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Abstract: Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits
and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG
is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin
nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate
(TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-
loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle
size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean
diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage
stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative
drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive
effect significantly compared with the original NRG, the cough frequency was decreased from 22 to
15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps
also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02
to 1.45 µg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG
significantly and possess a potential clinical application.

Keywords: naringenin nanosuspension; media-milling method; bioavailability; antitussive effect;
expectorant effect

1. Introduction

Naringenin (NRG), an aglycone of naringin, belongs to the dihydroflavones and
mainly exists in natural plants such as citrus, aurantium, peach leaf, and grapefruit [1].
Studies have found that naringin has antibacterial [2], antioxidant and antiviral [3], and
anticancer properties [4,5] that can also inhibit the expression of pro-inflammatory cy-
tokines [6], which have potential clinical applications for therapy for pulmonary diseases
such as Staphylococcus aureus pneumonia, pulmonary fibrosis, and asthma [7]. However, the
solubility of naringin in water is very poor and almost insoluble, and the oral bioavailability
of naringin is only 5.81%, which seriously affects its therapeutic effect and further restricts
its clinical application [8].

In recent years, the development of nanotechnology has provided new ideas for
improving the solubility and bioavailability of hydrophobic drugs [9,10]. Nanosuspen-
sions, nanomicelles, nanoparticles, and nanocrystals are prepared with nanomaterials
as nanocarriers to entrap hydrophobic drugs, and these nanodelivery systems could en-
hance the solubility of hydrophobic drugs in aqueous solution, further improving their
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bioavailability [11,12]. Nanosuspensions (NSps) present a smaller particle size, higher
drug-loading content, simple preparation process, better stability after curing, and bi-
ological adhesion, which can significantly improve the bioavailability and efficacy of
hydrophobic drugs [13–15]. NSps can be achieved via the rapid formation of crystal nu-
clei under controlled conditions, in which the growth of crystallization is inhibited by
the stabilizer [16,17].

At present, there are three main methods for preparing nanosuspensions: the top-
down method, bottom-up method, and a combination of the two [18]. The antisolvent
precipitation method is attributed to a kind of bottom-up method: The hydrophobic drug is
first dissolved in organic solvents and then rapidly mixed with distilled water. This process
typically results in rapid particle growth and broad particle size distribution. Top-down
technologies include the media-milling method and high-pressure homogenization. In the
media-milling method, drug powder is added to a solution-containing surfactant. The drug
particles and milling medium collide violently with the inner wall of the milling chamber
to obtain nanoscale drug particles [19]. The advantages of the media-milling method are as
follows: Drugs can be easily prepared as nanosuspensions; there is little difference between
batches, it is easy to expand production, and it is suitable for industrial production; the
preparation device is simple and easy to obtain; and the preparation only requires tens of
milligrams of active pharmaceutical ingredients, which can effectively reduce the cost of
scientific research. Dihydroartemisinin nanosuspension can be prepared using the milling
method, and a previous study investigated its physical stability and antimalarial activity
in vitro [20]. Furthermore, naringenin nanosuspension can be prepared using the milling
method, which has made it easier for the drug to be absorbed in vivo, thereby improving
its bioavailability [21].

Currently, a certain amount of amphiphilic compound is exploited and utilized as
a stabilizer to prepare nanosuspension, which could reduce sedimentation, aggregation,
crystal growth, crystal transformation, and other phenomena [22]. It is clear that different
drugs present different properties, and different stabilizers should be used to ensure the
successful preparation of nanosuspensions. Therefore, the selection of an appropriate
stabilizer is of great importance [23]. Chitosan, polyvinylpyrrolidone (PVP), and other
commonly used stabilizers have been used in the preparation of naringenin nanosuspen-
sions (NRG-NSps) [24–27]. However, these NRG-NSps show certain drawbacks, such as
low stability and poor bioavailability. To overcome these drawbacks, NRG-NSps should
be prepared by choosing a stabilizer with good biological properties that can adapt to
a variety of administration modes. Tocopherol polyethylene glycol vitamin E succinate
(TPGS) is synthesized by coupling between the carboxyl group of vitamin E succinate
and the hydroxyl group of polyethylene glycol 1000 (PEG1000), which is an amphiphilic
medical excipient recognized by the Food and Drug Administration (FDA) [28], and can be
used in pharmaceutical preparations as a solvent enhancer, emulsifier, and stabilizer [29].
In recent years, owing to the good solubility, permeability, and stability of TPGS, it has
been utilized as nanocarriers to construct various nanodelivery systems, such as liposomes,
micelles, nanoparticles, and nanocrystals [30,31].

In this study, using NRG as the model drug and TPGS as the stabilizer, NRG-NSps
were prepared using the media-milling method, and the optimal formulation and process
were determined through univariate analysis. To avoid deterioration after storage for a
long time, NRG-NSps were made into lyophilized powder to ensure their storage stability.
The particle size, morphology, stability, and drug-release characteristics of NRG-NSps were
investigated. In addition, the expectorant effect of NRG-NSps was estimated with normal
mice via the phenol red secretion method, and the antitussive effect in vivo was researched
with ammonia-induced cough model mice.
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2. Results and Discussion
2.1. Physicochemical Characteristics of NRG-NSps

Using the “top-down” principle, the media-milling method was applied to prepare
NRG-NSps. The magnetic stirrer served as the power device, the vial was the milling
chamber, and the zirconia ball was used as the milling medium to prepare NRG-NSps.
The feed–weight ratio of NRG vs. TPGS was designed as 4/1. After stirring for 2 h, NRG-
NSps was prepared successfully as a white milky liquid, and the drug-loading content
was 66.7%. The particle size of NRG-NSps was 216.9 nm. The particle size distribution
curve is shown in Figure 1a. Transmission electron microscopy (TEM) images revealed
that NRG-NSps presented a flaky morphology (Figure 1b), which is different than the
appearance of nanospherical particles reported in previous papers [32,33].

Figure 1. Particle size distribution curve (a) and TEM image of NRG-NSps (b) (scale bar: 500 nm).

2.2. Stability of NRG-NSps

To estimate the media stability, NRG-NSps were incubated with different physiological
media, including PBS, normal saline, glucose solution, artificial gastric juice, and artificial
intestinal fluid. The particle size change curves are shown in Figure 2. After incubating for
24 h, the state of the nanosuspension solution showed no obvious change, no aggregation
or precipitation was observed, and the particle size was maintained in all media. These
results indicated that NRG-NSps presented excellent media stability in all test media, which
was suitable for oral administration.
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Figure 2. Particle size of NRG-NSps in different physiological media at 37 ◦C.

To verify the storage stability, NRG-NSps were stored at 4 ◦C for one month, and the
appearance of the nanosuspension solution showed no significant change. The particle
sizes are summarized in Table 1. After detection by dynamic light scattering (DLS), it was
proven that the particle size and surface charge of NRG-NSps was maintained excellently,
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which was approximately 220 nm with a polydispersity index (PDI) of approximately 0.27
and −1.0 mV, relatively. There were no significant deviations in the dimensions or surface
charge of the nanoparticles during the storage period, indicating good storage stability.

Table 1. Summary of particle size and zeta potential for NRG-NSps after storing at 4 ◦C for one month.

DLS Results
Time (d)

0 10 20 30

Size (nm) 216.9 ± 5.3 221.3 ± 6.2 223.3 ± 3.4 223.5 ± 3.5
PDI 0.32 ± 0.02 0.27 ± 0.01 0.26 ± 0.04 0.27 ± 0.03

Zeta potential (mV) −1.08 ± 1.37 −1.41 ± 0.33 −0.16 ± 0.31 −0.28 ± 2.01

Due to the Ostwald ripening phenomenon, nanoparticles in solution aggregate to form
larger particles, which could affect the stability [34]. For long-term storage, nanosuspension
solution should be lyophilized to powder, and then reconstituted without significant
change. In this study, we selected several freeze-dried protective agents at a concentration
of 0.5%. When P188 was selected as the lyophilized protective agent, NRG-NSps could
be lyophilized and reconstructed in water successfully, with a particle size of NRG-NSps
of 223.7 ± 3.4 nm (PDI~0.18 ± 0.02). The particle size presented no significant difference
from the initial value, and it was proven that NRG-NSps exhibited good lyophilized
reconstitution stability.

2.3. Drug-Release Behaviour

The cumulative release rate of the NRG powder suspension was only 30.6% within
168 h, and exceeding 92%, NRG was released from NRG DMSO solution within 8 h, which
were used as the control groups. NRG-NSps were detected under identical conditions. The
nanosuspension prepared with TPGS as a stabilizer showed a moderate release rate. The
cumulative release rate in vitro reached approximately 25% within the initial 8 h, then a
slow sustained release was shown, with the cumulative release rate reaching approximately
95% in the following 160 h (Figure 3). Compared with NRG powder, NRG-NSps showed
a higher release rate. This phenomenon was mainly attributed to the enhanced solubility
of NRG in aqueous solution and larger surface area in terms of the small particle size
of NRG-NSps. Compared with NRG DMSO solution, NRG-NSps presented a slower
release rate and could be sustainably released for 7 d, which could be attributed to the
structure of NRG-NSps. The release profile of NRG was affected by the steric hindrance of
nanoparticles [35]. Based on these results, NRG-NSps could enhance the aqueous solubility
of NRG significantly and exhibit a sustainable release profile, which could influence the
bioavailability of NRG.

2.4. Antitussive Assay

Coughing is caused by secretions or foreign substances that stimulate the mucous
membrane of the respiratory tract and produce coughing action through neural reflexes,
removing secretions from the airways [36]. Ammonia stimulates the mucosa of the res-
piratory tract and causes coughing; therefore, the antitussive effects of NRG-NSps were
estimated with a mouse cough model induced by aqueous ammonia [37]. The cough
frequency and cough incubation time of each group were used as evaluation indexes to
investigate the antitussive effect of NRG-NSps. The mice were divided into a saline group
(blank model control), dextromethorphan hydrobromide group (positive control), NRG
group, and NRG-NSps group (high, medium, and low). The concentration of positive drug
was 15 mg/kg and of NRG was 30 mg/kg, and the dosage of the NRG-NSps group was 10,
30, and 50 mg/kg (NRG equivalent concentration).



Molecules 2022, 27, 741 5 of 11

Molecules 2021, 26, x FOR PEER REVIEW 4 of 11 
 

 

proven that the particle size and surface charge of NRG-NSps was maintained excellently, 

which was approximately 220 nm with a polydispersity index (PDI) of approximately 0.27 

and −1.0 mV, relatively. There were no significant deviations in the dimensions or surface 

charge of the nanoparticles during the storage period, indicating good storage stability. 

Due to the Ostwald ripening phenomenon, nanoparticles in solution aggregate to 

form larger particles, which could affect the stability [34]. For long-term storage, 

nanosuspension solution should be lyophilized to powder, and then reconstituted 

without significant change. In this study, we selected several freeze-dried protective 

agents at a concentration of 0.5%. When P188 was selected as the lyophilized protective 

agent, NRG-NSps could be lyophilized and reconstructed in water successfully, with a 

particle size of NRG-NSps of 223.7 ± 3.4 nm (PDI~0.18 ± 0.02). The particle size presented 

no significant difference from the initial value, and it was proven that NRG-NSps 

exhibited good lyophilized reconstitution stability. 

Table 1. Summary of particle size and zeta potential for NRG-NSps after storing at 4 °C for one month. 

DLS Results 
Time (d) 

0 10 20 30 

Size (nm) 

PDI 

Zeta potential (mV) 

216.9 ± 5.3 

0.32 ± 0.02 

−1.08 ± 1.37 

221.3 ± 6.2 

0.27 ± 0.01 

−1.41 ± 0.33 

223.3 ± 3.4 

0.26 ± 0.04 

−0.16 ± 0.31 

223.5 ± 3.5 

0.27 ± 0.03 

−0.28 ± 2.01 

2.3. Drug-Release Behaviour 

The cumulative release rate of the NRG powder suspension was only 30.6% within 

168 h, and exceeding 92%, NRG was released from NRG DMSO solution within 8 h, which 

were used as the control groups. NRG-NSps were detected under identical conditions. 

The nanosuspension prepared with TPGS as a stabilizer showed a moderate release rate. 

The cumulative release rate in vitro reached approximately 25% within the initial 8 h, then 

a slow sustained release was shown, with the cumulative release rate reaching 

approximately 95% in the following 160 h (Figure 3). Compared with NRG powder, NRG-

NSps showed a higher release rate. This phenomenon was mainly attributed to the 

enhanced solubility of NRG in aqueous solution and larger surface area in terms of the 

small particle size of NRG-NSps. Compared with NRG DMSO solution, NRG-NSps 

presented a slower release rate and could be sustainably released for 7 d, which could be 

attributed to the structure of NRG-NSps. The release profile of NRG was affected by the 

steric hindrance of nanoparticles [35]. Based on these results, NRG-NSps could enhance 

the aqueous solubility of NRG significantly and exhibit a sustainable release profile, 

which could influence the bioavailability of NRG. 

 

Figure 3. Cumulative release curves of NRG-NSps, NRG powder, and NRG DMSO solution in PBS
(pH 7.4) at 37 ◦C.

In 5 min, the blank model group coughed 33 ± 5 times, the positive control group
coughed 14± 4 times, and NRG group coughed 22± 4 times. The cough frequency of NRG-
NSps was 25 ± 4, 15 ± 3, and 12 ± 3 times at 10, 30, and 50 mg/kg, respectively (Figure 4a).
The positive control group showed excellent antitussive effects, and compared with the
blank model group, the cough frequency decreased 2.3-fold (33 vs. 14, p < 0.001) and the
inhibition cough rate was 57%, revealing that the cough model in mice was constructed
successfully. All the NRG-NSps showed moderate to good antitussive effects. Compared
with the blank model group, the cough frequency of NRG-NSps decreased significantly
by 1.3-fold (33 vs. 25, p < 0.05), 2.2-fold (33 vs. 15, p < 0.001), and 2.7-fold (33 vs. 12,
p < 0.001), and the cough inhibition rate was 24%, 54%, and 64% for three NRG-NSps,
respectively. Besides, the NRG-NSps group presented antitussive effects in mice in a
certain dose-dependent manner, which was promoted sharply initially and then slowly
with increasing concentration of NRG. The antitussive effect was significantly enhanced
with the increase in dosage of NRG-NSps from 10 to 30 mg/kg, and the cough frequency
was decreased approximately 1.6-fold (25 vs. 16 times, p < 0.05). Further increasing the
concentration to 50 mg/kg, the cough frequency was decreased approximately 2.1-fold
(25 vs. 12, p < 0.01), but the cough frequency only decreased slightly (15 vs. 12, p > 0.05)
and no significant difference was presented when the concentration of NRG was enhanced
from 30 to 50 mg/kg. Considering the antitussive effects, economy, and side effects, the
concentration of NRG could be selected as 30 mg/kg. Under the same dosage (30 mg/kg),
compared with free NRG, the cough frequency of the NRG-NSps group was decreased
1.5-fold and the inhibition cough rate was enhanced from 33% to 54% (22 vs. 15, p < 0.05),
and the antitussive effect was obviously higher than that of free NRG. Compared with
positive drugs, NRG-NSps (30 mg/kg) showed a similar antitussive effect, and there was
no significant difference in cough frequency (14 vs. 15, p > 0.05). Based on these results, it
seems that the NRG-NSps group could serve as an effective therapy for acute cough.

Subsequently, the antitussive effect of NRG-NSps was further evaluated by investi-
gating the cough incubation time. In 5 min, the cough incubation time of the saline group
was 61.6 ± 7.6 s, of the positive drug group was 135.3 ± 12.6 s, and of the NRG group
was 85.3 ± 8.2 s. The incubation period of NRG-NSps was 80.8 ± 7.7, 121.6 ± 11.3, and
129.3 ± 6.7 s at 10, 30, and 50 mg/kg, respectively (Figure 4b). NRG-NSps could promote
the cough incubation period significantly compared with the blank model group (p < 0.05).
The cough incubation period also showed dose dependence, and was prolonged with an
increase in dosage. At the same dose (30 mg/kg), NRG-NSps significantly increased the
cough incubation period and delayed the onset of cough by 36.3 s compared with the
original NRG.
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Figure 4. Cough-relieving effect of naringenin nanosuspension (NRG-NSps) on mice: cough fre-
quency in 5 min (a) and cough incubation time (b), n = 10. 1: Saline group, 2: dextromethorphan
hydrobromide group (15 mg/kg), 3: NRG group (30 mg/kg), 4: NRG-NSps group (10 mg/kg),
5: NRG-NSps group (30 mg/kg), and 6: NRG-NSps group (50 mg/kg). * p < 0.05 and *** p < 0.001 vs.
saline group; # p < 0.05 and ## p < 0.01 vs. NRG-NSps group (10 mg/kg); $ p < 0.05 vs. NRG group
(30 mg/kg).

Through the comparison of cough frequency and cough incubation period, NRG-NSps
showed an enhanced cough-relieving effect, significantly reduced the cough frequency, and
prolonged the cough incubation period.

2.5. Expectorant Assay

Expectorant activity was evaluated using the phenol red secretion mouse model
according to the regression line of the spectrophotometric response [38]. The content
of phenol red was 0.65 ± 0.13 µg/mL in the saline group, 1.17 ± 0.15 µg/mL in the
positive drug group, and 1.02 ± 0.14 µg/mL in the free NRG group, and the content of
phenol red was 1.08 ± 0.18, 1.45 ± 0.17, and 1.76 ± 0.12 µg/mL at 10, 30, and 50 mg/kg,
respectively (Figure 5). NRG-NSps had expectorant effects on the phenol red secretion
mouse model in a dose-dependent manner, and the expectorant effect was significantly
enhanced with the increase in dosage of NRG-NSps (p < 0.01). At the same dose (30 mg/kg),
compared with NRG, the excretion of phenol red in the trachea of NRG-NSps increased
by 42% (1.45 vs. 1.02 µg/mL), and the expectorant effect was obviously better than free
NRG (p < 0.05). Compared with positive drugs, the excretion of phenol red of NRG-NSps
(30 mg/kg) increased 1.1-fold (1.45 vs. 1.17 µg/mL), and the expectorant effect was slightly
increased but no significant difference was shown (p > 0.05).
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Figure 5. Expectorant activities of NRG-NSps (n = 8). 1: Saline group, 2: ambroxol hydrochloride
group (15 mg/kg), 3: NRG group (30 mg/kg), 4: NRG-NSps group (10 mg/kg), 5: NRG-NSps group
(30 mg/kg), and 6: NRG-NSps group (50 mg/kg). ** p < 0.01 and *** p < 0.001 vs. saline group;
## p < 0.01 and ### p < 0.001 vs. NRG-NSps group (10 mg/kg); $ p < 0.05 vs. NRG group (30 mg/kg).
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3. Materials and Methods
3.1. Animals

Kunming mice (20± 2 g, 6 to 8 weeks old) were purchased from Vital River Laboratory
Animal Technology Co., Ltd. (Beijing, China). The animals were raised under standard
laboratory conditions and conducted according to the ethical and regulatory guidelines
approved by the Animal Ethics Committee of Peking Union Medical College (Beijing,
China), the ethical approval number of this study is SLXD-20191231005.

3.2. Materials

Naringenin (NRG, purity > 98%) was purchased from Aladdin Bio-Chem Technology
Co., Ltd. (Shanghai, China). Tocopherol polyethylene glycol vitamin E succinate (TPGS;
batch number: 20121203) was purchased from Xi′an Healthful Biotechnology Co., Ltd.
(Xi′an, China). Dextromethorphan hydrobromide tablets were purchased from Guangzhou
Baiyunshan Guanghua Pharmaceutical Co. Ltd. (Guangzhou, China). Ambroxol hy-
drochloride tablets were purchased from Shanghai Boehringer Ingelheim Pharmaceutical
Co., Ltd. (Shanghai, China). All other reagents and solvents were purchased with analytical
reagent grade.

3.3. Preparation of Naringenin Nanosuspension (NRG-NSps)

NRG-NSps were prepared using a miniaturized media-milling method [39,40]. The
specific operation was undertaken as follows: TPGS (10 mg) was completely dissolved in
2 mL water under ultrasonic conditions. Next, NRG (40 mg) was ultrasonically dispersed
in a vial containing 2 mL water. The TPGS aqueous solution was added to the vial, the
vial was shaken, and then the drug was uniformly ultrasonically dispersed. After adding a
stir bar and 10 g zirconia balls (0.4 to 0.6 mm in diameter), the mixed system was stirred
(300 rpm min−1) at 50 ◦C. After 2 h stirring, the NRG-NSps solution was obtained.

3.4. Particle Size and Morphology

The mean hydrodynamic diameter, polydispersity index (PDI), and zeta potential of
NRG-NSps were determined by dynamic light scattering (DLS, Zetasizer Nano ZS; Malvern
Instruments, Malvern, UK) at 25 ◦C. Each sample was measured three times.

NRG-NSps (10 µL, 100 µg/mL) was placed on a 300-mesh copper sheet, and then
negatively stained with 2% (w/v) uranyl acetate for 30 s [41]. After air-drying, the samples
were measured by transmission electron microscope (JEOL Ltd., Tokyo, Japan) at 120 kV.

3.5. Drug-Loading Content (DLC) of NRG-NSps

The concentration of NRG was measured using high-performance liquid chromatog-
raphy (HPLC; UltiMate 3000; DIONEX, Sunnyvale, CA, USA) at 25 ◦C [42]. A Waters
Symmetry C18 column (250 mm × 4.60 mm, 5 µm) was utilized to separate the samples.
The eluent was 70% chromatographic methanol containing 30% water (v/v) with a flow rate
of 0.8 mL/min, the detection UV wavelength was designed as 388 nm, and the injection
volume was 20 µL.

Lyophilized NRG-NSps powder was weighed (W) and dissolved in methanol (V).
The concentration of NRG was determined by HPLC (C). The DLC was calculated using
Equation (1):

DLC (%) = V × C/W × 100% (1)

3.6. Stability of NRG-NSps
3.6.1. Stability in Media

NRG-NSps was co-incubated with 0.9% NaCl, 5% glucose, PBS (pH 7.4), and artificial
gastric and intestinal fluid at 37 ◦C separately. DLS was applied to determine the particle
size and PDI value at 0, 2, 4, 6, and 8 h [43]. Each experiment was performed in triplicate.
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3.6.2. Storage Stability

The storage stability test was performed at 4 ◦C for 1 month [39]. The particle size and
appearance of the formulation of NRG-NSps were determined on day 1, 7, 14, 21, and 30.

3.6.3. Lyophilization Stability

Lyoprotectants were added to NRG-NSps solution at a concentration of 0.5% (w/v),
and then lyophilized for 24 h after freezing at −80 ◦C (ALPHR 2–4 LD plus, CHRIST,
Germany) [44]. The white powder was dispersed in 1 mL deionized water, and the particle
size and PDI values were recorded.

3.7. NRG Release Behaviour

One mL NRG-NSps, NRG DMSO solution, and free NRG (dispersed in deionized
water containing 0.5% CMC-Na) was added to a dialysis bag (MWCO: 8000–14,000, Sigma-
Aldrich, St. Louis, MO, USA) separately and then placed in PBS solution at 37 ◦C [45]. The
release medium (1.0 mL) was removed at 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, 24, 36, 48, 72, 96,
120, 144, and 168 h. Meanwhile, 1.0 mL fresh media were added. After filtering through
0.22 µm membrane, the release media were analyzed by HPLC. The cumulative release (%)
was calculated as the ratio of the weight of released NRG to total NRG. All experiments
were performed in triplicate.

3.8. Cough Induction and Monitoring

Antitussive effects of NRG-NSps were estimated via mouse cough model [37]. Mice
were placed in a 1 L glass chamber and exposed to 0.2 mL of 25% NH4OH for 3 min
after acclimatization to laboratory conditions for three days. The mice were observed
using video-observation equipment. The latent period and the cough frequency in 3 min
were recorded, and mice presenting 8–20 times cough frequency were selected as test
animals. These mice were randomly divided into 6 groups (10 mice per group) and
orally administrated with saline (blank model control), dextromethorphan hydrobromide
(15 mg/kg, positive control), NRG (30 mg/kg), and NRG-NSps (10, 30, and 50 mg/kg).
After additional exposure to NH4OH, the number of coughing responses was measured
over a period of 5 min.

3.9. Expectorant Properties of NRG-NSps

According to previous reports [46,47], kunming mice were divided into 6 groups
after acclimatization to laboratory conditions for seven days (n = 8), including normal
saline (blank model control), ambroxol hydrochloride (30 mg/kg, positive control), NRG
(30 mg/kg), and NRG-NSps (10, 30, and 50 mg/kg, respectively). All groups were admin-
istrated daily for 7 d. All animals were treated with 5% phenol red in normal saline (1.25%,
10 mL/kg) via intraperitoneal injection on day 7, and after 30 min, mice were sacrificed by
cervical dislocation, and their tracheae were removed and immediately placed into 2 mL
normal saline. After adding 2 mL 5% sodium bicarbonate, the optical density was detected
at 546 nm using a UV/visible spectrophotometer (UV2450; Shimadzu, Kyoto, Japan). To
measure the excretion of phenol red in mouse trachea, linear regression analysis was per-
formed in advance. The linearity parameter of the spectrophotometric was evaluated by
measuring the relationship between the absorbance and the concentration of phenol red,
where Y is the absorbance (AU) and X is the concentration (µg/mL) of phenol red. The
regression line of the spectrophotometric response was obtained as the following equation
(Equation (2)):

Y = 0.1741x + 0.0168 (R2 = 0.999) (2)

4. Conclusions

To enhance the bioavailability and therapeutic efficacy of NRG, in this study, the
miniaturization media-milling method was adopted to prepare NRG-NSps. After successful
preparation, the particle size of NRG-NSps was approximately 216.9 nm, the PDI was 0.32,
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and the drug loading content was 66.7%, which presented flaky morphology. NRG-NSps
showed good storage stability, media stability, and lyophilized resolution stability. In vivo
experiments confirmed that 30 mg/kg oral administration of NRG-NSps could significantly
reduce the frequency of acute cough in mice. Compared with the original drug NRG, the
cough frequency of NRG-NSps was decreased by 31.8%, and the cough incubation period
was enhanced by 42.5%. In addition, NRG-NSPs showed a good sputum-expelling effect
as the positive drug, and the amount of phenol red secretion was enhanced by 42.1% and
23.9% compared with the original drug and positive drug, respectively. From these results,
it was proven that NRG-NSps showed a good effect on relieving coughing and reducing
phlegm. Furthermore, the pick ball grinding process is simple, easy to operate, and low
cost, and its use at the industrial scale can be realized. Therefore, naringin nanosuspension
has a potential clinical application.
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