
RESEARCH ARTICLE

Machine learning liver-injuring drug

interactions with non-steroidal anti-

inflammatory drugs (NSAIDs) from a

retrospective electronic health record (EHR)

cohort

Arghya DattaID
1☯, Noah R. FlynnID

2☯, Dustyn A. BarnetteID
3, Keith F. WoeltjeID

4,5, Grover

P. Miller3, S. Joshua Swamidass2*

1 Department of Computer Science and Engineering, Washington University in Saint Louis, Saint Louis,

Missouri, United States of America, 2 Department of Pathology and Immunology, Washington University

School of Medicine, Saint Louis, Missouri, United States of America, 3 Department of Biochemistry and

Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of

America, 4 Department of Internal Medicine, Washington University School of Medicine, Saint Louis,

Missouri, United States of America, 5 Center for Clinical Excellence at BJC HealthCare, Saint Louis, Missouri,

United States of America

☯ These authors contributed equally to this work.

* swamidass@wustl.edu

Abstract

Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing preva-

lence of electronic health records (EHRs) offers a unique opportunity to build machine learn-

ing algorithms to identify drug-drug interactions that drive adverse events. In this study, we

investigated hospitalizations’ data to study drug interactions with non-steroidal anti-inflam-

matory drugs (NSAIDS) that result in drug-induced liver injury (DILI). We propose a logistic

regression based machine learning algorithm that unearths several known interactions from

an EHR dataset of about 400,000 hospitalization. Our proposed modeling framework is suc-

cessful in detecting 87.5% of the positive controls, which are defined by drugs known to

interact with diclofenac causing an increased risk of DILI, and correctly ranks aggregate risk

of DILI for eight commonly prescribed NSAIDs. We found that our modeling framework is

particularly successful in inferring associations of drug-drug interactions from relatively

small EHR datasets. Furthermore, we have identified a novel and potentially hepatotoxic

interaction that might occur during concomitant use of meloxicam and esomeprazole, which

are commonly prescribed together to allay NSAID-induced gastrointestinal (GI) bleeding.

Empirically, we validate our approach against prior methods for signal detection on EHR

datasets, in which our proposed approach outperforms all the compared methods across

most metrics, such as area under the receiver operating characteristic curve (AUROC) and

area under the precision-recall curve (AUPRC).
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Author summary

Drug-drug interactions account for nearly one-third of adverse drug reactions. Concomi-

tant application of multiple drugs, often used to enhance therapeutic effect and selectivity,

can lead to adverse drug reactions of high clinical significance. Commonly used

approaches to detect adverse drug-drug interactions often rely on adverse event reporting

systems and spontaneous reports. These datasets only contain specific cases where severe

reactions were identified and reported by clinicians thereby overlooking a vast majority of

unexpected adverse interactions that are often under-reported. The increasing prevalence

of electronic health records (EHRs) provides a unique opportunity to mine these datasets

and identify previous known and potentially unknown adverse drug interactions. Our

proposed logistic regression-based approach identified known and unknown drug-drug

interactions from relatively small EHR datasets of about 400,000 hospitalizations. Via per-

formance comparison, our method generalizes better to analysis of EHRs when compared

to other common methods currently in use by the U.S. Food & Drug Administration. Our

analyses, using this proposed approach, identified 87.5% of positive controls, which are

drugs that interact with diclofenac causing an increase in risk for drug-induced liver

injury, and identified a novel, potentially hepatotoxic interaction between meloxicam and

esomeprazole, which are commonly prescribed together to alleviate NSAID-induced gas-

trointestinal bleeding.

This is a PLOS Computational Biology Methods paper.

Introduction

Synergistic drug combinations, which consist of at least two active pharmaceutical ingredients,

form a crucial therapeutic option for the treatment of complex diseases that may manifest mul-

tiple conditions, such as cancer and AIDS [1]. The concomitant application of multiple drugs

can enhance therapeutic effect and selectivity, delay drug resistance, allow lower dose of each

individual drug and combat multiple related targets to address redundancies in disease mecha-

nisms [2–5]. However, just as multiple drugs can interact in a salubrious manner, they can also

interact to cause unintended consequences. Combined drug therapies can result in an antago-

nistic effect that is smaller than the additive effect of each individual drug or, worse, can result

in synergistic toxicity [4]. In some cases, these drug-drug or polypharmic interactions can

result in an adverse drug reaction of clinical significance.

Understanding the potentially adverse consequences resulting from drug-drug interactions

is a significant problem with regards to patient safety and clinical outcomes. These adverse

effects are reflected by the additive risk of each drug the patient is exposed to, as well as how

each drug may alter the pharmacokinetic and pharmacodynamic properties of the other co-

prescribed drugs [6]. Certain patient groups, such as the elderly, may also be more susceptible

due to decreased mobility, increased body mass and impaired renal and hepatic functions [7].

Prevalence of multimorbidity, the co-existence of two or more chronic health conditions, can

range from 27.2% of patients to 67% [8, 9]. In the absence of multimorbidity, certain individ-

ual disorders, e.g., cancer, can still require a cocktail of drugs to be treated effectively [10]. One

recent longitudinal study reported that 35.8% of U.S. adults take at least five drugs
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concomitantly [11]. Heightened cases of polypharmacy, almost doubling from 8.2% of cases in

1999 to 15% of cases in 2012, have exacted an estimated toll of 177.4 billion USD to treat the

resultant adverse polypharmic interactions [12].

In clinical trials, adverse events that can be observed and distinctly mapped to a specific

combination of drugs occur at a level of frequency that would require an intractably large

patient sample size to detect. In vitro and in vivo experimental approaches are useful for detect-

ing drug-drug interactions [13–16], but at an increased expense in terms of resources, mone-

tary cost, labor and time relative to computational approaches. A set of N drugs would require

evaluation of N(N − 1)/2 pairwise drug combinations. As the number of co-administered

drugs increases, there is a combinatorial explosion of possible pairwise drug combinations. In

contrast, computational approaches are appealing for rapid, high-throughput screening and

early detection of adverse drug-drug interactions. Furthermore, computational approaches

can incorporate multiple data sources that increase availability to a wider range of population

subgroups and to long-term, post-approval therapeutic contexts not explored in short-term

clinical trials [17].

Previous research studies have focused on ranking drug–drug event associations using pub-

lic databases and spontaneous reports [18]. There exist several data mining algorithms that

generate and rank adverse drug associations, or signals, based on projections of the data to

two-dimensional contingency tables. Such methods include relative risk (RR), proportional

reporting ratio (PRR) and reporting odds ratio (ROR) [19, 20]. More complex dis-proportion-

ality methods build on top of the aforementioned statistical measures of association. Namely,

Multi-item Gamma Poisson Shrinker (MGPS) is widely used and is the U.S. Food Drug

Administration’s main signal detection algorithm for pharmacovigilance [21].

MGPS is conceptually similar to PRR, but incorporates Bayesian shrinkage to produce dis-

proportionality scores that alleviate variability issues with limited data and small case numbers

[21, 22]. MGPS assumes that the number of observed counts of a drug combination and

adverse event pair is drawn from a Poisson distribution with an unknown mean that can be

computed as a function of λ. The goal is to estimate the λs. Each λ is assumed to be drawn

from a common, 5-parameter prior distribution, which is further assumed to be a mixture of

two gamma distributions. Using an empirical Bayes approach, the 5 parameters are estimated

such that they maximize the marginal likelihood and empirical Bayesian geometric mean

(EGBM) scores are output for each λ [21–23].

Bayesian confidence propagation neural networks (BCPNN) also take a Bayesian approach

to signal generation [24]. BCPNNs are similar to feed-forward neural networks, but Bayesian

principles are used during learning and inference. Other popular techniques, such as Bayesian

logistic regression, have also been used to analyze the effects of drugs in pharmacovigilance

studies [25]. Beyond the scope of this study, there also exist methods that operate outside of

EHRs and incorporate additional data sources to model polypharmacy at a network level.

Recently, Burkhardt et al. [26] have proposed the use of neural embeddings to predict adverse

drug-drug interactions. Another method, Decagon, achieves strong performance on polyphar-

macy effects with a strong molecular basis via data sets on protein-protein interactions, drug-

protein target interactions and known polypharmacy side effects [27]. Approaches such as

DeepDDI [28] have been developed to study drug interactions from structures of chemical

compounds but have not used EHR datasets and often lack interpretability.

The primary disadvantage of these approaches is that they rely on incomplete datasets,

studying specific cases where severe reactions were identified and reported. Though these

datasets are large, they are often biased in ways that limit the interpretability, certainty and

robustness of results derived from them. For example, an increase in reports of adverse events

associated with a drug could be caused by an increase in prescriptions for that drug.
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In this study, we propose a logistic regression-based machine learning algorithm that infers

drug-drug associations from EHR datasets. The EHR datasets include several avenues of infor-

mation that have not yet been fully exploited. It is also not biased towards adverse events, since

it includes all hospitalizations with and without adverse events. To clarify, the previously men-

tioned methods are most widely used within the context of spontaneous reporting systems,

which primarily collect reports of adverse events made by clinicians or patients to a regulator

or product manufacturer [23]. Furthermore, since our model takes into account outcomes

from all hospitalizations, it does not suffer from potential under-reporting of unexpected

adverse interactions, which is otherwise a common source of signal loss [29].

We hypothesize that statistical modeling on EHR data can identify drug-drug interactions.

Our proposed model simultaneously reveals the risk contribution of individual drug and pairs

of interacting drugs with respect to a therapeutic outcome, such as an adverse event. Empiri-

cally, we have shown that our model can extract meaningful drug-drug associations between a

candidate drug, whose potential drug-drug interactions are of interest, and all of its co-pre-

scribed drugs in EHR datasets consisting of less than 400,000 hospitalization records.

As a case study, we have identified drug-dependent risk of nonsteroidal anti-inflammatory

drugs (NSAIDs) with respect to drug-induced liver injury (DILI). NSAIDs are one of the most

commonly and widely used class of drugs, yet many of them have been implicated in causing

adverse drug reactions [30]. Since NSAIDs are often used, concomitantly, with a variety of co-

prescribed drugs across a wide range of therapeutic contexts, the resultant polypharmic inter-

actions may drive some of these adverse drug reactions. Furthermore, NSAIDs are an ideal

class of drugs for such a case study, because they are prescribed in a wide variety of contexts

and it is anticipated that their widespread use may allow the detection of statistically significant

interactions.

Materials and methods

Study population and study design

The electronic healthcare records (EHR) dataset contains data of 397,064 hospitalizations

reported by the BJC HealthCare system in St. Louis, Missouri, USA (Table 1) [31]. The

397,064 hospitalizations involve 223,883 unique patients. The earliest inpatient admit date was

September 2012 and last discharge date was October 2016. The number of hospitalization

cases in the St. Louis area during the data collection period determined the sample size. The

hospitalization cohort (aged� 18 years) contains 176,443 (44.44%) male hospitalizations,

189,723 (47.78%) female hospitalizations and 30,878 (7.77%) hospitalizations with no specified

gender. The cohort’s median age is 63.2 years (max: 110.4; min: 17.9) and the median hospital

stay is 3 days (max: 214; min: 0). Each hospitalization is associated with demographics, diagno-

ses (23366 ICD9, 10 codes), drugs (1083 unique active ingredients) and procedures (13097

ICD 9-CM, 10-PCS codes). In this study, we included drugs that were administered orally or

via intravenous route.

As a case study of our proposed modeling framework, our study design compared hospitali-

zation records involving the presence or absence of DILI and evaluated the model’s ability to,

using these comparisons, derive drug dependent DILI risk that corresponds with knowledge

from literature or public databases. To train our proposed modeling framework, each data-

point was a hospitalization with specific admit and discharge dates. Hence, it is quite plausible

that one patient with multiple hospitalizations over time will contribute multiple datapoints to

the training set. In order to capture drug interactions during a specific timeline, we performed

hospitalization-based analyses rather than a patient-based analyses. A major drawback with

patient-based analyses is that there can be significant time differences between two successive
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hospitalizations and drugs administered during the first hospitalization will, in no plausible

way, interact with drugs administered during the second hospitalization. A hospitalization-

based analyses addresses this issue, since we can now capture meaningful drug interactions

within a specific hospitalization and not across different hospitalization timelines.

Polypharmacy data: Twosides database

We downloaded the v0.1 release of the Twosides database, which contained data on drug-drug

interaction side effects reported up to, and including, the year 2014 [32]. Twosides is based on

analysis of drug-drug interactions mined from the FDA Adverse Event Reporting System

(FAERS). In this study, we primarily utilized Twosides to understand the validity of the mod-

el’s predictions in the context of known polypharmic toxicity. During analysis of a specific

NSAID, we extracted only those Twosides interactions that involved the NSAID with condi-

tions related to hepatotoxicity: DILI, liver injury, hepatocellular injury, mixed liver injury and

cholestatic liver injury. To extract positive and negative controls for comparison with our

model’s results, we used the proportional reporting ratio (PRR) recorded for each Twosides

interaction. The PRR is used as a signal of the drug pairs side-effect association. A PRR of 2

suggests that the adverse event is reported twice as frequently as for individuals receiving co-

administration of the drug pair relative to taking the drug alone. For positive controls, we only

considered interactions with a PRR equal to or greater than 5. For negative controls, we only

considered interactions with a PRR less than 1.

DILI definition

The DILI outcome was computed using a combination of diagnoses and procedure codes,

available for each hospitalization. The codes are defined in accordance with the International

Classification of Diseases (ICD), which has near-universal availability in EHR systems [33].

DILI can be present with a wide range of severity, from mild and reversible elevation of liver

enzymes to permanent liver failure. Mild DILI is more common, not usually reported to the

Table 1. Characteristics of hospitalizations in cohort.

Characteristic Quartile Median (Min, Max) %DILI positives

Age (years) Q1 82.2 (74.5, 110.4) 8.6 (1038)

Q2 68.5 (63.2, 74.4) 9.9 (1193)

Q3 57.7 (51, 63.2) 9.7 (1169)

Q4 39.2 (17.9, 50.9) 9.9 (1192)

Length of stay (days) Q1 8 (5, 214) 48.8 (5866)

Q2 4 (3, 5) 24.7 (2966)

Q3 2 (2, 3) 15.5 (1857)

Q4 1 (0, 2) 11 (1324)

No. of drugs Q1 22 (17, 101) 42.4 (5092)

Q2 15 (13, 17) 23.5 (2824)

Q3 11 (9, 13) 19.1 (2291)

Q4 6 (1, 9) 14.6 (1750)

No. of diagnoses Q1 24 (19, 88) 48.8 (5861)

Q2 16 (13, 19) 26.3 (3157)

Q3 11 (8, 13) 17.2 (2063)

Q4 6 (1, 8) 7.8 (933)

% DILI positives are based on the total DILI positives in the data set. % DILI positives may not sum to 100% due to missing values.

https://doi.org/10.1371/journal.pcbi.1009053.t001
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FDA, but well represented in the study population and has a large impact on healthcare costs

by increasing length of stay at the hospital. Moreover, most DILI cases result from dose-inde-

pendent, idiosyncratic injury [34, 35] and similar underlying mechanisms may be present in

both mild and severe DILI. As an example, metabolite reactivity commonly causes rash, but

can also cause rare, severe hepatotoxicity by the same bioactivation mechanism [36]. Thus,

adverse reactions which cause mild DILI may also be associated with severe DILI. For these

reasons, we used a definition of DILI that also included low severity cases.

Hospitalizations were deemed “DILI positive” under fulfillment of the following three crite-

ria: (A) having diagnosis codes that indicate the presence of DILI, such as (1) elevation of levels

of transaminase, lactic acid dehydrogenase and serum enzymes, (2) poisoning by aromatic or

non-opioid analgesics, antipyretics and antirheumatics causing adverse effects in therapeutic

use, (3) toxic liver diseases such as cholestasis, hepatitis and hepatic necrosis; (B) not having

diagnosis codes that include (1) poisoning by, adverse effect of and under-dosing of systemic

antibiotics, (2) alcoholic liver diseases, internal injury to liver and inflammatory liver diseases,

(3) malignant neoplasm of gallbladder, hepatic bile ducts and small intestine, (4) pancreatic

diseases; (C) not having procedure codes involving (1) surgeries on liver such as marsupializa-

tion of liver lesion, hepatectomy, lobectomy, laceration, etc., (2) surgeries on gallbladder and

biliary tract including cholecystotomy, cholecystostomy, anastomosis, etc. and (3) surgeries on

pancreas such as pancreatotomy, marsupialization of pancreatic cyst, transplantation of pan-

creas, etc. Applying the aforementioned definition, we identified 12,014 hospitalizations asso-

ciated with DILI.

Estimating percent relative effect

In this study, we have reported the effects of drug-drug interactions on DILI outcomes in

terms of percent relative effect. We used odds ratio from our models to approximate the rela-

tive risk of the independent and candidate drug dependent interactions. In epidemiology, rela-

tive risk, or the risk ratio, is defined as the ratio of probabilities of an event in the exposed

group to that in the non-exposed group. Odds ratio (OR) is defined as the ratio of the odds of

an event in the exposed group to the odds of that event in the non-exposed group. In our data-

set, the number of DILI negatives greatly outweighs the number of DILI positives. Hence, we

estimated the relative risk as

RR ¼
probability of DILI in exposed group

probability of DILI in non � exposed group
¼

a
aþ b

� �

c
cþ d

� � �

a
b

� �

c
d

� � ¼ OR ð1Þ

where a and b are the respective number of events (DILI positives) and non-events (DILI nega-

tives) in the exposed group and c and d are the respective number of events and non-events in

the non-exposed group. A risk ratio greater than one suggests an increased risk of DILI in the

exposed group, whereas a risk ratio less than one suggests a reduced risk of DILI in the exposed

group. Finally, we have computed the percent relative effect (the percent change in the exposed

group). In essence, we have considered the non-exposed group as having 100% of the risk and

express the exposed group relative to that.

% increase or % decrease in relative effect ¼ �ðRR � 1Þ � 100 ð2Þ

where the (+) sign indicates an increase in percent relative effect and a (−) sign indicates a

decrease in percent relative effect in the exposed group.

PLOS COMPUTATIONAL BIOLOGY Machine learning liver-injuring drug interactions from retrospective cohort

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009053 July 6, 2021 6 / 24

https://doi.org/10.1371/journal.pcbi.1009053


Drug interaction network (DIN)

We have used a logistic regression model to estimate the independent and dependent risk of

drugs relative to an outcome variable. Rather than estimating the full pairwise matrix of inter-

actions, the model learns the risk dependent on a single candidate drug, whose potential inter-

actions with other drugs are of interest. Equivalent to learning a single column of a pairwise

interaction matrix, this approach dramatically reduces the number of weights to be learned,

focusing all modeling effort on a more focused question—what is the independent risk of each

drug and what is the additional risk when co-prescribed with the candidate drug?

The logistic regression model has two branches: an independent risk branch and a depen-

dent risk branch (Fig 1A). The input to the independent risk branch is a binary vector that rec-

ords whether or not a drug was administered during the hospitalization. The input to the

dependent risk branch is the same vector when the candidate drug is prescribed in the hospi-

talization, otherwise it is a vector of zeros. Conceptually, the presence or absence of the candi-

date drug acts as a switch that controls the input to the dependent risk branch.

Mathematically, the input to the dependent risk branch is computed as an element-wise multi-

plication between the binary vector representation of a hospitalization and a binary scalar vari-

able denoting the presence (binary scalar variable is 1) or absence (binary scalar variable is 0)

of the candidate drug in that hospitalization. The logistic regression model uses the inputs

from both of these branches to estimate the probability of the outcome variable, e.g. DILI in

this study, using the maximum likelihood estimation framework. The coefficients, learnt by

the model, are then used to compute the percent relative effects of drugs when prescribed inde-

pendently and co-prescribed alongside the candidate drug of interest, respectively.

Though not considered in this study, we expected that improvements are possible. We

point out that continuous variables, such as age, were not used as an input feature in our

modeling framework and we only used the binary encoding of presence (represented by 1) or

absence (represented by 0) of drugs during a hospitalization timeline as input to our models.

For example, encoding the severity of DILI as distinct outcomes would give the model addi-

tional information that may yield better estimates. Likewise, encoding the dose for each drug

would also reduce noise. We also expected that using a dependent risk input vector for drugs,

that are administered on the same days during a hospitalization, would produce better esti-

mates, as drugs without overlapping exposures do not usually interact. However, it appears

that these improvements were not necessary to produce clinically relevant results.

Results & discussion

We have evaluated the proposed framework’s capabilities on three tasks as a demonstration of

its utility. We studied the role of diclofenac in hepatotoxicity across the full range of drugs co-

prescribed with it in our clinical dataset. We also demonstrated that the model can elucidate a

specific hypothesis concerning meloxicam and CYP 3A4 inhibitors. Finally, we ranked the

overall hepatotoxic risk of eight commonly prescribed NSAIDs. Where applicable, we also

compared the model against several common methods for EHR signal detection.

Diclofenac dependent risk and DILI

The risk of liver injury with NSAIDs is normally not substantive. Clinical incidence of severe

liver injury, resulting from NSAIDs, is 1–10 cases per 100,000 prescriptions [37], with NSAIDs

being widely used and clinically ubiquitous. Less severe DILI with mildly elevated liver

enzymes is much more common. Moreover, association of NSAIDs with other hepatotoxic

drugs is marked with elevated hepatotoxic risk [38, 39]. Potentially, hepatotoxic medications

taken simultaneously with NSAIDs may result in a six to nine times increase in frequency of
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Fig 1. Illustration of model architecture and framework for assessing independent and dependent relative effects of drugs. (A) Model

architecture for our proposed modeling framework using logistic regression. (B) Variations between independent and dependent relative effect

of drugs. Red and blue respectively correspond to positive and negative controls used during the evaluation of diclofenac dependent risk and

DILI. Grey corresponds to all other drugs in the hospitalization cohort that were co-prescribed with diclofenac. (C) Distribution of the

Twosides-derived positive and negative controls, with respect to model output for diclofenac. The peak around 0 is suspected to be due to a lack

of co-occurrence data for those drugs. (D) Variations between independent and dependent relative effect for diclofenac, after elimination of

drugs that did not surpass a diclofenac co-occurrence threshold of 10. (E) Distribution of the Twosides-derived positive and negative controls,

after elimination of drugs that did not surpass a diclofenac co-occurrence threshold of 10.

https://doi.org/10.1371/journal.pcbi.1009053.g001
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liver injury [40]. In particular, diclofenac is the most common NSAID associated with hepato-

toxicity. In fact, 34.1% of hepatotoxic cases associated with NSAIDs involved the use of diclofe-

nac [41].

To analyze diclofenac’s involvement in DILI risk, we trained a model to estimate both inde-

pendent risk (IR) and diclofenac dependent risk (DDR) of a given drug. The model finds an

association between the coefficients of the inputs and how informative each input vector and

co-prescribed drug is in predicting the DILI risk target—the higher the coefficient, the higher

is the association. The model’s 10-fold cross-validation AUC is 0.68 ± 0.009, with a low stan-

dard deviation indicating that the model is not overfit. After the training phase, we evaluated

the model on the hospitalization cohort and computed the IR and DDR for the remaining

unique active ingredients. Fig 1B visualizes the distribution of IR and DDR associations

learned by the model for all drugs present in the hospitalization cohort.

Diclofenac is known to independently cause hepatotoxicity. Hence, most drugs co-adminis-

tered with diclofenac, in cases that result in DILI, are themselves not likely to be the culprits in

causing a DILI outcome via interactions with diclofenac. As expected, Fig 1B shows that the

majority of the drugs do not have a positive DDR with respect to DILI risk, regardless of their

IR. Nevertheless, two drugs that independently cause hepatotoxicity could combine synergisti-

cally to have a stronger hepatotoxic effect. The model identifies a few such drugs that have

both a positive IR and a positive DDR that is greater than the drug’s IR. Unsurprisingly, there

are also few interactions that have a positive IR and negative DDR, which signifies that, indi-

vidually, hepatotoxic drugs do not become safer in the presence of diclofenac. Going forward,

the drugs of most interest will be those that possess low IR but high DDR.

To evaluate the model, we used diclofenac interactions from Twosides as a reference to

extract 71 positive controls and 20 negative controls that are also reported in our EHR data.

The distribution of model scores, binned by control type, is shown in Fig 1C. On initial inspec-

tion, the model not only indicates potential high-priority diclofenac interactions, but also a rel-

atively high density of drugs with DDR as zero. Since output of DDR as zero may be

influenced by a lack of co-occurrence between diclofenac and a given drug, we also filtered out

drugs below a co-occurrence threshold and replot the scatterplot and histogram in Fig 1D and

1E, respectively. Based on rationale from prior literature, we set the co-occurrence threshold

to 10 [42]. As expected, filtering drugs by a co-occurrence threshold lowers the peak. It is to be

noted that the peak for positive controls is lowered more than the peak for negative controls.

Thus, there is a greater proportion of positive controls than negative controls that are assigned

to DDR values as zero, based on an absence of co-occurrence in the data. Likely, the negative

controls are not assigned DDR of 0 because of a lack of co-occurrence but because the reported

co-occurrence often results in a negative DILI outcome.

To understand how well the model’s top predictions align with Twosides, we focussed on

the top 20 diclofenac interactions from Twosides, sorted by PRR. Of the 20 co-prescribed

drugs, 4 were not present in our EHR data. Of the remaining 16 co-prescribed drugs, 14 of the

interactions had a positive dependent relative effect (Table 2). The remaining 2 interactions

might have been missed due to a limitation in data availability. In our EHR data, bisoprolol

and rivaroxaban each had 0 hospitalizations that involved a DILI positive case with diclofenac

co-prescription. In contrast, the Twosides data set contains 3 DILI positive hospitalizations

that involved co-administration of rivaroxaban and diclofenac and 6 DILI positive hospitaliza-

tions that involved co-administration of bisoprolol and diclofenac.

In addition, we extracted the bottom 10 diclofenac interactions from Twosides; 8 of which

were present in our EHR data. 6 of the 8 interactions had a negative dependent relative effect.

One explanation for the 2 missed negative controls is that, depending on the available data in

our EHR datasets, it is possible for the model to learn differing associations between drug-drug
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interactions, compared to those associations that can be extracted from Twosides. Whereas

the EHR data set and Twosides each report single-digit DILI positive hospitalizations involv-

ing diclofenac with simvastatin and omeprazole, Twosides DILI negative hospitalizations are a

magnitude greater compared to the EHR data set’s DILI negative hospitalizations (103 for

Twosides compared to 102 for our EHR data set). Regardless, the model’s results are statisti-

cally significant for both positive and negative controls via a two-sided Fishers exact test

(p-value< 0.01).

Afterwards, we also examined the top 20 DILI interactions predicted by the model, as

sorted by the dependent relative effect. Of these 20 interactions, 12 had a clinical basis reported

in the Twosides dataset (Table 3). The other 8 prescribed drugs were not in the Twosides data-

set for the interactions we used to filter DILI outcomes.

We further cross-referenced each interaction with results from the literature. Several of the

co-prescribed drugs in Tables 2 and 3 have varying degrees of known hepatotoxic associations.

The co-prescribed drugs with reported DILI association in literature include acetaminophen

[43, 44], amoxicillin [45–48], aspirin [49], atorvastatin [46, 50], carbamazepine [45], cefazolin

[51], cetirizine [52], ciprofloxacin [50, 53, 54], famotidine [55], fluoxetine [56], metformin

Table 2. Assessment of positive and negative controls for diclofenac model validation.

Co-prescribed Drugs Dependent Relative Effect (%) Twosides PRR O+ Rx+ O- Rx+ O+ Rx- O- Rx- Control

Lidocaine 47.1 30 4 27 1311 17705 +

Amoxicillin 35.0 40 1 0 103 1884 +

Acetaminophen 34.6 40 12 240 3260 93351 +

Olmesartan 33.8 20 2 16 79 2574 +

Aspirin 27.1 20 11 295 3840 136147 +

Omeprazole 26.8 0.91 3 53 325 11248 -

Pioglitazone 26.8 20 1 0 23 739 +

Famotidine 16.6 20 6 149 2248 73609 +

Carbamazepine 11.2 16.7 1 9 56 2205 +

Cefazolin 9.14 30 4 95 1688 53881 +

Simvastatin 8.13 0.63 5 130 917 31079 -

Esomeprazole 7.14 23.3 5 70 3023 51870 +

Escitalopram 6.51 20 2 39 369 11764 +

Tamsulosin 0.12 30 1 27 135 7805 +

Enoxaparin 0.017 22.5 11 304 2667 87483 +

Oxazepam 0.07 30 0 0 0 18 +

Folic Acid -0.003 0.67 1 37 1249 33131 -

Rivaroxaban -0.007 20 0 10 53 2976 +

Celecoxib -0.03 0.91 0 12 177 9248 -

Adalimumab -0.13 0.91 0 0 0 2 -

Bisoprolol -0.32 20 0 6 17 573 +

Amlodipine -3.19 0.63 2 67 1293 35437 -

Dexamethasone -24.9 0.83 0 24 1053 19860 -

Morphine -37.1 0.71 6 212 3241 84935 -

The top 20 interactions, by PRR, were extracted from our filtered Twosides data set and are used as positive controls. Of the 16 positive controls, 14 were successfully

captured by the model. The 2 uncaught positive controls reflect a limit in the data availability, as neither positive control had any cases of DILI and diclofenac co-

administration from which the model could learn an association. We also extracted 8 interactions with PRR <1 to be use as negative controls. Of the 8 negative controls,

6 where successfully captured by the model. O+ and O- designates the DILI outcome’s presence and absence, respectively. Rx+ and Rx- designates whether diclofenac is

prescribed or not. Grayed out rows indicate diclofenac-drug interactions that may be undersampled based on a co-occurrence threshold of 10.

https://doi.org/10.1371/journal.pcbi.1009053.t002
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[57–59], pioglitazone [60, 61] and topiramate [62, 63]. Not all the reported DILI associations

included concomitant consumption of diclofenac, rather combined use of multiple hepato-

toxic drugs, such as diclofenac and the aforementioned drugs, is likely to drive Twosides’

reporting of DILI. As an example, the independent relative effect of amoxicillin is 18%, but it

becomes more potent in presence of diclofenac and produces a diclofenac dependent relative

effect of 35%. Thus, the model can reflect risk for co-prescribed drugs both in presence or

absence of the candidate drug.

It is also possible that, in the predicted interactions of positive dependent relative effect, the

co-prescribed drug does not promote increased DILI risk. Generally, the co-prescribed drug

may not drive the recorded hepatotoxic outcome, but instead can be used during treatments

that involve either NSAID administration or the alleviation of hepatotoxic conditions. As an

example of the former, co-administration of a proton pump inhibitor, such as esomeprazole,

can help to prevent NSAID-associated lesions and damage of the upper gastrointestinal tract

[64, 65]. With regards to the latter, lidocaine (Table 2) is a local anesthetic used widely for

minor surgeries or invasive procedures. In the absence of supporting literature, lidocaine’s pre-

dicted association with diclofenac may instead be due to a polypharmic approach to pain

treatment.

Of most interest are those co-prescribed drugs with less independent hepatotoxic associa-

tion reported in the literature, but with a high dependent risk predicted by the model—such as

olmesartan and meloxicam. The model assigns olmesartan, an antihypertensive, with a high

dependent relative effect of 33.8% and Twosides also records olmesartan with a high PRR of

20. As a result, future cohort studies regarding DILI may find it valuable to examine the poten-

tially hepatotoxic contexts of olmesartan.

Meloxicam, an NSAID, only has a PRR of 3.33, yet the model predicted a high dependent

relative effect of 48.3% for the interaction. Based on reports in the literature, multi-NSAID

therapies may provoke increased risk of hepatic injury, in addition to GI bleeding and acute

renal failure [66]. It is also possible that, once patients show DILI from diclofenac, they are

switched to meloxicam and this change in prescription causes a spurious association. We

expect that an improved model, which ensures drugs are co-prescribed at the same time and

not just present in the same hospitalization, would resolve this question.

Table 3. The top 12 diclofenac interactions, as predicted by the model.

Co-prescribed Drugs Percent Dependent Relative Effect Twosides PRR O+ Rx+ O- Rx+ O+ Rx- O- Rx-

Ciprofloxacin 136 10 6 43 921 22878

Fluoxetine 96.3 3.33 3 36 258 9924

Cetirizine 95.0 2.5 4 58 351 12576

Atorvastatin 94.8 10 5 75 1390 48234

Ondansetron 50.6 5 11 236 2550 76289

Meloxicam 48.3 3.33 2 18 93 4457

Lidocaine 47.1 30 4 27 1311 17705

Metformin 42.0 10 3 62 253 11260

Topiramate 41.2 2 2 25 44 2423

Amoxicillin 35.0 40 1 0 103 1884

Acetaminophen 34.6 40 12 240 3260 93351

Olmesartan 33.8 20 2 16 79 2574

O+ and O- designates the DILI outcome’s presence and absence, respectively. Rx+ and Rx- designates whether diclofenac is prescribed or not. Grayed out rows indicate

diclofenac-drug interactions that may be undersampled based on a co-occurrence threshold of 10.

https://doi.org/10.1371/journal.pcbi.1009053.t003
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Comparison to data mining algorithms: Diclofenac dependent DILI risk. We

compared the drug interaction network against several data mining algorithms for signal

detection—relative risk (RR), reporting odds ratio (ROR), multi-item Gamma Poisson

shrinker (MGPS), and a one-layer Bayesian confidence propagation neural network

(BCPNN). We used the EBGM and the 2.5% quantile of the posterior distribution of the infor-

mation component as statistics to rank signals for MGPS and BCPNN, respectively. For

MGPS, we use DuMouchel’s priors as a default [22]. First, we evaluated the drug interaction

network (DIN), along with the RR, ROR, MGPS and BCPNN methods, on the 71 positive con-

trols and 20 negative controls used in the case study on diclofenac dependent DILI risk. As an

interaction-less baseline, we also assess performance of a logistic regressor (LR) whose input

feature vector contains diclofenac and all coprescribed drugs. For this comparison, we com-

puted the area under the receiver-operating characteristic curve (ROC AUC), the area under

the precision-recall curve (PR AUC), and the biserial correlation (BC). BC is a variant of point

biserial correlation adjusted for an artificially dichotomized variable with some underlying

continuity. Table 4 summarizes performance for each method across each metric with 95%

two-sided confidence intervals [67, 68].

The drug interaction network, with a ROC AUC of 80.3% and a PR AUC of 93.7%, outper-

formed all methods in the comparison (Fig 2). In decreasing order, MGPS, BCPNN, LR, ROR

and RR each had a ROC AUC of 78.3%, 65.9%, 60.9%, 58.0% and 57.9%, respectively, and a

PR AUC of 90.5%, 80.9%, 87.5%, 83.5% and 83.0%, respectively. Consistent with the ROC

AUC and PR AUC performance, MGPS and the drug interaction network also outperformed

the remaining methods with respective BCs of 0.67 and 0.63. Though the drug interaction and

MGPS were equivalent in terms of ROC AUC and BC, the drug interaction network had a sig-

nificantly higher PR AUC than MGPS.

Compared to the other methods, the drug interaction network and MGPS did better at

extracting relevant signals with respect to adverse events reported in Twosides. This is unsur-

prising, since both methods are intended to build on top of ROR and RR in a way that miti-

gates variability issues. BCPNN’s performance on this task should be viewed in light of its

intended use cases. The motivation behind BCPNN was to extract drug-adverse event signals

on increasing large volumes of spontaneously reported adverse drug reactions [24]. Though

BCPNNs may be suitable for handling large data sets, it appears that they are more limited on

smaller EHR data sets as analyzed in this case study.

In terms of specific metrics, the drug interaction network and MGPS presented some per-

formance trade offs. The drug interaction network had superior ROC AUC and PR AUC per-

formance compared to MGPS, but MGPS had a better BC. Given routine usage of MGPS as a

method of choice for EHR signal detection by organizations such as the US FDA, it is favorable

that the drug interaction network outperformed MGPS on ROC AUC and PR AUC and

remained competitive on BC [21].

Table 4. Performance metrics comparing drug interaction network to baselines.

Method ROC AUC PR AUC BC

Drug Interaction Network 80.3% ± 2.5% 93.7% ± 1.2% 0.63 ± 0.050

Relative Risk 57.9% ± 3.7% 83.0% ± 2.3% 0.081 ± 0.033

Reporting Odds Ratio 58.0% ± 3.7% 83.5% ± 2.3% 0.12 ± 0.033

Multi-item Gamma Poisson Shrinker 78.3% ± 2.7% 90.5% ± 1.6% 0.67 ± 0.046

Bayesian Confidence Propagation Neural Network 65.9% ± 3.4% 80.9% ± 2.5% 0.49 ± 0.046

Interaction-less Logistic Regressor 60.9% ± 3.6% 87.5% ± 1.9% 0.24 ± 0.033

https://doi.org/10.1371/journal.pcbi.1009053.t004
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A sensitivity analysis identified consistency of the performance comparison trends for dif-

ferent values of the positive control PRR cutoff (Fig 3). The negative control PRR cutoff follows

from prior work using Twosides that filtered out DDIs of no interest using PRR cutoffs of 1

[69], but the positive control PRR cutoff of 5 is more arbitrary. We examined whether the

selection criteria for positive controls have a significant influence on performance by evaluat-

ing ROC AUC, PR AUC, and BC for each method over PRR cutoffs of 2 through 20, inclusive.

The error bars represent 95% two-sided confidence intervals [67, 68]. Up to a PRR of 10,

results stay consistent with minor deviations but an overall trend of the drug interaction net-

work and MGPS outperforming the other methods. Above a very high PRR of 10, trends

become less defined with greater deviations in performance rankings between each method

across different cutoffs, narrower separation of the point estimates, and larger confidence

intervals.

Though the drug interaction network and MGPS perform competitively on the assessed

tasks, the drug interaction network requires less analytical overhead to use for signal detection.

Adequate use of MGPS may require estimating priors for the underlying 5-parameter distribu-

tion, requiring additional reasoning and work. In addition to priors, decisions must be made

for selection of a decision metric, the decision threshold for the decision metric, and the rank-

ing statistic. We achieve strong performance using default settings recommended in literature,

but other problem contexts may require further tuning [21, 22]. MGPS also assumes that the

number of reports follows a Poisson distribution, which may be at odds with adverse event

data sets that can contain many zero count cells. However, this limitation may be temporary as

extensions to MGPS continue to be developed [70].

Metabolic context of a potential and rare hepatotoxic interaction

Previously, we demonstrated the application of the model to diclofenac, one of the NSAIDs

most commonly involved in hepatotoxic treatment outcomes. However, other NSAIDs that

result in liver injury at much lower frequencies may require a more targeted application of the

Fig 2. The drug interaction network (DIN) outperforms the compared methods on ROC AUC (left) and, along with MGPS, outperforms the

remaining compared methods with regards to PR AUC (right).

https://doi.org/10.1371/journal.pcbi.1009053.g002
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Fig 3. Performance comparison remained consistent up to a PRR cutoff of 10. We examined whether the selection criteria for positive controls has a

significant influence on performance by evaluating ROC AUC, PR AUC, and BC for each method over PRR cutoffs of 2 through 20, inclusive. A PRR

greater than 10 results in less confident performance estimates and rankings.

https://doi.org/10.1371/journal.pcbi.1009053.g003
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model. As an example, meloxicam has been associated with hepatocellular damage, but at a

frequency of less than 0.1% of severe hepatotoxic NSAID events [71].

Previous studies have shown that meloxicam detoxification pathways are mediated in part

by CYPs 2C9 and 3A4 [72, 73]. Therefore, we expected that inhibitors of CYPs 2C9 or 3A4,

when co-prescribed with meloxicam, may result in increased incidence of DILI. Consequently,

we trained a model to examine meloxicam’s involvement in drug dependent risk with respect

to DILI (10-fold CV AUC of 0.68 ± 0.005).

We posit that CYP 3A4 inhibitors may limit meloxicam detoxification. Conversely, CYP

3A4 inducers may expedite meloxicam detoxification. As a result, we first looked at the mod-

el’s ability to separate CYP 3A4 inhibitors and inducers based on drug dependent DILI risk.

Across 30 CYP 3A4 inhibitors and 17 CYP 3A4 inducers in the data set, the model achieves a

ROC AUC of 84.6% and hints at a relation between CYP 3A4 modulators, meloxicam, and

DILI risk.

We then inspected the model’s predictions for interactions with co-prescribed drugs that

are known CYP 3A4 inhibitors and when used alongside meloxicam, were represented by at

least 100 hospitalization records. We cross-referenced the model’s results against known inter-

actions reported by Twosides to see whether the model can garner novel insights (Table 5).

Of the 6 CYP 3A4 inhibitors analyzed, 5 of them have some clinical basis in Twosides that

links them to DILI outcomes when co-prescribed with meloxicam. The model predicted a per-

cent dependent relative effect of 41.1% (p-value < 0.05) for the interaction involving meloxi-

cam and esomeprazole, which is a known CYP 3A4 inhibitor and not recorded in Twosides.

Furthermore, combined usage of proton pump inhibitors (esomeprazole) with NSAIDs

(meloxicam) to allay potential GI bleeding is a common practice [64] and so the clinical rele-

vance of this interaction is high. Still, validity of this complex interaction would require further

clinical investigation. Nevertheless, our model offers a high-throughput, less resource intensive

alternative for enumerating hypotheses concerning deleterious drug-drug interactions.

Comparison of NSAID dependent risk to DILI outcomes

In certain treatment contexts, it is not possible to avoid NSAID use. In general, it would be

useful if the model could surmise risk and rank the NSAIDs. Here, we demonstrated how well

the model estimates overall DILI percent relative effect for eight NSAIDs. For each NSAID, we

trained a separate model to examine that NSAID’s DILI associations. Next, for each NSAID

and co-prescribed drug, we constructed a contingency table across two variables: DILI out-

come (+ or -) and concomitant NSAID use (+ or -). We only retained significant NSAID and

Table 5. Predicted interactions between meloxicam and several CYP 3A4 inhibitors.

Co-prescribed Drugs Percent Dependent Relative Effect Twosides PRR O+ Rx+ O- Rx+ O+ Rx- O- Rx-

Diltiazem 54.8 2.5 9 222 806 21661

Esomeprazole 41.1 - 10 168 3018 51772

Omeprazole 34.4 2.9 17 493 311 10808

Amiodarone 22.3 10 4 101 921 21396

Ciprofloxacin 8.02 5 6 153 921 22768

Pantoprazole 5.74 1.7 29 1004 3391 97914

O+ and O- designates the DILI outcome’s presence and absence, respectively. Rx+ and Rx- designates whether meloxicam is prescribed or not. Notably, the model

predicted a percent relative effect of 41.1% (p-value < 0.05) for the interaction involving meloxicam and esomeprazole, which is a known CYP 3A4 inhibitor and not

recorded in Twosides. Furthermore, combination use of proton pump inhibitors (esomeprazole) with NSAIDs (meloxicam) to allay potential GI bleeding is common

practice [64] and so the clinical relevance of this interaction is high.

https://doi.org/10.1371/journal.pcbi.1009053.t005
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co-prescribed drug interactions, as calculated by Fisher’s exact test. Finally, for each NSAID,

we computed the average dependent relative effect (Table 6).

The model separates the 8 drugs into two groups based on the mean percent relative effect

(p-value< 0.1, one-way ANOVA). To validate model rankings, we referenced DILIrank [74]

and NSAID-associated DILI outcome frequencies, as reported in the literature [71]. With

respect to liver injury cases, diclofenac, ibuprofen and naproxen show high frequencies of

34.1%, 14.6% and 11.1%, respectively. Diclofenac and naproxen belong to the group of

NSAIDs with greater predicted DILI association, whereas ibuprofen belongs to the group of

lower DILI association. With respect to DILIrank, where a higher severity denotes greater

DILI risk, all 3 NSAIDs with high DILI concern and 4 NSAIDs with low DILI concern were

correctly grouped. In this case, naproxen stands out as having low DILI concern, yet being

grouped with the NSAIDs with greater predicted DILI association.

There is ambiguity on the basis chosen for reference due to each NSAID’s prescription pat-

terns and patient exposure—commonly prescribed NSAIDs will contribute to greater cases of

liver injury due to greater exposure. As a result, there is known heterogeneity in studies on

liver injury case frequency of NSAIDs [46, 75]. For example, model groupings for indometha-

cin, etodolac and ibuprofen do not conform to the grouping that results from using the fre-

quency of liver injury cases across NSAIDs. However, of the 8 NSAIDs, ibuprofen is the most

commonly prescribed across the EHRs and indomethacin and etodolac are the 2 least pre-

scribed. When grouping the NSAIDs for DILI risk using the DILIrank severity class, model

rankings for indomethacin, etodolac and ibuprofen become more clear.

Comparison to data mining algorithms: NSAID dependent DILI risk. In addition, we

also evaluated the drug interaction network and data mining algorithms on the task of ranking

the 8 NSAIDs according to DILI risk. For each method, we only retained significant NSAID

and co-prescribed drug interactions as calculated by Fisher’s exact test and we output an aggre-

gate NSAID DILI risk by averaging model DILI risk outputs for each NSAID-drug pair. We

normalized the aggregate risks for each method and rendered the heat maps in Figs 4 and 5.

Each NSAID is binarized into high DILI risk and low DILI risk based on two separate refer-

ence points—the DILIrank severity class and the percentage of NSAID liver injury cases

reported in a prior study across 6,023 hospitalizations [71].

With respect to the DILIrank severity class binarization, the drug interaction network, RR,

ROR and MGPS methods assign high scores to the three NSAIDs with the most DILI risk—

indomethacin, etodolac and diclofenac—and to naproxen, which has low DILI risk according

to this reference but a high risk according to the percent NSAID liver injury reference. Inter-

estingly, MGPS also assigns high scores to ibuprofen and ketorolac. Though ibuprofen does

Table 6. Ranking the 8 studied NSAIDs by mean percent relative effect.

NSAID Mean Percent Relative Effect 95% CI DILIrank Severity Class Percent NSAID Liver Injury Cases

Indomethacin 56.4% [32.6%, 80.2%] 8 < 0.1%

Naproxen 48.2% [23.1%, 73.3%] 3 11.1%

Etodolac 42.9% [20.7%, 65.1%] 8 < 0.1%

Diclofenac 40.5% [23.8%, 57.1%] 8 34.1%

Meloxicam 25.3% [2.18%, 48.5%] 3 < 0.1%

Celecoxib 25.2% [13.7%, 36.6%] 3 < 0.1%

Ibuprofen 22.4% [15.8%, 28.9%] 3 14.6%

Ketorolac 21.3% [14.2%, 28.3%] 3 < 0.1%

Frequencies are based on a prior study derived from 6,023 hospitalizations [71].

https://doi.org/10.1371/journal.pcbi.1009053.t006
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have DILI risk according to the second binarization reference scheme, ketorolac is indicated as

having low DILI risk for both references. Generally, BCPNN does not perform as favorably

compared to any of the other methods on this task.

Due to known heterogeneity in studies on liver injury case frequency of NSAIDs [46, 75]

and DILIrank’s status as the largest publicly available annotated DILI dataset [74], we place

greater weight on the usage of DILIrank as a reference point for NSAID DILI risk. In a com-

parison of point biserial correlation (PBC) between the model predictions and DILIrank

NSAID risk, the drug interaction network and RR outperform the other three methods. The

PBC of the drug interaction network, MGPS, ROR, RR and BCPNN are 0.70, 0.54, 0.56, 0.71

and −0.35. The drug interaction network surpasses MGPS, with the biggest distinction

between the two being that the latter method assigns high risk to ketorolac regardless of the

chosen reference point.

Model limitations & future directions

One limitation of the current study is due to clinical data availability. For certain drugs, the

model yielded positive results, but there was ultimately not enough data available to describe

such results as significant. Furthermore, results demonstrated are specific to the patient cohort

accessible via the available data. Even if the model’s learned associations don’t always reflect

reference datasets or literature, such inconsistencies may instead be a reflection of limited data

Fig 4. The drug interaction network results in comparable performance with MGPS, RR and ROR on the task of binarizing NSAIDs by DILIrank

severity scores. Interestingly, MGPS also assigns high scores to ibuprofen and ketorolac. Though ibuprofen does have DILI risk according to the

second binarization reference scheme, ketorolac is indicated as having low DILI risk for both references.

https://doi.org/10.1371/journal.pcbi.1009053.g004
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for certain interactions or of a patient cohort that doesn’t reflect those cohorts used to con-

struct the referential data or literature.

The proposed modeling framework was trained using each hospitalization instance as a

datapoint. Hence, one patient, having multiple hospital visits will contribute multiple training

instances in the training dataset. This was done to capture meaningful drug interactions within

each hospitalization timeline. Concatenating multiple hospitalization timelines into a single

datapoint for each patient would lead to interactions between drugs not prescribed in the same

time window. However, for rare drug interactions, it may so happen that those are from one

patient across multiple hospitalizations thereby leading to poor generalization of results.

In this study, our proposed modeling framework was used as a signal detection algorithm

capable of estimating the independent and dependent relative risks of drugs on the clinical

outcome. We highlighted the potential utility of our modeling framework in estimating risks

of drug exposures from relatively small EHR datasets with known denominators rather than

from FAERS database where most incidence rates are estimated with unknown denominators.

EHR datasets are an under-utilized resource for studying drug interaction discovery and our

research study aims to highlight the benefits of using EHR datasets for this purpose.

The results, presented in this study, have been cross-referenced with other published works

as well as previously known interactions from the FAERS database. It is quite plausible that

factors such as other comorbidities, other drug exposures both within and outside the

Fig 5. The drug interaction network results in comparable performance with RR and ROR on the task of binarizing NSAIDs by the percentage of

NSAID liver injury cases. MGPS is the only method to predict DILI risk for diclofenac, ibuprofen, and naproxen, though, along with BCPNN, it also is

the only method to predict DILI risk for ketorolac, which is a false positive for both reference points.

https://doi.org/10.1371/journal.pcbi.1009053.g005
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hospitalization window and length of hospitalization may confound some findings. A key

advantage of EHR datasets for drug interaction discovery is that they contain different data

streams such as demographics, hospitalization stay and other drug exposures during a hospi-

talization timeline whereas adverse reports in FAERS database usually do not contain this

additional information. However, in EHR datasets, complex underlying causal relationships

exist between different variables and the clinical outcome. Adjusting for these confounding

factors was not within the scope of this research study. Future studies include using the drug

interaction network in conjunction with the proposed framework by Datta et al. [31] to iden-

tify and adjust for potential confounding variables. However, for questions in which other

pieces of information are necessary, such as drug exposure outside the hospitalization timeline

and environmental or behavioral variables, accurate inferences are unlikely to be made solely

from EHRs.

Age is often considered an influential confounder in clinical studies involving adverse drug

reactions and more than 60% of our hospitalization data did not have any age information

associated with them. However, age should not be a confounder for drug interactions which

was the key focus of this research study. Also, age was not used as an input variable in our

modeling framework in this research study. Furthermore, the findings in this study have been

validated using results published in prior studies using FAERS and Twosides databases.

In addition, the manner in which diagnosis, procedure, or other hospitalization codes are

used to define possible outcome definitions can lead to ambiguity. Different models can be

developed based on the method chosen for applying hospitalization codes or other clinical fea-

tures, such as the levels of certain aminotransferases or bilirubin, to infer DILI hospitalizations.

Ultimately, the method used to define the outcome definition from the available clinical fea-

tures may depend on the manner in which data was collected for a specific cohort and the tar-

get outcome to be studied, e.g., liver, renal, cardiovascular, or other clinical risks.

Lastly, the described approach avoids learning a full pairwise matrix of interactions, which

aids in a reduction of learnable parameters and leads to a more focused query. However, multi-

ple models may be required when trying to answer more general queries. Furthermore, a

model tasked with predicting many more outputs can lead to a model with better generaliza-

tion. In future studies, we plan on using interaction detection frameworks [76] for interpreting

weights in non-linear extensions to the drug interaction network.

Conclusion

In this work, we propose a modeling framework to study drug-drug interactions that may lead

to adverse outcomes using EHR datasets. As a case study, we used our proposed modeling

framework to study pairwise drug interactions involving NSAIDs that lead to DILI. We vali-

dated our research findings using previous research studies on FAERS and Twosides data-

bases. Empirically, we showed that our modeling framework is successful at inferring known

drug-drug interactions from relatively small EHR datasets(less than 400,000 hospitalizations)

and our modeling framework’s performance is robust across a wide variety of empirical stud-

ies. Our research study highlights the numerous benefits of using EHR datasets over public

datasets such as FAERS database for studying drug interactions. In the analysis for diclofenac,

the model identified drug interactions associated with DILI, including each co-prescribed

drug’s independent risk when administered in absence of the candidate drug, e.g., diclofenac

and dependent risk in the presence of the candidate drug. We have explored how prior knowl-

edge of a drug’s metabolism, such as meloxicam’s detoxification pathways, can inform explor-

atory analysis of how combinations of drugs can result in increased DILI risk. Strikingly, the

model indicates a potentially harmful outcome for the interaction between meloxicam and
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esomeprazole, confirmed by metabolic and clinical knowledge. Though beyond the scope

of this computational study, these preliminary results suggest the applicability of a joint

approach—models of drug interactions within EHR data streamlined by knowledge of

metabolic factors, such as those that affect P450 activity in conjunction with hepatotoxic

events. We have also studied the ability of the model to rank commonly prescribed NSAIDs

with respect to DILI risk. NSAIDs undergo widespread usage and are, therapeutically, valuable

agents for relief of pain and inflammation. When use of a class of drugs is unavoidable, it is

still valuable to select a specific candidate from that class of drugs that is least likely to incur

patients’ harm. These results are important because EHR data is increasingly available and

may prove to be a more effective approach in mining drug-drug interactions. We believe that

the proposed framework in this study will be widely applicable for understanding drug interac-

tions resulting in diverse adverse outcomes using EHR datasets and pave the way for incorpo-

rating future analyses based on dosage responses as well as accounting for comorbidities and

confounding.
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