs were not
included in the conventional clinical diagnostic procedures.
This study was conducted following the amended Decla-
ration of Helsinki. The Institutional Review Board (IRB) of
the Sheba Medical Center approved the protocol (No. 1730-
14-SMC). Informed consent was not required due to the
observational and retrospective nature of the study design.
A flow chart of the study design is shown in Figure 1.

2.2. The Cardiopulmonary Exercise Test (CPET). Before per-
forming the CPET, all study participants completed a pulmo-
nary function test, according to the ATS guidelines [23]. The
participants were seated on a cycle ergometer (Ergoselect
1200, Germany). Following a 3 min rest period and 3 min of
unloaded pedaling, an incremental symptom-limited maxi-
mal exercise test was performed. Expired O, and CO, gases
and the airflow rate were measured breath-by-breath
through a facemask connected to a metabolic cart (all from
COSMED, Italy). Gas analyzers (O, and CO,) were cali-
brated before each test. The airflow sensor was calibrated
daily. The exercise protocols were designed to ensure that
subjects reached volitional exhaustion within 8-12 minutes
of incremental exercise. Work rate increments ranged from
5 to 25 watts.min-1.

Before entering the CPET data into the selected SVM
learning and the respective validation processes, maximal
and submaximal values of each CPET file were obtained
using conventional algorithms embedded in the metabolic
cart (COSMED, Italy).

Then, the relations of those measured values to their cor-
responding normal (predicted) values were calculated (% of
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234 CPET files: CHF (n = 73),
COPD (n =75), healthy (n = 86)

=]
5
-3
1
B
Q
7]
=
=
=
m
(=}
O

A4

Feature selection and
preparation - % of predicted

A4

Feature preparation

Feature normalization

o v
b Formation of SVM
=3 multilabel model (150 CPET
g files)
g
—
v
84 randomized CPET files:

CHEF (n = 23), COPD (n = 25),
healthy (n = 36)

A4

=1
=]
=
=
<
=]
=
=
<
1S
>

Prior conventional diagnosis
vs. SVM classification

FIGURE 1: Schema of the study’s design.

predicted). The predicted normal values were based on Inbar
et al. [24] and Wasserman et al. [6] CPET’s reference values.
The use of % predicted values as input data for the SVM
assured unbiased comparisons of the various physiological
attributes (peak and submaximal) among wide-ranging test
protocols, ergometers, and populations of varied physical,
physiological, and pathological characteristics.

2.3. Normalizing Ranges of % of Predicted Values (80%-
100%). During CPET, assorted physiological variables are
measured with their widely spread respective normal peak
values [6, 24]. Table s-1 in the supplementary materials pre-
sents an example of normal peak values of a COPD patient
and a healthy one, both at age 62 years, and their respective
% of predicted ranges and the resulting limits of their % pre-
dicted values for two selected CPET attributes (HR and VE).
As shown in table s-1, there are widespread spans in the
% of predicted values among the displayed CPET attri-
butes (see table s-1, column 7). As shown, one could have
a significantly lower than predicted normal peak HR (i.e.,

114 beats/min—see column 2), resulting in a 71% of the
predicted normal (predicted normal range is 96%-104%;
see table s-1, column 7). Simultaneously, a normal healthy
peak VE value of 40 L/min will also result in 71% of predicted
normal (see table s-1, Column 2) while the predicted normal
range is 71%-129% - see table s-1, column 7).

Such cases could hamper the SVM’s learning phase and
hinder the optimal SVM classification performance [25].

To overcome the above problem and standardize the
ranges of the CPET predicted normal limits, we rescaled
the original boundaries of all expected normal ranges into
equal limits of 80% and 100% of predicted normal (com-
monly used in medical sciences). It was done by applying a
linear regression equation for each CPET variable using three
points: the lower limit of the predicted normal range was set
as 80% of normal, the average of the predicted normal range
was set as 90% of the normal, and the upper limit of the pre-
dicted normal range was set as 100% of the normal.

Feature scaling is mapping the feature values of a dataset
into the same range and is crucial for machine learning algo-
rithms such as the SVM [25]. Training an SVM classifier
includes deciding on a boundary between classes. This
boundary is known to have the maximum distance from
the nearest point on each data class and differs for nonscaled
and scaled cases. Also, the linear scaling of the input data in
our study was done to avoid attributes with greater numeric
ranges that could dominate those with smaller numeric
ranges [25].

Table s-2 in the Supplementary Materials presents com-
parisons between nonnormalized and normalized CPET
values (% predicted) as the input features for the multilabel
SVM interpretive model design (from here on will be desig-
nated as % of predicted). Table s-2 demonstrates the advan-
tage of using normalized rather than nonnormalized CPET
values as input features for the SVM model design.

Following the feature preparation, the SVM learning
stage was employed. To explore the high-dimensional space
of CPET parameters towards creating the novel rule, discov-
ery correlations, and criteria for disease characterization, we
used a linear SVM (multiclass) machine learning tool. The
evaluation of the SVM classification results was based upon
the SVM probability estimates.

We used SVM procedures to identify (classify) three dis-
tinct populations: two highly prevalent chronic diseases,
CHF and COPD, and healthy normal subjects (Healthy).

2.4. The SVM Algorithms. SVM 1is a supervised machine
learning technique that is widely used in pattern recognition
and classification problems. It includes a set of supervised
learning methods developed in the 1990s [17, 20] and is used
to solve classification and regression problems. SVM is one of
the most popular techniques for supervised classification
[26], built on the structural risk minimization (SRM) induc-
tion principle, and has found success in a variety of applica-
tions [27]. However, the success of many applications using
the SVM critically depends on the initial manual choice of
features. As indicated above and since this study deals with
populations with varied pathophysiological responses during
an incremental exercise challenge (due to gender differences,
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TaBLE 1: Outcomes (probability estimates (%)) of the SVM multilabel crossvalidation procedure of the learning stage.

Model cross-validation

Conventional clinical diagnosis

SVM classification (%)

Sample’s splits No. of iterations CHF COPD Healthy
CHF 96+ 5 3+4 2+2
COPD Leave-one-out 150 3+6 95+7 1+£2
Healthy 2+2 2+2 96 +4
CHF 95+4 3+£3 2+2
COPD 80% (training) 20% (validation) 300 6+11 93 +11 1+1
Healthy 1+1 2+2 97 +3
CHF 95+4 3+2 2+2
COPD 70% (training) 30% (validation) 675 6+11 93 +11 2+2
Healthy 2+2 2+2 96 +4
CHF 93+5 4+3 3+3
COPD 50% (training) 50% (validation) 1875 6+9 92+9 2+2
Healthy 343 343 9445

Data presented as mean + SD. CHF: chronic heart failure; COPD: chronic obstructive pulmonary disease; Healthy: healthy normal participants; SVM: support
vector machine, SD: standard deviation. Bold numbers denote mean + SD (%) probability estimates of the respective group.

age, weight, height, and physical condition), we used maxi-
mal and submaximal CPET values related to respective/rele-
vant normal CPET values (% of predicted values) for the
SVM input data (see further elaboration on this issue above).

The SVM model implementations in this study were exe-
cuted using the Library for Support Vector Machines
(LIBSVM) toolbox in MATLAB R2013b [28].

2.5. The SVM Learning Stage. For the SVM learning stage,
150 retrospectively diagnosed individuals with CHF (N = 50)
and COPD (N = 50), as well as healthy participants (N = 50)
were randomly selected. Patients with varying degrees of dis-
ease severity (mild, moderate, and severe) and varying fitness
levels (healthy) were included in this stage.

For this stage, we used the Library for Support Vector
Machines (LIBSVM) linear multilabel classifier as a learning
tool [28, 29] for the three study groups (CHF, COPD, and
healthy patients). The SVM multilabel classification model
was created based on the input of all CPET parameters
(% of predicted).

2.6. The SVM Model Cross-Validation. To evaluate the con-
sistency of the estimates from the newly created SVM model,
4-fold cross-validation procedures were performed on the
learning dataset. In each cross-validation stage, the learning
dataset was split into the training and validation datasets.
This cross-validation process was repeated numerous times
(iterations) (see Table 1), allowing each subset to serve once
as the test dataset.

2.7. Validation of the Classification Stage. For this stage, the
remaining 84 CPET files were added: 23 patients with CHF,
25 with COPD, and 36 healthy participants. Patients with
varying degrees of disease severity (mild, moderate, and
severe) and varying fitness levels (healthy) were included in
this stage. The SVM disease classification (CHF, COPD, or

healthy) was based on the SVM probability estimation [30].
A given disease was classified concurring with its highest
SVM probability estimate. The SVM classification outcomes
(probability estimation) were then compared with the prior
official clinical diagnosis.

As indicated above, the validation group included several
patients with coexisting respiratory/cardiac illnesses (and in
some cases other, more minor diseases). Such a cohort pro-
vided more representative patients’ samples and conse-
quently a more sensitive assessment of the actual diagnostic
accuracy of this algorithm.

2.8. Statistical Analyses. Discrete values (participants’ phys-
ical characteristics and CPET peak and submaximal
values) were calculated and are presented as means +
standard deviation (SD). Comparisons among groups were
performed by one-way analysis of variance (ANOVA) (see
s-Table 3 and s-Table 4).

The result of the SVM disease classification for each
CPET test was compared with its corresponding original
clinical diagnosis and considered true positive (TP), false
positive (FP), true negative (TN), or false negative (FN). Sen-
sitivity, specificity, accuracy, and overall precision were cal-
culated based on the following formulas:

TP
Sensitivity = 10 )
€nsIitvity TP + FN ( )
N
Sensitivity = N 5
ensitvity TN + FP ( )
(TP + TN)

A = >
Y = TP FP+ FN + TN

TP

P . -
recision TP + FP
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TaBLE 2: Physical characteristics of the study participants.

Study stage Variable CHF COPD Healthy
Age (yr) 52.2+13.3 64.4+£10.2 45.7+9.3
Learning stage N = 150 (113 M, 37 F) Height (cm) 172.3£6.2 169.0 £ 6.7 173.0 £4.5
Weight (kg) 79.4+11.7 70.7£13.3 76.6 £5.6
Age (yr) 53.7+13.6 66.8+£7.6 37.8+£13.8
Validation stage N =84 (64 M, 20 F) Height (cm) 172.2+6.9 166.5+6.3 168.9£9.1
Weight (kg) 81.2+14.9 74.7 +14.4 65.1+14.1
Data are presented as mean + SD. CHF: chronic heart failure; COPD: chronic obstructive pulmonary disease; Healthy: healthy normal participants; M: males; F:
females.
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FiGure 2: The distribution of CPET results (normalized % of predicted) of all CPET variables of the three study groups (mean + SD

)—validation stage.

TP, FP, TN, and FN represent the number of true positives,
false positives, true negatives, and false negatives. A p value
of < 0.05 was considered statistically significant.

3. Results

3.1. Participants. The physical characteristics of all study
participants (197 males and 37 females) of both the learn-
ing and the validation stages, by groups, are summarized
in Table 2.

3.2. CPET Results. CPET results, both in absolute and relative
(normalized % of predicted) values of all participants by
stages (learning and validation) are presented in s-Table 3
and s-Table 4. Focusing on s-Table 4 in the supplementary

materials (validation stage), significant differences were
observed between the CPET values (normalized % of pre-
dicted) of the two patients’ groups (CHF and COPD) in half
of the CPET attributes (peak VO,/kg, peak HR, ECG, VAT,
peak SaO,, peak BR, peak VE/VO,, peak VE/VCO,,
VE/VCO, slope, FEV1, and FEV1/EVC) (for respective
abbreviations see denotes of s-Table 3). CPET variables dif-
fered significantly among the three studied groups (see
Table 4 in the supplementary materials and Figure 2 in the
text). Therefore, one may argue that, with multiple variables
showing significant differences among the three studied
groups, it should not be too difficult and time-consuming
to discriminate between the three groups, even manually.
Nevertheless, when closely examining Figure 2, it is apparent
that there is a substantial overlap in the individual data points



TAaBLE 3: Summary of the individual probability estimates (%) of the
SVM disease classification model.

SVM probability

Conventional clinical . .
estimation (%)

Patients’ group

diagnosis Mean SD Min Max
CHF 92.4 10.4 57.0 100.0

CHF COPD 42 6.1 0.0 27.0
Healthy 33 57 0.0 19.0

CHF 106 132 0.0 47.0

COPD COPD 79.6 16.9 45.0 100.0
Healthy 87 131 0.0 46.0

CHF 56 7.8 0.0 360

Healthy COPD 85 11.7 0.0 430

Healthy 854 17.1 43.0 100.0

CHE: chronic heart failure; COPD: chronic obstructive pulmonary disease;
Healthy: healthy normal participants; SVM: support vector machine; SD:
standard deviation; Min: minimum; Max: maximum. Bold numbers denote
average probability estimates of the respective group.

in most of the variables measured in the three studied groups.
Such overlap could, at least partially, explain the complexity
and inconsistency of interpreting individual CPET results.
It should be accentuated that the presented dichotomized
diagnoses (CHF, COPD, and healthy), reflects, in those dem-
onstrated coexisting pathologies, the primary pathology only
(highest probability estimates (%)).

3.3. The Cross-Validation. Table 1 summarizes the results of
the cross-validation processes estimating how accurate the
SVM-created predictive multilabel model will perform in
practice.

In this stage (learning), repeated random subsampling
and leave-one-out cross-validation procedures were carried
out on the training dataset. Repeated random subsampling
cross-validation is a method that splits the dataset into train-
ing and validation data. In the present study, we used three
splits of cross-validation. The first splits included 80% of
the sample files for the model training and 20% of the sample
files for the model validation. In the second and third splits,
we used 70% for training and 30% for validation and 50%
for training, and 50% for validation. Leave-one-out is a par-
ticular case of repeated random sub-sampling cross-
validation where the validation dataset is 1. The results show
a significant separation (very high SVM probability esti-
mates) between the three study populations and a very high
similarity within each group (low SDs). The above data
revealed excellent learning performance and paved the way
for the disease classification validation stage.

3.4. The SVM Disease Classification Validation. Tables 3-5
present the various outcomes of the validation stages.

Table 3 presents the summary of groups’ means (+SD) of
the individual SVM disease classification outcome (probabil-
ity estimation (%)).

Nonetheless, the level of the probability estimates varied
widely within each group, signifying clinical heterogeneity
regarding disease severity. The inclusion of participants with
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TABLE 4: Performance summary of the SVM classification model.

Group TP FN FP TN
CHF 23 0 1 60
COPD 24 1 0 59
Healthy 36 0 0 48

CHEF: chronic heart failure; COPD: chronic obstructive pulmonary disease;
Healthy: healthy normal participants; TP: true positive; FN: false negative;
FP: false positive; TN: true negative.

TaBLe 5: Performance quantification of the SVM disease
identification model (%).

Group Sn (%) Sp (%) Acc (%) Pr (%)
CHF 100 98 99 96
COPD 96 100 99 100
Healthy 100 100 100 100
Mean 99 99 99 929

CHEF: chronic heart failure; COPD: chronic obstructive pulmonary disease;
Healthy: healthy normal participants; Sn: sensitivity; Sp: specificity; Acc:
accuracy; Pr: precision.

varying disease severity and fitness levels (peak VO, /kg) rein-
forces the utilization of the proposed SVM classification
models for patients with a wide range of disease severity
and fitness levels.

Table 4 presents the confusion matrix of the SVM disease
identification model and creates the basis for quantifying the
performance of the SVM disease classification (Table 5).

Table 5 demonstrates the performance quantification of
the SVM disease identification model.

The SVM multilabel model’s sensitivity, specificity, accu-
racy, and precision for classifying the three studied groups
are very high (Table 5). The disease classification results
show that the overall predictive power of the model ranged
from 96% to 100%, indicating very high predictive power.

4. Discussion

The goal of the current study was to develop and validate a
computer-aided algorithm for automatically assessing CPET
test results, thereby classifying three distinct groups of
patients, clinically diagnosed as having CHF, COPD, or being
healthy, by using machine learning techniques (SVM).

In this study, we show that by uniquely converting CPET
raw data of clinically/manually diagnosed CHF, COPD, and
healthy patients (normalized % predicted values), and trans-
mitting them through a machine learning process, we can
discriminate between individuals suffering from CHF,
COPD, or, are genuinely healthy, with very high accuracy.
Therefore, the study’s hypothesis was confirmed.

The proposed module combines two novel approaches
for the interpretation process of CPET results; the first one
was the use of supervised machine learning techniques
(SVM), and the second one was the use of normalized per-
cent of predicted normal (% predicted), rather than absolute
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CPET values. By doing so, it is possible to apply the proposed
interpretive model to individuals with heterogeneous clinical,
anthropometric, and demographic characteristics.

As shown in Figure 2, in all but four CPET features (WR,
VO,/kg, HR, and VE), the individual data points of the cor-
responding variables widely overlap among the three study
groups. It makes manual interpretation highly complex, con-
fusing, and to a certain extent, subjective. We, therefore,
sought to demonstrate that by using machine learning-
based analysis of all CPET data, it would be possible to reli-
ably distinguish between COPD, CHF, and healthy partici-
pants, irrespective of their comorbidities, disease severity,
age, gender, and fitness level.

The results demonstrate that using SVM-based learning
and prediction approaches revealed strong agreement with
common clinical disease diagnosis, made by expert cardiolo-
gists and pulmonologists (sensitivity of 99%, specificity 99%,
and overall precision of 99%) (see Table 5).

The successful use of this algorithm in combining pulmo-
nary function test (PFT) and CPET features (attributes) is, to
the best of our knowledge, the only reported effort to com-
bine such input features (% of predicted normal) for comput-
erized diagnostic purposes.

So far, only one study has attempted to validate some
CPET interpretive strategies [10] systematically. In this
study, a newly proposed manual interpretive strategy was
compared with a more conventional alternative [6] for eval-
uating CPET results. Although the consistency of the pro-
posed interpretation method was relatively high (82%), it
suffers from the previously mentioned disadvantages of most
manually performed CPET interpretation schemes [12].
Moreover, in Schmid et al.’s study [10], blood gas analyses
were performed during CPET, which is rarely used during
routine CPETs.

Furthermore, in the single published attempt to comput-
erize CPET interpretation, Ross and Corry [9] used absolute
rather than relative (% of predicted) CPET values. Using
“crude” CPET values refutes the use of such an interpretation
strategy in heterogeneous populations (i.e, gender, age,
pathologies, and fitness level). Also, the above computer-
aided interpretation algorithm was never validated.

As it has in many sciences and other complex endeavors,
interpretation software will undoubtedly become helpful in
facilitating medical diagnoses and implementing appropriate
therapies. A recent attempt to employ the machine learning
(ML) technique in identifying cause/s for the unexplained
reduced exercise capacity in lung transplant recipients using
CPET data, and some additional external attributes (primar-
ily subjective) showed promising results [31].

The present endeavor represents a novel and substantial
addition in medical interpretive software to assist inpatient care.

The use of machine learning technology combined with a
relative (% of predicted) rather than absolute input features
opens up promising prospects for additional efforts to
develop computer-aided modules to classify other patholo-
gies, causes, and severity of exercise intolerance.

4.1. Study Limitations. The main shortcoming of the current
study is the inclusion of only three sample populations

(COPD, CHEF, and healthy). As noted, this was a proof-of-
principle study, which will lead to broader applications of
the SVM methods in future work.

Also, the accuracy and precision of using such analysis
(SVM) will be limited by the quality of the CPET raw data.
CPET data could be affected by device limitations (sensors’
accuracy) and the quantification process. Quality problems
in the CPET data could also arise from the dependence on
technical limitations of the currently available devices,
including the one used here.

4.2. Conclusions. In this research work, the SVM classifica-
tion process was used to identify, based on CPET data, three
distinct sample populations, CHF, COPD, and healthy. Com-
parisons of SVM prediction outcomes with the respective
conventional clinical diagnoses were made based on classify-
ing each study participants’ performance accuracy. Our
results demonstrate that the discriminative performance of
the SVM model matched perfectly with the official conven-
tional clinical diagnosis, with the latter involving various
costly and time-consuming clinical and lab procedures.
Using such computer-aided techniques will reduce complex-
ity, increase objectivity, and economize on CPET interpreta-
tion in clinical settings.

To our knowledge, this is the first study demonstrating
that an automated classification approach using SVM can
be used successfully to detect common chronic diseases with
a single, short, noninvasive, and relatively inexpensive labo-
ratory test such as CPET.

It should be pointed out that the presented report is the
first part (being proof-of-principle one) of a larger project
aimed at using the SVM technique for classifying several
additional clinical conditions as well as types and severity
of exercise limitations.
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