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Abstract: Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of
lives and amounts of money. It is the world’s leading type of cancer among women and a leading
cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the
gold standard for diagnosis. In this paper, a computer-aided diagnosis (CAD) system based on deep
learning is developed to ease the pathologist’s mission. For this target, five pre-trained convolutional
neural network (CNN) models are analyzed and tested—Xception, DenseNet201, InceptionResNetV2,
VGG19, and ResNet152—with the help of data augmentation techniques, and a new approach is
introduced for transfer learning. These models are trained and tested with histopathological images
obtained from the BreakHis dataset. Multiple experiments are performed to analyze the performance
of these models through carrying out magnification-dependent and magnification-independent
binary and eight-class classifications. The Xception model has shown promising performance through
achieving the highest classification accuracies for all the experiments. It has achieved a range of
classification accuracies from 93.32% to 98.99% for magnification-independent experiments and from
90.22% to 100% for magnification-dependent experiments.

Keywords: BreakHis; breast cancer; computer-aided diagnosis; deep learning; histopathological images

1. Introduction

Breast cancer claims the lives of 40,000 women in the United States each year [1].
Twelve percent of women are diagnosed annually with breast cancer. It usually affects
women over the age of 40 [2]. In recent years, the healthcare cost of a wide spectrum of
diseases has crippled the economies of the world nations. A disease such as cancer can be
extremely costly in terms of lives, quality of life, and money. Breast cancer occupies a unique
place in this category of diseases, as breast cancer is the world’s leading type of cancer in
female patients. In 2020, 2.3 million women were diagnosed with this disease, and it caused
685,000 fatalities. Moreover, 7.8 million women were diagnosed with this disease in the
previous five years as of the end of 2020, making it the most common cancer in the world [3].
The lost disability-adjusted year rate in women is the highest in breast cancer compared to
any other disease. The early identification of pre-cancerous and cancerous cases proved
to be extremely effective in providing higher outcomes of cure. This was concluded from
the fact that the developed countries achieved better survival rates in 1970s after early
detection and intervention programs [4]. There are several tools that can be used to screen
and diagnose breast cancer. These tools fall into three main categories: clinical examination,
imaging techniques, and histopathological examination of tissue biopsies [5]. The gold
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standard for the diagnosis is tissue biopsy examination [6]. Thus, myriads of samples
are produced annually, which can be considered as a huge burden on the pathologists to
examine and accurately identify the diseases in it. The examination is conducted by placing
a breast tissue stained by special stains, most commonly by hematoxylin and eosin, in a
glass slide and examined under a microscope. Different magnification lenses are used to
examine the slide. If the pathologist detects cellular atypia (general criteria of malignancy)
or a tissue abnormality (e.g., ductal invasion), then the diagnosis is concluded, and the
subtype of the cancer is determined [7].

In order to aid the pathologists in diagnostic process, a computer-aided diagnosis
(CAD) system can be produced to reduce the errors, effort, time, and cost in the process.
The system is just a helping tool and the pathologist’s judgment is irreplaceable for the
diagnostic process. One way to develop a CAD system is to rely on the extraction of
handcrafted features from the histopathological images, mainly to train traditional machine
learning models and predict unseen inputs later. However, this approach is not popular, as
it requires extensive prior-domain knowledge for the extraction of the handcrafted features.
Additionally, the generated classification accuracy from such systems is insufficient to
attain trust for diagnosis in such a field [8]. An alternative approach is to use the current
advances in deep learning for the development of such systems. This approach does not
require any prior domain knowledge, as the model learns intrinsic features from the input
raw images. Additionally, the generated classification accuracy is very impressive if such a
system is well designed. However, deep learning models require a huge number of input
images to be trained effectively to have a great generalization ability on unseen data. This
was a huge issue for histopathological images for breast cancer, until the release of BreakHis
dataset, which contains 7909 histopathological images [9]. Still, this number of images is
not enough for the development of a high accuracy image recognition system.

The advances in deep learning and image processing lead to the possibility of using
BreakHis dataset for the development of a high-performance CAD system. This is attained
by using pre-trained model(s) and data augmentation techniques. Hence, in this paper, a
diagnostic system based on deep learning characterized by high accuracy in the diagnostic
process is introduced. This system can classify breast cancer from histopathological im-
ages. It achieves the classification whether this classification is magnification dependent
or magnification independent for both binary and multi-classification modes. To reach
these objectives, a vast performance analysis has been performed for many well-known
convolutional neural network (CNN) architectures, mainly to find robust CNN model(s)
for the classification of breast cancer in histopathological images. A set of pre-trained CNN
models are adopted, which are Xception, DenseNet201, InceptionResNetV2, VGG19, and
ResNet152. These models are trained and tested using the BreakHis dataset. Moreover,
two data augmentation techniques are implemented, which are rotation and horizontal
flip. Furthermore, a new approach for transfer learning is introduced in this study, where
each pre-trained model is trained twice, resulting in a two-phase training process. In the
first phase of training, all the layers are frozen except for the fully connected layers. A high
learning rate is used in this step of training. Meanwhile, in the second phase of training, all
the layers are unfrozen to fine-tune the model. This phase aims to accomplish a remarkable
increase in the performance of the model generated from the first round of training. Two
different learning rates are used in the second round of training to determine the best
model. In the two phases, the best performed model on the input dataset is monitored
using the validation accuracy metric. If an improvement in the validation accuracy is noted,
then the model weights are saved for this epoch. Hence, the output of each training phase
is the best performed model on the input validation dataset in terms of validation accuracy.

The study presented in this paper is contrasted to the related ones by the fact that the
adopted models perform testing on samples classified according to the variable magnifica-
tion or independent of it. Additionally, it expresses the results as either binary classification
or eight-class classification. On the contrary, most papers perform this testing magnification
dependent or independent solely and expressing the classification results as binary or
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eight-class classification only. Furthermore, the single most effective model is targeted by
this study to be used in all the experiments and be produced as the prime diagnostic model
for the pathologist. Moreover, due to the lack of usage of several models generated in a
single experiment in the prior research efforts, various models are used per experiment to
assess the potential of attaining various successful models in a single experiment.

The rest of the paper is organized as follows: Section 2 presents the related work to this
study, while Section 3 discusses the architectures and the features of the adopted pre-trained
CNN architectures. Section 4 details the adopted dataset. Meanwhile, Section 5 presents the
methodology used in this work including the data pre-processing techniques, the transfer
learning strategy, the hyperparameter configurations, and the adopted performance metrics.
Section 6 presents the detailed experimental results, followed by Section 7, which discusses
the obtained results. Finally, Section 8 concludes the paper.

2. Related Work

Boumaraf et al. [8] implement a transfer learning-based CNN using ResNet-18 model.
They used the BreakHis dataset, and they divided it into 80% training set and 20% testing set.
The experiments carried out are magnification-dependent and magnification-independent
classification for both binary and multi-class (eight classes) classifications. ResNet-18 is
trained on the ImageNet database. The transfer learning strategy is to train only the last
two residual blocks and freeze the rest of the blocks; consequently, it makes ResNet more
domain-specific (to learn the intrinsic features of the histopathology images). Meanwhile,
they have first resized the input images size to 224 × 224. Additionally, global contrast
normalization (GCN) has been adopted to prevent the images from having different values
of contrast. Moreover, three-fold data augmentation has been used, in which each image is
transformed into three images by applying three transformation techniques, which are ran-
dom horizontal flip, random vertical flip, and random rotation with 40◦. The metrics used
to evaluate the performance are accuracy, precision, recall, F-measure, and Matthews’ corre-
lation coefficient. The study achieves 98.42% accuracy in magnification-independent binary
classification and 92.03% in magnification-independent multi-classification. Moreover,
98.84% average accuracy in magnification-dependent binary classification and 92.15% aver-
age accuracy in magnification-dependent multi-classification are achieved. The detailed
results are illustrated in Table 1.

Davoudi et al. [10] design and implement a CNN for the detection of binary classes of
BreakHis dataset independent of the magnification factors. The main contribution of their
study is to try to optimize the weights of the CNN using genetic algorithms (GAs) instead of
the normal optimizers. The model is trained using Adam, mini-batch gradient descent, and
the GA optimizers. The evaluation metrics used in this study are accuracy, recall, precision,
F1-score, and execution time. They divide the BreakHis dataset as 70% training set and 30%
testing set. The model achieves 69.88% accuracy with gradient descent optimizer, 85.83%
accuracy with Adam optimizer and 85.49% accuracy with the GA optimizer. The model
accepts the images with a size of 210 × 210 × 3. Table 1 illustrates their results.

Spanhol et al. [11] tested the use of DeCaf features. DeCaf is simply the usage of a
pre-trained CNN as a feature vector with a classifier on top of it that is trained for the new
classification task. In more detail, an output of a given layer of a pre-trained network is used
as an input to a classifier. Logistic regression has been adopted as the classifier for this study.
BVLC CaffeNet is used as the pre-trained model in their study. The study considers patch-
based recognition and different configurations for it. Firstly, they test the output from three
layers solely. These layers are fc6, fc7, and fc8. After that, they consider the features through
combining the output from more than one layer. The classification tasks performed in this
study are the binary magnification-dependent tasks. Image-level accuracy and patient-level
accuracy are used as the performance metrics. Additionally, they consider the F1-score at
the patient level and image level. The highest patient-level accuracy is obtained for the
200× dataset, and it is equal to 86.3 ± 3.5. Meanwhile, the highest image-level accuracy is
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computed for the 200× dataset, and it is equal to 84.2 ± 1.7. The detailed patient-level and
image-level accuracies for each magnification factor is presented in Table 1.

Bardou et al. [12] implement many approaches for the classification of breast cancer
using the BreakHis dataset. The preformed experiments are magnification-dependent
binary classification and multi-class classification. A CNN model is proposed in their
study with five convolutional layers and two fully connected layers. This model has been
developed with the original dataset without data augmentation in one trial and with data
augmentation in another trial through applying horizontal flip and rotation with three
angles: 90◦, 180◦, and 270◦. Additionally, they test the CNN + support vector machine
(SVM) configuration through using a linear support vector machine instead of the fully
connected layer, CNN + classifiers, which is simply the usage of CNN to extract features and
then classifying them through random forests, radial basis support vector machine, linear
support vector machine, and K-nearest neighbors. Another approach they follow is the
usage of an ensemble model in which they use 10 models, and then the probability vector
of each sample in the test set is extracted from the last fully connected layer (with softmax
activation) of each model, creating 10 probability vectors. Finally, these 10 probability
vectors are summed up and the maximum value is computed among them to output the
predicted class. Moreover, they extract handcrafted features from the images and then they
classify them with traditional classifiers such as support vector machine and CNN (the
extracted handcrafted features are given as input to the CNN). Moreover, they divide the
dataset into 70% training set and 30% test set. The evaluation metrics used in their study are
accuracy, precision, recall, and F1-score. The highest results are achieved by the ensemble
model, in which they achieve accuracy in the interval [96.15%, 98.33%] for the binary
classification experiments and [83.31%, 88.23%] for the multiclassification experiments.
Table 1 illustrates these results in more details.

Xiang et al. [13] uses a pre-trained Inception-V3 model for the detection of malignant
and benign tumours. They carry out malignant and benign magnification-independent
classification. The dataset used is BreakHis dataset. The input size for their model is
229 × 229. Data augmentation techniques are used to overcome overfitting, mainly using
image flip and rotation techniques. They flip each image and rotate them around their
centers with angles of 90◦, 180◦, and 270◦. Using a data augmentation strategy, they
increase the BreakHis dataset by five times. The dataset is divided into train, validation,
and test sets with an approximate ratio of 3:1:1. A cross-validation training strategy is
adopted. The evaluation metrics used in their study are the image-classification rate and
patient-classification rate. The best results are achieved using the cross-validation training
strategy on the expanded dataset with an image accuracy of 95.7% and patient accuracy of
97.2%. The detailed results are shown in Table 1.

Shallu et al. [14] conduct a study to determine whether to use transfer learning or a
fully trained model to classify the histopathological images in the BreakHis dataset. Three
pre-trained models for this task are used: VGG16, VGG19, and ResNet50. These models
are used as feature extractors only and they have used logistic regression as a classifier.
Moreover, three different training and testing splitting ratios are used to determine the
effect of using different ratios on the results. The ratios used are 90–10%, 80–20%, and
70–30%. Only rotation is used for the data augmentation, where the images are rotated
around their centers with three different angles: 90◦, 180◦, and 270◦. A binary magnification-
independent experiment on the BreakHis dataset is carried out in this study to create a
balanced dataset for the process of fine-tuning and the full training of the models.
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Table 1. Performance results achieved by the related models.

Reference Classification Type
Dataset

Splitting
Ratio

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
Score
(%)

MCC

Patient
Level

Accuracy
(%)

Average
Precision
Score (%)

Boumaraf
et al. [8]

Magnification-independent
binary classification

80% training
set and 20%
testing set

98.42 98.75 99.01 98.88 0.9619 - -

Magnification-independent
multi-classification 92.03 91.39 90.28 90.77 0.8938 - -

40× binary classification 99.25 99.63 99.26 99.44 0.9829 - -

100× binary classification 99.04 98.99 99.66 99.33 0.9765 - -

200× binary classification 99.00 98.94 99.65 99.29 0.9762 - -

400× binary classification 98.08 98.00 99.19 98.59 0.9558 - -

40× multi-classification 94.49 93.81 94.78 94.15 0.9283 - -

100× multi-classification 93.27 92.94 91.59 92.23 0.9141 - -

200× multi- classification 91.29 91.18 88.28 89.47 0.8895 - -

400× multi- classification 89.56 87.97 87.97 87.77 0.8652 - -

Davoudi
et al. [10]

Magnification-independent binary
classification with Gradient

descent optimizer 70% training
set and 30%
testing set

69.88 84.37 55.61 67.02 - - -

Magnification-independent binary
classification with Adam optimizer 85.83 96.23 72.31 82.56 - - -

Magnification-independent binary
classification with GA optimizer 85.49 94.71 69.43 80.11 - - -

Spanhol
et al. [11]

40× binary classification

-

84.6 ± 2.9 - - - - 84.0 ± 6.9 -

100× binary classification 84.8 ± 4.2 - - - - 83.9 ± 5.9 -

200×binary classification 84.2 ± 1.7 - - - - 86.3 ± 3.5 -

400× binary classification 81.6 ± 3.7 - - - - 82.1 ± 2.4 -

Bardou
et al. [12]

40× binary classification

70% training
set and 30%
testing set

98.33 97.80 97.57 97.68 - - -

100× binary classification 97.12 98.58 96.98 97.77 - - -

200× binary classification 97.85 95.61 99.28 97.41 - - -

400× binary classification 96.15 97.54 96.49 97.01 - - -

40× multi-classification 88.23 84.27 83.79 83.74 - - -

100× multi-classification 84.64 84.29 84.48 84.31 - - -

200× multi- classification 83.31 81.85 80.83 80.48 - - -

400× multi- classification 83.98 80.84 81.03 80.63 - - -

Xiang et al.
[13]

Magnification-independent binary
classification with normal training

strategy and original database

3:1:1-
training,

validation,
and testing

sets

92.8 - - - - 93.6 -

Magnification-independent binary
classification with normal training
strategy and expanded database

94.6 - - - - 95.4 -

Magnification-independent binary
classification with cross validation

training strategy and
original database

93.2 - - - - 94.1 -

Magnification-independent binary
classification with cross validation

training strategy and
expanded database

95.7 - - - - 97.2 -

Shallu
et al. [14]

Magnification-independent binary
classification using fine-tuned

pre-trained VGG-16 network with
logistic regression classifier

90% training
set and 10%
testing set

92.60 93 93 93 - - 95.95

Min Liu
et al. [15]

40× binary classification 60% training
set, 20%

validation
set and 20%
testing set

98.15 ± 0.9 - - - - - -

100× binary classification 97.71 ± 1.9 - - - - - -

200× binary classification 97.96 ± 0.7 - - - - - -

400× binary classification 98.48 ± 1.1 - - - - - -

The images in the malignant class (which are greater than the images of the benign
class) are down-sampled to a number equal to the number of images in the benign class. To
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fully train the networks from scratch, the weights are initialized randomly. However, they
have kept the weights of the pre-trained networks without change for the transfer-learning
approach. The performance measures used are accuracy, precision, recall, F1-score, and
average precision score (APS). In addition, they use receiver operating characteristics (ROC)
and area under the curve (AUC) to further validate the model performance. The results
show that the fined-tuned VGG-16 has the best performance with 92.60% accuracy using the
90–10% training and testing data-splitting ratio. Table 1 presents the best results obtained
for VGG-16.

Liu et al. [15] implement a CNN model called the AlexNet-BC model. This model is
pre-trained on the ImageNet dataset and then fine-tuned using transfer learning. Moreover,
many data augmentation techniques are used to expand the dataset. Additionally, a new
loss function approach is proposed and implemented. The proposed model is trained and
tested using the BreakHis dataset for the four different magnification factors in binary
classification mode, and then the model is further verified using UCSB and IDC datasets.
They have divided the BreakHis dataset into 60% for the training set, 20% for the validation
set, and 20% for the test set. One evaluation metric is used in this study, which is accuracy.
They have achieved a range of accuracies in the interval [97.71 ± 1.9%, 98.48 ± 1.1%]. Since
Table 1 consists of results achieved by previous studies using the BreakHis dataset, we only
illustrate in Table 1 the results achieved by this study using the BreakHis dataset.

3. Pre-Trained CNN Architectures

In this section, the architectures and the features of the adopted pre-trained models in
this study are going to be discussed.

3.1. VGG-19

Figure 1 illustrates the architecture of VGG-19. The main idea addressed by this
architecture is the possibility to increase the depth of a CNN model using too small
convolutional filters of size 3 × 3 in every layer of the architecture. Five max-pooling layers
exist to perform the spatial pooling process. Every max-pooling operation is performed
using a 2 × 2 filter and a stride of 2. The convolution stride is always set to 1. It is clear
from Figure 1 that there are 19 learnable layers, which are 16 convolutional layers and
3 fully connected layers. The numbering of filters starts at 64 and then increases by a factor
of 2 along the depth of the network. The third fully connected layer has 1000 neurons as
this network is designed based on the ILSVRC classification task [16].
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3.2. ResNet-152

Residual neural network (ResNet) is another attempt to train deeper neural networks
while achieving a high classification result. One could expect that a deeper network should
perform at least equally to the performance achieved by its counterpart shallower network.
However, this is not usually the case: the deeper the network, the more its training error
increases. ResNet addresses this degradation in performance through the addition of
residual blocks that employ the idea of shortcut connections as shown in Figure 2 [17].
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The residual block consists of two convolutional layers, in which the output of this
block F(x) is added to the input x of this block via the shortcut connection. Simply, F(x) + x
can be implemented easily using a feedforward neural network and shortcut connections
that skip one or more stacked layers. The main purpose of the shortcut connections is that
they perform identity mapping without adding any extra cost in terms of computational
complexity and extra parameters. With the help of these residual blocks, a deeper model
should have a training error no larger than that achieved through its shallower counterpart
network. One variant of the residual block is introduced for deeper networks. This variant
is a bottleneck design of the normal residual block. It consists of three convolutional layers:
1 × 1, 3 × 3, and 1 × 1 convolutions. The aim of this new variant is to decrease the number
of feature maps for computational efficiency. Figure 3 represents this bottleneck design.
ResNet-152 uses several three-layer blocks and its architecture is illustrated in Figure 4 [17].
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3.3. InceptionResNetV2

Szegedy et al. [18] try to answer the question of whether to incorporate the residual
connections with the inception architecture, mainly to improve the training process of the
Inception network and to improve its classification performance. InceptionResNetV2 is one
of the solutions to this question. As Inception architecture is very deep, residual connections
replaces the filter concatenation stage of the Inception architecture. The results show that a
significant improvement in the classification performance is achieved by this new hybrid
model. Figure 5 illustrates an abstract view of the InceptionResNetV2 architecture. A
detailed view for every block of Figure 5 is available in [18].
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3.4. DenseNet-201

In an ordinary CNN with n layers, every layer is connected to the layer after it, which
results in n connections. However, in a dense convolutional network (DenseNet) the feature
maps of a given layer are connected to all consecutive layers and all the previous feature
maps from this layer are connected to this given layer, resulting in (n(n + 1))/2 connections
instead. This leads to many benefits including the need for fewer model parameters as
compared with ordinary CNNs, enhancing feature propagation and supporting feature
reuse. Additionally, it leads to the obtainment of a regularization effect due to the dense
connections, which reduce overfitting with smaller training dataset sizes and a good
solution to the famous vanishing gradient problem. Hence, the model is easy to be trained.
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Figure 6 illustrates a dense block with three layers, in which each layer takes all previous
feature maps as inputs. It is important to mention that the connected layers should have
identical feature-map sizes and the connection is achieved through concatenation instead
of summation that is used in residual blocks. Figure 7 presents the architecture of a
DenseNet-201 model [19].
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3.5. Xception

Xception is another model inspired by Inception; however, the inception modules
are replaced by depthwise separable convolutions. Unlike regular convolution, which
carries out spatial-wise and channel-wise computation in one step, depthwise separable
convolution performs this computation in two steps:

1. Depthwise convolution: A spatial convolution process is carried out independently
on each input channel solely.

2. Pointwise convolution: This step is performed using a 1 × 1 convolution to project
the channels output (output of the depthwise convolution) into a new channel space.

In fact, the Xception model can be considered as a linear stack of depthwise separable
convolution layers plus residual connections. Figure 8 demonstrates the architecture
of the Xception model. This architecture consists of 36 convolutional layers arranged
in 14 modules with residual connections, except for the first and last modules. Every
convolution and separable convolution layer is followed by batch normalization (not
shown in Figure 8) [20].



Bioengineering 2022, 9, 391 10 of 33

Bioengineering 2022, 9, x FOR PEER REVIEW 10 of 33 
 

the Xception model. This architecture consists of 36 convolutional layers arranged in 14 
modules with residual connections, except for the first and last modules. Every convolu-
tion and separable convolution layer is followed by batch normalization (not shown in 
Figure 8) [20]. 

 
Figure 8. Xception architecture; the input data flow is divided into three parts, starting with the 
entry flow then moving through the middle flow and ending with the exit flow. 

4. Dataset 
One of the most important requirements to build a robust model for the classification 

purpose is the usage of a large-scale, well-annotated dataset [21]. However, this is a diffi-
cult requirement in the medical domain due to the large effort needed for the data-collec-
tion and labelling process. The dataset used in this paper is the BreakHis dataset [9]. This 
dataset contains microscopic biopsy images that are divided into two classes: benign and 
malignant. These images were collected in the P&D Lab in Brazil. The samples are created 
from breast tissue biopsy slides stained with Hematoxylin and Eosin (HE). These samples 
are gathered by surgical open biopsy (SOB) and are annotated by the pathologists of the 
P&D Lab. Then, digital images are obtained from the breast tissue slides using an Olym-
pus BX-50 system microscope with a relay lens with magnification of 3.3× that is linked to 
a Samsung digital color camera SCC-131AN. There are 7909 images in this dataset. The 
images are displayed as magnified images by the magnification factors of 40×, 100×, 200× 
and 400×, obtained using the conventional lenses of powers 4×, 10×, 20×, and 40×, respec-
tively. Each image is captured as a three-channel (RGB) image with 24-bit color depth and 
8 bits per color channel. The image size is 780 × 460 and the format of each image is PNG 
format. The images are collected from 82 patients with 24 patients diagnosed with benign 
lesions and the other 58 patients are diagnosed with malignant tumors [9]. Table 2 repre-
sents the data distribution in this dataset. 

Figure 8. Xception architecture; the input data flow is divided into three parts, starting with the entry
flow then moving through the middle flow and ending with the exit flow.

4. Dataset

One of the most important requirements to build a robust model for the classification
purpose is the usage of a large-scale, well-annotated dataset [21]. However, this is a difficult
requirement in the medical domain due to the large effort needed for the data-collection
and labelling process. The dataset used in this paper is the BreakHis dataset [9]. This
dataset contains microscopic biopsy images that are divided into two classes: benign and
malignant. These images were collected in the P&D Lab in Brazil. The samples are created
from breast tissue biopsy slides stained with Hematoxylin and Eosin (HE). These samples
are gathered by surgical open biopsy (SOB) and are annotated by the pathologists of the
P&D Lab. Then, digital images are obtained from the breast tissue slides using an Olympus
BX-50 system microscope with a relay lens with magnification of 3.3× that is linked to
a Samsung digital color camera SCC-131AN. There are 7909 images in this dataset. The
images are displayed as magnified images by the magnification factors of 40×, 100×,
200× and 400×, obtained using the conventional lenses of powers 4×, 10×, 20×, and 40×,
respectively. Each image is captured as a three-channel (RGB) image with 24-bit color depth
and 8 bits per color channel. The image size is 780 × 460 and the format of each image is
PNG format. The images are collected from 82 patients with 24 patients diagnosed with
benign lesions and the other 58 patients are diagnosed with malignant tumors [9]. Table 2
represents the data distribution in this dataset.
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Table 2. Distribution of data in BreakHis dataset.

Benign Malignant

A F PT TA DC LC MC PC Sum

40× 114 253 109 149 864 156 205 145 1995

100× 113 260 121 150 903 170 222 142 2081

200× 111 264 108 140 896 163 196 135 2013

400× 106 237 115 130 788 137 169 138 1820

Sum 444 1014 453 569 3451 626 792 560 7909

The dataset is divided into 5536 images for the training set, 1580 for the validation set,
and 793 images for the test set. This division is selected to be as near as possible to the 70%
training, 20% validation, and 10% test splitting ratio. For the magnification-independent
experiments, all images are considered irrespective of their magnification factors. They
are divided into two classes, which are benign and malignant for the binary classification
experiment. On the other hand, these images are divided into eight classes, which are
adenosis (A), tubular adenoma (TA), phyllodes tumor (PT), fibroadenoma (F), papillary
carcinoma (PC), lobular carcinoma (LC), ductal carcinoma (DC) and mucinous carcinoma
(MC) for the multi-class classification experiments. Meanwhile, for the magnification-
dependent experiments, the images are selected from each magnification factor and then
divided into two classes for binary classification. Then, the same images are divided
into eight classes for the multi-class classification experiments. Hence, for magnification-
dependent experiments, eight datasets are formed in total (four datasets represent each
magnification factor for binary classification and another four datasets for the multi-class
classification experiments). For the magnification-independent experiments, two datasets
are formed (one for the binary classification and one for the multi-class classification). Each
dataset formed is divided into a training set, a validation set, and a test set. Moreover,
images in BreakHis dataset are randomly shuffled before forming the datasets to break any
possible bias. Table 3 illustrates the exact distribution of images in the training, validation,
and test datasets. Figure 9 shows a sample of the images from the BreakHis dataset.

Table 3. Distribution of data in the training, validation, and test datasets.

Benign Malignant

A F PT TA DC LC MC PC Sum

Tr
ai

ni
ng

40× 80 176 76 104 606 109 143 102 1396

100× 79 182 86 105 632 119 155 100 1458

200× 78 186 76 98 627 114 137 94 1410

400× 74 166 80 91 551 96 118 96 1272

Sum 311 710 318 398 2416 438 553 392 5536

V
al

id
at

io
n

40× 23 51 22 30 172 31 41 28 398

100× 23 52 24 30 181 34 44 28 416

200× 22 53 21 28 179 33 39 27 402

400× 21 47 23 26 158 27 34 28 364

Sum 89 203 90 114 690 125 158 111 1580

Te
st

40× 11 26 11 15 86 16 21 15 201

100× 11 26 11 15 90 17 23 14 207

200× 11 25 11 14 90 16 20 14 201

400× 11 24 12 13 79 14 17 14 184

Sum 44 101 45 57 345 63 81 57 793
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5. Methodology

The proposed methodology is presented in this section including the data pre-processing
stages, transfer learning strategy, hyperparameter configurations, and the adopted perfor-
mance metrics.

5.1. Data Pre-Processing

The input images are first resized to 200 × 200 pixels to increase the computational
efficiency and reduce the training time. Moreover, since the number of images in the
BreakHis dataset is limited, the problem of overfitting can occur [22]. One approach to
avoid overfitting is to use data augmentation techniques [23,24]. However, one should
carefully select the appropriate data augmentation technique when dealing with medical
images. This is attributed to the fact that inappropriate manipulation of essential features
can eventually be destructive to the model performance [25]. Only rotation and horizontal
flip augmentation techniques are used. Images are rotated randomly with a maximum
rotation angle of 180◦. The data augmentation used in this study is applied to augment
the training input images so that the model never sees the exact same image twice during
training process. After the input image is augmented, its color map is changed from RGB
to BGR. Then, the input image is normalized. This is mainly needed because when the
learning model is fed with input data values that are greatly wide in range, it can make the
learning process very difficult, and hence, normalization of the input data is adopted. One
method to normalize the input data is to subtract the mean from each data item and divide
by the standard deviation. These statistics can be calculated either per the input image or
per the dataset [23]. In this paper, the mean and the standard deviation are calculated from
the training dataset only, and every input image x is then normalized using (1).

y =
x − µ

σ
(1)

where y is the output image, µ is the mean of the training dataset, and σ is the standard
deviation of the training dataset. Figure 10 indicates the data pre-processing phase.
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5.2. Transfer Learning Strategy

Since the BreakHis dataset contains a limited number of images, it is not enough to
build a high-performance deep learning model through considering only this dataset. It
has been proven that the usage of a transfer learning approach for building a deep learning
model to predict histopathological images can be much more effective than training the
model from scratch using BreakHis dataset [14]. Therefore, in this paper, a transfer-learning
approach is used in building a robust deep learning model for the detection of breast
cancer in histopathological images. The models that are used in this study are the pre-
trained models: Xception, DenseNet201, Inception ResNet V2, VGG19, and ResNet152.
These models are pre-trained on the well-known ImageNet dataset that contains more than
14 million natural images. For each model, its classifier is removed (which was trained
on the ImageNet dataset) and then our own classifier is used instead. The used transfer
learning strategy is divided into two phases:

• Phase 1: For each pre-trained model, all the layers are frozen except for the fully
connected layers. Then, training the model is started with a high learning rate on the
BreakHis dataset. The earlier layers are frozen, since the model is trained with a small
dataset, and hence, there is a high possibility of the model to be overfitted with this
high learning rate. It is crucial to avoid the destruction of the already learned features
from the ImageNet dataset during this step of training. This phase aims to build the
fully connected layers to be able to make predictions on the new problem given the
pre-trained base model.

• Phase 2: In this phase, all the layers are unfrozen to fine-tune the model. However,
a very low learning rate is adopted; hence, the pre-trained weights are not distorted.
Moreover, the weights are updated in a small incremental way to obtain an admirable
improvement in terms of classification performance.

5.3. Hyperparameters Configurations

It is crucial to have well-designed fully connected layers for the success of a deep
learning model [26]. Hence, all the design aspects are considered while building the fully
connected layers that are going to be used with each pre-trained model. To fight the well-
known problem of overfitting, the dropout and regularization techniques are implemented.
For the dropout technique, a dropout probability of 0.5 is adopted. For the regularization
technique, L2 regularization is used with L2 regularization factor of 0.001. Moreover, many
batch normalization layers are applied in the fully connected layers to stabilize and speed
up the training process [21,27,28]. Figure 10 shows the organization of the layers, which
can be described as follows:

1. A fully connected layer with 512 neurons. The activation function used in this layer is
the ReLU activation function.

2. A batch normalization layer.
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3. A fully connected layer with 64 neurons, ReLU activation function and L2 regular-
izer function.

4. A dropout layer.
5. A batch normalization layer.
6. An output layer with eight neurons and softmax activation function for multi-class

classification. For binary classification, it is organized as one neuron and sigmoid
activation function.

For the loss functions used, a binary cross entropy loss function is used in case of binary
classification. Meanwhile, a categorical cross entropy loss function is used for multi-class
classification. Moreover, Adam optimizer is adopted as an optimization algorithm for the
learning process with a learning rate of 0.01 for the first phase of the learning process of each
model. However, for the second phase of training, each model is trained with two different
learning rates, which are 0.00001 and 0.0001, then the best model is selected. This is because
the learning rate has the largest influence on the learning process [29]. Hence, to test this
influence, these two leaning rates are used as an attempt to generate the best model possible
with the highest classification performance. While training each model, the validation
accuracy is monitored at the end of each training epoch and if there is any improvement in
the validation accuracy, the model weights are saved for that epoch. Hence, at the end of
the learning process, the model that has achieved the highest validation accuracy is selected
as the output of the training process. Additionally, each training process is carried out for
250 epochs. However, if there is no improvement in the validation accuracy for 60 epochs,
the training process is stopped early. These two mechanisms are applied for the two phases
of the training process. Finally, a batch size of 32 images is used for the training set.

5.4. Performance Metrics

To assess the performance of the studied models, the five most used metrics in the
literature are utilized for fair comparison. These metrics are accuracy, precision, recall,
F1-score, and Matthew’s correlation coefficient (MCC). These metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score = 2 × precision × recall
precision + recall

(5)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

where TP and TN denote the true positive and true negative samples, respectively. In other
words, they are the correctly classified malignant and benign samples, respectively. On the
other hand, FP and FN denote the false-positive and false-negative samples, respectively,
which describe the incorrectly classified benign and malignant samples. Moreover, the
confusion matrix is going to be presented for each model that expresses the different
combinations of TP, TN, FP, and FN generated by the model. One of the important
measures that can assess the classification quality of a deep learning model even if there
is an imbalance in the classes of a dataset is MCC [30]. Since there is an imbalance in the
BreakHis dataset, MCC is used to assess the performance of the generated models. MCC
can be used for binary and multi-class classifications; it is simply a correlation coefficient
in the range of −1 to 1. If the value of MCC is 1, this indicates a superlative classification,
and a value of −1 indicates a total misclassification. On the other hand, an MCC value of
0 indicates an average random classification [31]. Additionally, a macro-average technique
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is used to evaluate the values of precision, recall, and F1-score for each model. Finally, the
accuracy is considered as the main metric for this study.

6. Experimental Results

In this section, the results for the conducted experiments are going to be presented for
each model (magnification-independent binary classification, magnification-independent
multi-class classification, magnification-dependent binary classification, and magnification-
dependent multi-class classification). These experiments are carried out to test the efficiency
of the selected deep learning architectures from all classification aspects. The codes for the
experiments are written using Python as a programming language and TensorFlow library
version 2.8. The codes are executed through Google Colaboratory environment, which runs
entirely on the cloud.

6.1. Magnification-Independent Binary Classification

Table 4 illustrates the performance metrics obtained using the test set for the magnification-
independent binary classification experiment. It is clear that the Xception model at a learn-
ing rate of 0.0001 achieves the highest results in all of the performance metrics. Moreover,
VGG19 at a learning rate of 0.00001 and DenseNet201 at a learning rate of 0.0001 achieve
promising results after that for Xception. ResNet152 at a learning rate of 0.0001 achieves
the lowest results. However, these results are significantly improved when the learning
rate is decreased to 0.00001. Figures 11 and 12 show the learning curves and the confusion
matrix of the best model (Xception model). At Phase 1 of training, the best model obtained
for Xception achieves a validation accuracy of 89.43% at epoch 62, and the learning process
stops early at epoch 122 due to there being no improvement in the validation accuracy for
60 epochs. For Phase 2, the best model obtained achieves a validation accuracy of 98.92%
with a 9.49% increase in accuracy as compared to the value obtained in phase 1. This
validation accuracy is in synchronization with the test accuracy achieved afterwards (i.e.,
98.99%). This indicates that the model is not biased to the data in the validation dataset
and the model is fine-tuned correctly. This validation accuracy is obtained at epoch 90 and
the training process stops early at epoch 150.

Table 4. Performance metrics collected for magnification-independent binary classification; the
highest results are shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 98.99 98.93 98.71 98.82 0.9764

DenseNet201 98.61 98.33 98.44 98.38 0.9677

Inception ResNet V2 98.49 98.24 98.24 98.24 0.9647

VGG19 97.86 97.01 98.11 97.53 0.9511

ResNet152 68.85 34.43 50.00 40.78 0

0.00001

Xception 98.61 98.44 98.33 98.38 0.9676

DenseNet201 98.49 98.24 98.24 98.24 0.9647

Inception ResNet V2 97.23 96.97 96.54 96.75 0.9351

VGG19 98.74 98.53 98.53 98.53 0.9705

ResNet152 97.86 97.76 97.22 97.49 0.9498
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6.2. Magnification-Dependent Binary Classification

In this subsection, the magnification-dependent results obtained for the binary classifi-
cation mode are presented.

6.2.1. 40× Magnification Factor

Table 5 represents the results obtained using the test set for the 40× magnification
factor. In this experiment, several models achieve the highest results, which are Xception at
a learning rate of 0.0001, DenseNet201 and VGG19 both at a learning rate of 0.00001. The
VGG19 model is arbitrarily chosen at a learning rate of 0.00001 to represent its learning
curves and confusion matrix as shown in Figures 13 and 14. For Phase 1 of the training
process, the best model obtained for VGG19 achieves a validation accuracy of 90.96%
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at epoch 59 and the learning process stops early at epoch 119 due to there being no
improvement in the validation accuracy for 60 epochs. For Phase 2, VGG19 obtains a
validation accuracy of 99.50%, which is in synchronization with the test accuracy achieved
afterwards (i.e., 100%). This validation accuracy is obtained at epoch 81 and the training
process stops early at epoch 141. The least performance is achieved by ResNet152 model at
a learning rate of 0.0001.

Table 5. Results of 40× magnification factor in binary classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 100 100 100 100 1

DenseNet201 99.50 99.22 99.64 99.42 0.9886

Inception ResNet V2 97.51 96.32 98.19 97.17 0.9449

VGG19 99.50 99.22 99.64 99.42 0.9886

ResNet152 81.09 86.09 70.70 73.22 0.5467

0.00001

Xception 99 98.46 99.28 98.85 0.9773

DenseNet201 100 100 100 100 1

Inception ResNet V2 99.50 99.22 99.64 99.42 0.9887

VGG19 100 100 100 100 1

ResNet152 98.01 97.01 98.55 97.73 0.9555
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6.2.2. 100× Magnification Factor

Table 6 illustrates the results obtained using the test set for the 100× magnification
factor. In this experiment, Xception at a learning rate of 0.0001 and DenseNet201 at a
learning rate of 0.00001 performed equally and achieved the highest results. As in the
previous magnification factor, ResNet152 at a learning rate of 0.0001 achieves the lowest
results. Xception model is chosen arbitrarily to represent its learning curves in Figure 15
and the confusion matrix in Figure 16. For Phase 1 of the training process, the best model
obtained for Xception achieves a validation accuracy of 92.79% at epoch 135 and the learning
process stops early at epoch 195 due to there being no improvement in the validation
accuracy for 60 epochs. For Phase 2, Xception obtains a validation accuracy of 99.52%,
which is identical to the test accuracy achieved afterwards (i.e., 99.52%). This validation
accuracy is obtained at epoch 98, and the training process stops early at epoch 158.

Table 6. Results of 100× magnification factor in binary classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 99.52 99.66 99.21 99.43 0.9886

DenseNet201 97.58 96.96 97.37 97.16 0.9433

Inception ResNet V2 96.62 96.20 95.78 95.99 0.9198

VGG19 98.55 98.98 97.62 98.27 0.9659

ResNet152 87.44 91.28 79.81 83.09 0.7016

0.00001

Xception 97.58 96.96 97.37 97.16 0.9433

DenseNet201 99.52 99.66 99.21 99.43 0.9886

Inception ResNet V2 96.62 95.83 96.23 96.02 0.9206

VGG19 99.03 99.32 98.41 98.85 0.9772

ResNet152 95.17 95.09 93.40 94.19 0.8848
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binary classification. (a) Accuracy and loss curves of Phase 1 of training. (b) Accuracy and loss curves
of Phase 2 of training.
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6.2.3. 200× Magnification Factor

Table 7 represents the results obtained using the test set for the 200× magnification
factor. In this experiment, Xception at a learning rate of 0.0001 achieves the highest
results. In terms of accuracy, DneseNet201 at learning rate of 0.00001 is the second-best
model in this experiment. Again, ResNet152 at a learning rate of 0.0001 achieves the
lowest results. However, these results dramatically increased at a learning rate of 0.00001.
Figures 17 and 18 illustrate the learning curves and confusion matrix for Xception. For
Phase 1 of the training process, the best model obtained for Xception achieves a validation
accuracy of 91.79% at epoch 79 and the learning process stops early at epoch 139. For
Phase 2, the Xception achieves a validation accuracy of 99.75%, which is synchronized with
the test accuracy achieved afterwards (i.e., 100%). This validation accuracy is obtained at
epoch 112 and the training process stops early at epoch 172.
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Table 7. Results of 200× magnification factor in binary classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 100 100 100 100 1

DenseNet201 98.01 98.10 97.18 97.62 0.9528

Inception ResNet V2 98.01 98.61 96.72 97.60 0.9531

VGG19 95.52 94.89 94.47 94.68 0.8937

ResNet152 69.65 34.83 50.00 41.06 0

0.00001

Xception 97.01 96.10 96.93 96.50 0.9303

DenseNet201 98.51 98.03 98.47 98.24 0.9649

Inception ResNet V2 98.01 98.10 97.18 97.62 0.9528

VGG19 96.02 96.69 93.91 95.15 0.9056

ResNet152 91.04 89.16 89.87 89.50 0.7903
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6.2.4. 400× Magnification Factor

Table 8 illustrates the results obtained using the test set for the 400× magnification
factor. In this experiment, Xception at a learning rate of 0.0001 achieves the highest
results. In terms of accuracy, Inception ResNet V2 at a learning rate of 0.0001 is the
second-best model and ResNet152 at a learning rate of 0.0001 achieves the lowest values.
Figures 19 and 20 illustrate the learning curves and confusion matrix for Xception. For
Phase 1 of the training process, the best model obtained for Xception achieves a validation
accuracy of 91.76% at epoch 44 and the learning process stops early at epoch 104. For Phase
2, the Xception achieves a validation accuracy of 98.63%, which is synchronized with the
test accuracy achieved afterwards (i.e., 99.46%). This validation accuracy is obtained at
epoch 52 and the training process stops early at epoch 112.

Table 8. Results of 400× magnification factor in binary classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 99.46 99.18 99.60 99.38 0.9878

DenseNet201 96.74 97.15 95.43 96.22 0.9257

Inception ResNet V2 97.83 97.95 97.10 97.51 0.9504

VGG19 96.20 94.78 97.18 95.79 0.9192

ResNet152 89.67 90.97 85.46 87.48 0.7623

0.00001

Xception 95.65 94.74 95.48 95.10 0.9022

DenseNet201 97.28 96.41 97.55 96.95 0.9396

Inception ResNet V2 95.65 94.27 96.34 95.17 0.9059

VGG19 96.20 95.50 95.89 95.69 0.9139

ResNet152 91.04 89.16 89.87 89.50 0.7903
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6.3. Magnification-Independent Multi-Classification

Table 9 presents the performance metrics obtained using the test set for the magnification-
independent multi-classification mode. The Xception model at a learning rate of 0.0001 achieves
the highest results in all the performance metrics. Additionally, DenseNet201 at a learning
rate of 0.00001 achieves great results after Xception. Still, ResNet152 at a learning rate of
0.0001 achieves the lowest results. Again, these results are significantly improved when the
learning rate is decreased to 0.00001. Figures 21 and 22 present the learning curves and
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the confusion matrix of the best model for this experiment, which is the Xception model at
a learning rate of 0.0001. At Phase 1 of the training process, the best model obtained for
Xception achieves a validation accuracy of 69.68% at epoch 197 and the learning process
completes the full number of epochs (i.e., 250 epochs) to train the model. For Phase 2, the
best model obtained achieves a validation accuracy of 93.29%, which is synchronized with
the test accuracy achieved afterwards (i.e., 93.32%). This validation accuracy is obtained at
epoch 66, and the training process stops early at epoch 126.

Table 9. Results of magnification-independent multi-classification; the highest results are shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 93.32 92.98 92.36 92.44 0.9129

DenseNet201 91.80 91.04 90.10 90.33 0.8923

Inception ResNet V2 89.79 90.71 85.87 87.75 0.8650

VGG19 91.05 91.17 0.8880 89.94 0.8816

ResNet152 43.51 5.440 12.50 7.580 0

0.00001

Xception 90.79 91.69 88.03 89.59 0.8786

DenseNet201 93.19 92.80 91.61 92.00 0.9107

Inception ResNet V2 65.70 60.27 52.83 55.68 0.5342

VGG19 92.18 91.01 90.61 90.71 0.8972

ResNet152 86.63 86.04 82.93 84.17 0.8229
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6.4. Magnification-Dependent Multi-Classification

In this subsection, the magnification-dependent results obtained for multi-classification
mode are presented.

6.4.1. 40× Magnification Factor

Table 10 represents the results obtained using the test set for the 40× magnification
factor. The best model obtained in this experiment is the Xception model at a learning
rate of 0.0001. VGG19 also achieves the best results at a learning rate of 0.00001. The least
performance is achieved by ResNet152 model at a learning rate of 0.0001. Figures 23 and 24
illustrate the learning curves and confusion matrix for the Xception model. For Phase 1 of
the training process, the best model obtained for Xception achieves a validation accuracy
of 75.38% at epoch 122 and the learning process stops early at epoch 182 due to there
being no improvement in the validation accuracy for 60 epochs. For Phase 2, the Xception
model achieves a validation accuracy of 94.47%, which is still in synchronization with the
test accuracy achieved afterwards (i.e., 97.01%). This validation accuracy is achieved at
epoch 81, and the training process stops early at epoch 141.

Table 10. Results of 40× magnification factor in multi-classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 97.01 96.85 96.17 96.47 0.9610

DenseNet201 94.53 95.18 94.87 94.76 0.9289

Inception ResNet V2 94.53 93.09 94.71 93.81 0.9290

VGG19 66.17 38.88 41.87 39.45 0.5471

ResNet152 42.79 5.35 12.50 7.490 0

0.00001

Xception 92.04 92.75 90.75 91.42 0.8962

DenseNet201 91.54 92.33 88.91 90.23 0.8891

Inception ResNet V2 93.03 92.77 92.29 92.44 0.9089

VGG19 96.52 96.74 95.01 95.77 0.9546

ResNet152 83.58 83.28 80.15 80.48 0.7847
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6.4.2. 100× Magnification Factor

Table 11 illustrates the results obtained using the test set for the 100× magnification
factor. In this experiment, Xception at a learning rate of 0.0001 achieves the highest
results. Moreover, DenseNet201 at a learning rate of 0.0001 achieves the second-best results.
ResNet152 at a learning rate of 0.0001 achieves the lowest results. Figures 25 and 26
illustrate the learning curves and confusion matrix for the Xception model for Phase 1 of
the training process. The best model obtained for Xception achieves a validation accuracy
of 73.80% at epoch 202, and hence, the training process does not stop early. For Phase 2,
Xception achieves a validation accuracy of 91.11%, which is in synchronization with the
test accuracy achieved afterwards (i.e., 95.17%). This validation accuracy is obtained at
epoch 147, and the training process stops early at epoch 207.
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Table 11. Results of 100× magnification factor in multi-classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 95.17 95.08 94.02 94.37 0.9367

DenseNet201 92.27 91.95 90.83 90.99 0.8991

Inception ResNet V2 86.96 87.98 83.19 84.29 0.8284

VGG19 89.37 92.99 85.29 88.04 0.8600

ResNet152 43.48 5.430 12.50 7.580 0

0.00001

Xception 84.06 86.09 79.29 81.69 0.7879

DenseNet201 89.86 91.16 84.74 87.23 0.8658

Inception ResNet V2 87.92 88.78 84.54 86.25 0.8399

VGG19 90.34 88.42 90.14 88.69 0.8752

ResNet152 80.68 81.18 72.78 75.39 0.7425
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6.4.3. 200× Magnification Factor

Table 12 represents the results obtained using the test set for the 200× magnification
factor. Once again, Xception at a learning rate of 0.0001 achieves the highest results.
Inception ResNet V2 at a learning rate of 0.0001 is the second-best model. ResNet152 at a
learning rate of 0.0001 achieves the lowest results. Figures 27 and 28 illustrate the learning
curves and confusion matrix for Xception. For Phase 1 of the training process, the best
model obtained for Xception achieves a validation accuracy of 71.39% at epoch 108 and
the learning process stops early at epoch 168. For Phase 2, Xception achieves a validation
accuracy of 91.29%, which is synchronized with the test accuracy achieved afterwards
(i.e., 91.54%). This validation accuracy is achieved at epoch 247 and the training process
completes the total number of epochs.

Table 12. Results of 200× magnification factor in multi-classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 91.54 90.08 90.16 89.91 0.8884

DenseNet201 85.07 84.38 79.29 79.20 0.8070

Inception ResNet V2 89.55 88.07 87.90 87.31 0.8638

VGG19 54.23 26.65 26.93 24.78 0.3374

ResNet152 44.78 5.60 12.50 7.73 0

0.00001

Xception 82.59 82.59 76.40 78.68 0.7658

DenseNet201 86.07 87.79 79.69 82.50 0.8127

Inception ResNet V2 85.07 85.55 80.61 82.26 0.8006

VGG19 82.59 81.25 77.42 77.86 0.7699

ResNet152 62.19 47.33 48.65 46.85 0.4954
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6.4.4. 400× Magnification Factor

Table 13 represents the results obtained using the test set for the 400× magnification
factor. In this experiment, Xception at a learning rate of 0.0001 achieves the highest results in
accuracy, recall, F1-score, and MCC metrics. On the other hand, DenseNet201 at a learning
rate of 0.0001 achieves a similar value of accuracy but a higher precision value. Once more,
ResNet152 at a learning rate of 0.0001 achieves the lowest results. Since the accuracy is the
main metric in this study, Xception is considered as the best model for this experiment.
Figures 29 and 30 illustrate the learning curves and confusion matrix for Xception. For
Phase 1 of the training process, the best model obtained for Xception achieves a validation
accuracy of 72.53% at epoch 190, making the learning process finish in epoch 250 (i.e., no
early stopping). For Phase 2, Xception achieves a validation accuracy of 92.31%, which is in
synchronization with the test accuracy achieved afterwards (i.e., 90.22%). This validation
accuracy is achieved at epoch 102, and the training process stops early at epoch 162.

Table 13. Results of 400× magnification factor in multi-classification mode; the highest results are
shown in bold.

Learning Rate Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

0.0001

Xception 90.22 90.99 89.87 89.97 0.8725

DenseNet201 90.22 91.18 87.22 88.95 0.8714

Inception ResNet V2 85.87 86.86 81.34 83.60 0.8133

VGG19 76.63 73.82 65.42 66.81 0.6894

ResNet152 48.37 11.94 19.52 14.71 0.2267

0.00001

Xception 84.78 85.62 80.14 81.99 0.7995

DenseNet201 85.87 85.42 80.94 82.87 0.8137

Inception ResNet V2 78.80 83.68 71.06 75.84 0.7171

VGG19 84.24 84.44 80.36 81.79 0.7925

ResNet152 78.26 79.20 68.45 71.68 0.7109
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6.5. Results of the Best Performing Model

It can be noted from the results of the conducted experiments that the Xception model
at a learning rate of 0.0001 achieved the best results in all experiments. These results are
summarized in Table 14 for all the conducted experiments.
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Table 14. Results of the best-performing model (Xception model at a learning rate of 0.0001) in all
conducted experiments.

Experiment Accuracy (%) Precision (%) Recall (%) F1-Score (%) MCC

Magnification-independent
binary classification 98.99 98.93 98.71 98.82 0.9764

Magnification-independent
multi-classification 93.32 92.98 92.36 92.44 0.9129

40× binary classification 100 100 100 100 1

100× binary classification 99.52 99.66 99.21 99.43 0.9886

200× binary classification 100 100 100 100 1

400× binary classification 99.46 99.18 99.60 99.38 0.9878

40× multi-classification 97.01 96.85 96.17 96.47 0.9610

100× multi-classification 95.17 95.08 94.02 94.37 0.9367

200× multi- classification 91.54 90.08 90.16 89.91 0.8884

400× multi- classification 90.22 90.99 89.87 89.97 0.8725

7. Discussion of Results

It is clear from the results that the Xception model (with a learning rate of 0.0001)
achieves the highest classification accuracies in all the experiments. Figure 31 shows the
accuracy achieved by the Xception model for each experiment. In addition to Xception,
other models perform considerably well. Few examples can be stated in this section to
prove this point. In the magnification-independent binary classification experiment, it can
be noted that the performance of DenseNet201 at a learning rate of 0.0001 is absolutely
comparable to the performance of Xception with a difference of 0.38% in terms of accuracy
between the two models. In the same experiment with a learning rate of 0.0001, Inception
ResNet V2 is only 0.5% less accurate than Xception. In the 40× binary classification
experiment, the comparability of the results is even more evident, in which DenseNet201
and VGG19 at a learning rate of 0.00001 achieve the exact results of Xception at a learning
rate of 0.0001. Moreover, the results of 100× binary classification exhibit that DenseNet201
at a learning rate of 0.00001 performs in the same manner as Xception. Thus, the main
objectives of the study have been achieved by attaining the most-efficient model as the best
performing model in all the experiments and other models that can achieve similar efficacy
in specific scenarios.
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In order to compare our study with state-of-the-art studies mentioned in the literature,
the following points of comparison are used:

• The accuracy of the single best model;
• The number and type of the conduced experiments in the study;
• The usage of various models.

Clearly, our single best performing model outperforms all the approaches in the
literature in terms of accuracy. In comparison to Boumaraf et al. [8], Xception model
scores higher accuracy than their single proposed model in all the experiments. They
conducted the various experiments in a similar manner to our study; however, they
did not target the possibility of developing more than one model in the experiments.
Our top performing model has achieved higher accuracy values than that achieved by
Davoudi et al. [10] in their conducted experiments. The efficacy of their model was tested
only in magnification-independent binary classification. They did not produce a variety
of successful models. The same conclusion can be obtained from the comparison with
Spanhol et al. [11], Xiang et al. [13], and Liu et al. [15], except that Spanhol et al. [11] and
Liu et al. [15] perform binary magnification-dependent experiments and Xiang et al. [13]
perform binary magnification-independent experiments. Although Bardou et al. [12] have
implemented different approaches to classify breast cancer in histopathological images,
they have only implemented these approaches in magnification-dependent binary and
multi-class classification and score lower accuracy values than the proposed model. The
same comparison can be drawn with the study of Shallu et al. [14], except that they have
conducted magnification-independent binary classification.

Noticeably, the Xception model exhibits unique performance capabilities that make
it the most successful among all the models in all the experiments. Thus, the results can
offer hope that the model can be of assistance for pathologists in the future to diagnose
the disease.

In order to draw inferences from the results, the models need to use a larger and more
balanced dataset. Although the BreakHis dataset contains 7909 images, this is a meager
number compared to the gigantic magnitude of breast cancer, which is very prevalent,
as there is a scarcity of digital pathological image datasets. The problem lies in the fact
that a huge amount of time and effort is needed in labeling and collecting the data [32,33].
Moreover, the dataset was also imbalanced. This draws attention to the fact that a larger
and more balanced dataset should be available.

Additionally, it can be noted that the accuracy achieved by Xception model in binary
classification mode is higher than that achieved in the multi-classification mode for all
the experiments, whether it is a magnification-dependent or magnification-independent
experiment. This observation is expected since eight-class classification is more challenging
than binary classification.

8. Conclusions

Breast cancer is a leading cause of death in women worldwide. The main objective in
this study was to investigate the performance of the pre-trained Xception, DenseNet201,
Inception ResNet V2, VGG19, and ResNet152 models on the BreakHis dataset. This was
mainly to find a reliable deep learning model that can help pathologists in diagnosing
breast tumors in histopathological images of any magnification size and of any tumor
type. For this objective, multiple experiments were conducted to test all of these models
from all the aspects of classifying breast cancer. As a result, magnification-independent
binary classification, magnification-independent eight-class classification, magnification-
dependent binary classification, and magnification-dependent eight-class classification
were carried out for all the pre-trained models at two different learning rates. Xception
has performed outstanding results in these experiments. Hence, it can be considered
a scaffold on which further studies can be made and provide even more evidence to
consider the model as a future tool to aid pathologists in the process of diagnosis. In the
future, the trained networks can be further tested using a larger and balanced dataset with
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different splitting ratios that can be used to ensure robustness. Moreover, the images can
be rearranged to enable patient-level performance testing.
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