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Abstract
Purpose The identification of abnormalities that are relatively rare within otherwise normal anatomy is a major challenge
for deep learning in the semantic segmentation of medical images. The small number of samples of the minority classes in
the training data makes the learning of optimal classification challenging, while the more frequently occurring samples of
the majority class hamper the generalization of the classification boundary between infrequently occurring target objects and
classes. In this paper, we developed a novel generative multi-adversarial network, called Ensemble-GAN, for mitigating this
class imbalance problem in the semantic segmentation of abdominal images.
Method The Ensemble-GAN framework is composed of a single-generator and a multi-discriminator variant for handling
the class imbalance problem to provide a better generalization than existing approaches. The ensemble model aggregates the
estimates of multiple models by training from different initializations and losses from various subsets of the training data. The
single generator network analyzes the input image as a condition to predict a corresponding semantic segmentation image by
use of feedback from the ensemble of discriminator networks. To evaluate the framework, we trained our framework on two
public datasets, with different imbalance ratios and imaging modalities: the Chaos 2019 and the LiTS 2017.
Result In terms of the F1 score, the accuracies of the semantic segmentation of healthy spleen, liver, and left and right kidneys
were 0.93, 0.96, 0.90 and 0.94, respectively. The overall F1 scores for simultaneous segmentation of the lesions and liver
were 0.83 and 0.94, respectively.
Conclusion The proposed Ensemble-GAN framework demonstrated outstanding performance in the semantic segmentation
of medical images in comparison with other approaches on popular abdominal imaging benchmarks. The Ensemble-GAN
has the potential to segment abdominal images more accurately than human experts.
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Introduction

One of the major challenges of deep learning for medical
image analysis is the highly skewed class distribution of
objects in medical images, which is referred to as the imbal-
anced classification problem. An imbalanced classification
problem occurs when the target classes of a dataset have a
highly unequal number of samples. For example, in a binary
classification, the imbalanced classification problem occurs
when the number of samples representing a specific disease
has fewer observations than the healthy class. The former
is called an infrequent class or minority class, whereas the
latter is called a majority class. Because canonical machine
learning assumes that different categories have similar num-
bers of samples, a model trained on such imbalanced data
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distribution will be biased toward the most frequent class,
which is not desirable in clinical applications.

In this work, we mitigate the negative impact of the
class imbalance problem through ensemble learning of dis-
criminative convolutional neural networks. By combining
multiple networks that are individually complementary, one
can obtain a compound classifier that is more accurate than
any of its base components [1]. Here, we propose an architec-
ture based on a generative multi-adversarial network, called
Ensemble-GAN, which is composed of a generator and an
ensemble of discriminators. We implemented the generator
network in a multi-discriminator setting through simulta-
neous minimization of different losses to minimize the
prediction error of the generator model as a multi-objective
optimization problem. The discriminators were varied by
use of different feature maps, different losses, and initializa-
tions. Moreover, we developed methods for providing more
accurate semantic segmentation of high-resolution medical
images than existing approaches.

To demonstrate the generalization ability of our approach,
we evaluated the performance of the Ensemble-GAN in
semantic segmentation of organs and tumor regions from
abdominal computed tomography (CT) and magnetic reso-
nance (MR) images by use of a highly imbalanced training
dataset where the number of pixels belonging to abnormal
regions of interest was much smaller than that of normal
regions. The results demonstrated the generalization ability
of our approach in the segmentation of bodyorgans and tumor
regions.

The rest of the paper is organized as follows: “Related
work” section presents an overview of the most recent
approaches to the imbalanced classification problem and
semantic segmentation of medical images. “Methoda” sec-
tion explains the proposed approach for learning the class
imbalance problem. The experimental design and results are
presented in “Experimental design” and “Results” sections,
respectively, followed by the discussions and conclusions in
“Discussions and conclusions” section.

Related work

This section provides a brief review of the most recent state-
of-the-art approaches carried out on the topics of learning
from imbalanced data, multi-objective training of generative
adversarial networks (GANs), and medical image segmenta-
tion.

Learning from imbalanced data

In medical image analysis, the most popular strategies
for addressing the imbalanced classification problem have

included data-level methods and algorithmic methods. The
data-level methods include under-sampling or over-sampling
of the trainingdataset.However, these resampling approaches
often remove some of the important samples or they add
redundant samples to the training data. Algorithmic methods
have included cost-sensitive learning and ensemble learning.
The cost-sensitive learning is typically used with accuracy
loss [2], Dice coefficient loss [3], and asymmetric similar-
ity loss [4] to modify the distribution of the training data
based on a mis-classification cost. However, in the case of
image segmentation, losses such as mean surface distance or
Hausdorff surface distance are more appropriate. Most of the
imbalanced ensemble techniques apply majority voting [5]
or average voting [6] with a combination of losses and differ-
ent initializations. The trade-off from the bias and variance
of combining a redundant ensemble was studied by Sun et
al. [7]. Because the ensemble model reduced the variance
on test data, the prediction result for the minority class was
improved [7].

Multi-objective training of GANs

Recently, variants of GAN models have included multi-
ple generators and/or multiple discriminators to tackle the
problems of mode collapse, global optimization, and non-
convergence of conventional GANs. Durugkar et al. [8]
introduced a generator with multiple discriminators, where
the average or maximum of discriminator losses provides
feedback to the generator. In another study, a generator was
trained with a set of discriminators where each discrimina-
tor classified a fixed random projection of the inputs [6,9]. In
contrast, theMGAN [10] andMAD-GAN [11] schemes pro-
posedGAN-based architectureswithmultiple generators and
single discriminator, while the MD-GAN [12] introduced a
distributed GAN composed of four generators and four dis-
criminators. Sathish et al. [13] (IITKGP-KLIV) performed
adversarial learning composed of two auxiliary classifiers
and one discriminator with application tomedical image seg-
mentation.

Semantic image segmentation

Recent studies on deep learning for semantic segmentation
of images have differed mostly in terms of their archi-
tectural design for linking different parts of the image to
reveal relationships between the objects. Examples include
the DeepLabv3+ [14] framework which used an encoder–
decoder structure with the separable atrous convolution
composed of a depth-wise convolution (spatial convolution
for each channel of the input) and point-wise convolution
(1×1 convolution with the depth-wise convolution as input).
Pham et al. [13] (ISUDE) proposed an hourglass autoencoder
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with DICE loss for abdominal segmentation, and a modi-
fied U-Net architecture that was substituted with an attention
mechanism [13] (OvGUMEMoRIAL) showed successful
results for semantic segmentation of abdominal images.

Methods

Conditional GAN

In a conventional GAN, a generative model G learns a map-
ping from a random noise vector z to an output image y;
G : z → y. Meanwhile, a discriminative model D estimates
the probability of a sample coming from the training data
(xreal ) rather than from the generator (x f ake). The objective
function is a two-player mini-max game that can be formu-
lated as

min
G

max
D

V (G, D) = Ex∼p(data)[log D(x)]
+Ez∼p(z)[log(1 − D(G(z)))] (1)

In a conditional GAN (cGAN), a generative model learns
a mapping from the random noise vector z and an observed
image x to an output image y; G : x, z → y. The discrim-
inative model attempts to discriminate between the ground
truth of the training set and the generator output as in a con-
ventional GAN. The objective function conditions both G
and D on the desired output y:

Ladv ← m
G
in m

D
ax V (G, D)

= Ex,y∼pdata(x,y)[log D(x, y)]
+Ez∼p(z),y∼p(y)[log(1 − D(G(z, y), y))] (2)

In both conventional and conditional GAN frameworks,
the task of a discriminator is much harder than that of the
generator as it has to minimize the mistakes of the generator.
Along with the mini-max nature of the objective, this raises
several challenges such as mode collapse, vanishing gradi-
ent, and failure to converge. In this work, we propose a new
framework to address the learning of an unbiased model on
the class imbalance problem.

Ensemble-GAN

Figure 1 illustrates the architecture of our Ensemble-GAN
where all components are parameterized by neural networks.
The proposed framework consists of single-generator and
multi-discriminator variants that attempt to better approxi-
mate max V (G, Dk), providing a better critic to the genera-
tor. Here, the generator learns from the feedback, aggregated
over multiple discriminators either by

∑K
k=1 V (G, Dk). The

main idea of combiningmultiple discriminators in redundant

ensembles is (1) to improve the generalization ability since
each discriminator covers only some parts of the application
data, (2) to combine multiple discriminators into a single
consensus model (as maximum, average, or sum), which per-
forms better than a single discriminator because the patterns
that are misclassified by different discriminators are not the
same, and (3) to overcome typical defects of vanilla condi-
tionalGANs, such as global structure collapse and local detail
ambiguity by designing a new architecture for the generator.

In our workflow, the generatorG is forced to learn to min-
imize the prediction error of semantic segmentation through
the ensemble of discriminators. This ultimately encourages
G to produce conditional samples with minimum error,
since G needs to fool the different possible discriminators.
Variations in the ensemble are achieved by the summation
feedback of each D with a certain probability at the end of
every batch. Therefore,G considers the sum of discriminator
losses in the ensemble while updating its parameters at each
iteration.

Similar to Luo et al. [15], the extracted local and global
output by a single generator is passed into two individ-
ual discriminators. We designed and implemented different
architectures with various losses based on our study. Increas-
ing the number of discriminators (1) with different losses
covers more aspects of the generator’s output by approximat-
ing

∑K
k=1 V (G, Dk), and (2) with different representations

of the data, they are also capable of better catching the dis-
tributions of the generator.

The objective function

We formulate the proposed Ensemble-GAN with a cohort
of three networks (see Fig. 1). Extension of the frame-
work with more networks is discussed in “Experiments”
section. Here, a single generator attempts to minimize the
segmentation error regarding an ensemble of k different
losses. The generator takes a random vector z and medi-
cal images x as input, whereas the discriminators attempt
to minimize the error of predicting the segmentation masks
produced by the generator through multiple losses. For a
fixed G, function F will receive sum of k different dis-
criminator losses to the generator through the objective of
minG maxDk F(V (D1,G), V (D2,G), . . . , V (Dk,G))).

min
G

max
Dk

V (Dk,G) = Ex,y∼p(x,y)[log Dk(x, y)]
+λk Ez∼p(z),y∼p(y)[log(1 − Dk(G(z, y), y))] (3)

The use of the proposed combination scheme prioritizes
the worst discriminators and thus provides more useful gra-
dients to the generator during the training. Details about the
architectural choices, discriminator and generator losses, and
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Fig. 1 Overview of the architecture of the proposed Ensemble-GAN
composed of a generator and multi-discriminator. The generator net-
work (G) is a modified stacked hourglass architecture which takes
random noise and medical images as the condition and tries to predict

the semantic segmentation through an ensemble of D losses. Each D
(with different losses) distinguishes between ground-truth and different
global and local features map predicted by G

Algorithm 1: Ensemble-GAN for semantic segmentation of medical images

Input : Training samples Strain := {x (1), x (2), ..., x (i)}
Output: Semantic segmentation images by generative model

1 for number of iterations do
2 Sample mini-batch from training samples Strain := {x (1), x (2), ..., x (i)}, xi ∼ pgdata (x)
3 Sample mini-batch from Gaussian noise z := {z1, z2, ..., zi }, zi ∼ pg(z)
4 for k = 1, Dksteps do
5 Sample mini-batch of noise samples z from noise prior pg(z)
6 Sample from data generating distribution pdata(x, y)
7 Update and fine-tune Sum of k discriminators as follows:
8 Maximize Ex,y∼px,y [log Dk(x, y)] + Ez∼pz ,y∼py [log(1 − Dk(G(z, y); y))]
9 end

10 for i = 1,Gsteps do
11 Sample mini-batch, noise samples z, from noise prior pg(z)
12 Update and fine-tune the generator as follows:
13 Minimize Ez∼pz ,y∼py [log(1 − Dk(G(z, y); y))]
14 end
15 end

the selectionof the hyperparameterλ are discussed in “Exper-
iments” section.

Experimental design

Materials

We validated the performance of our proposed Ensemble-
GAN based on clinical patient data from two recent, publicly
available challenge datasets in abdominal imaging: (1) the
automated liver and tumor segmentation (LiTS)1 of MIC-
CAI 2017 conference and (2) the segmentation challenge

1 https://chaos.grand-challenge.org/.

(CHAOS)2 of the ISBI 2019 conference. Both datasets con-
sist of abdominal CT and MR images for which each image
slice has been manually segmented by expert radiologists.

CHAOS

TheCHAOS challenge [16] is a Combined (CT-MR)Healthy
Abdominal Organ Segmentation problem that has been orga-
nized into different segmentation tasks. In this study, we
evaluated our model on the segmentation of abdominal
organs (CT + MRI as a task (4)). The dataset included 20
MR and 20 CT abdominal images with five segmentation
labels for the liver, spleen, left kidney, right kidney, and back-
ground.We trained our model on a total of 16,266 2D images

2 https://competitions.codalab.org/competitions/17094.
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Fig. 2 a In the earlier epochs of training of the Ensemble-GAN, when
G improves, Ds deteriorate because G and Ds work against each other.
b After several epochs of training, the ensemble of D reaches the point
to improve segmentation output from G. As a result, the Ensemble-
GAN shows a good convergence where the ensemble of Ds is unable

to differentiate between the real and fake distributions. Here, loss G
indicates the loss of generator and loss Dreal and loss D f ake indicate
the adversarial losses of discriminator on real and fake image calculated
on high-resolution features map, respectively. The Attri term denotes
the losses calculated on low-resolution label map

with 256× 256 pixels and tested on 1,793 similarly sized 2D
images. Here, the imbalanced ratios are 1:40, 1:200, 1:400,
1:400 defined as the number of pixels in the background class
to the number of pixels belonging to the liver, spleen, left and
right kidney.

LiTS

In the second experiment, we employed the LiTS-2017
dataset that contains 130 training and 70 test CT cases, in
which patientswere suffered fromdifferent types of liver can-
cers. The challenge was to perform a simultaneous semantic
segmentation of a large liver that had a 1:400 imbalanced
class ratio of pixels representing the liver and surrounding
tissue with an abnormal target region with 1:1400 imbal-
anced class ratio between pixels representing abnormal and
normal tissue.

Experiments

We evaluated three architectural choices for the proposed
Ensemble-GAN. The first experiment, Ensemble-GAN (1),
included a single generator and two discriminators. As
shown in Fig. 1, the generator had a stacked hourglass net-
work design [17] which provides a mechanism for repeated
bottom-up and top-down inference, allowing for a re-
evaluation of the initial estimates and features across the
whole image. The architecture of the discriminator was simi-
lar to a Markovian discriminator [18] to restrict the attention
to the structure in local image patches. The discriminator
losses were �mae and �Dice. For the hyperparameters, we set
λ1 = 10 and λ2 = 5 for D1 and D2, respectively. We used
a network pretrained with ImageNet for the initialization of
the weights of the discriminators, but we trained the genera-

Table 1 Accuracy for simultaneous liver and lesions segmentation in
terms of the Dice score and average surface distance on the test data,
where 1 is the index for liver and 2 for lesions

Approaches Dice1 Dice2 ASSD1 ASSD2

Ensemble-GANs (1) 0.91 0.80 1.4 1.9

Ensemble-GANs (2) 0.92 0.81 1.4 1.7

Ensemble-GANs (3) 0.94 0.84 1.3 1.6

cGAN 0.85 0.81 1.8 2.1

UNet 0.72 0.70 19.04 19.04

Cascaded-UNet [23] 0.93 0.93 2.3 2.3

UNet+3DCRF [23] 0.95 0.50 0.92 1.3

ResNet+Fusion [21] 0.95 0.50 0.84 13.33

SuperAI 0.96 0.81 – 1.1

H-Dense+ UNet [20] 0.96 0.82 1.45 1.1

coupleFCN [22] 0.78 0.77 – –

tor from scratch using aGaussian distributionwith a standard
deviation of 0.001. The learning rate started from0.0002with
a mini-batch size of 1. We used Adam [19] as the optimizer
and set β1 = 0.9, β2 = 0.999 with a weight decay of 0.0001.
We used the binary cross-entropy as the adversarial loss in
all experiments.

The second experiment, Ensemble-GAN (2), included a
single generator and three discriminators. The generator and
discriminator networks had the same architecture as those
of Ensemble-GAN (1). Here, we explored the effect of three
discriminator losses on the outcome of the generator. We
combined and added a categorical cross-entropy loss �cce
as a third loss with λ3 = 25. In this architecture, cate-
gorical cross-entropy calculates differentiation between the
high-resolution featuremap by last layer of first auto-encoder
network and ground-truth images.
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Table 2 The top four rows show
the accuracy of the liver
segmentation

Architecture VOE RVD ASSD MSSD F1 Precision Recall kappa

Ensemble-GANs (1) 17 −8 9.2 46.8 0.90 0.91 0.86 0.77

Ensemble-GANs (2) 16 −8 7.7 41.2 0.91 0.91 0.86 0.79

Ensemble-GANs (3) 14 −6 6.2 40.3 0.95 0.94 0.89 0.80

cGAN 21 −1 10.8 87.1 0.88 0.90 0.79 0.68

ResNet+Fusion [21] 16 −6 5.3 48.3 – – - -

SuperAI 36 4.27 1.1 6.2 – – – –

H-Dense+ UNet [20] 39 7.8 1.1 7.0 – – – –

coupleFCN [22] 35 12 1.0 7.0 – – – –

VOE volume overlap error,RVD relative volume difference ,ASSD average symmetric surface distance,MSSD
maximum symmetric surface distance

In the third experiment, Ensemble-GAN (3), three dif-
ferent outputs of a single generator were passed to three
different discriminator losses. The generator and discrim-
inator networks had the same architecture as those of
Ensemble-GAN (1).Wepassed the second bottleneck and the
last fully convolutional layer of each auto-encoder from gen-
erator separately as the output of the deep feature tensor and
transferred them with the label map into three different dis-
criminators. The feature vector of the bottleneck represents
the local information of images, whereas the last fully convo-
lutional layer contains global features. The combination of
additional losses and the adversarial loss is controlled by a
λ hyperparameter, which controls the relative importance of
each loss. Here, we used two categorical cross-entropy losses
for the two different generator outputs: λ1 = 100, λ2 = 25
and λ2 = 1 for high-resolution �cce, low-resolution �cce,
and adversarial loss �adv , respectively. Table 5 represents the
effectiveness of λ in semantic segmentation in terms of F1
score.

Figure 2 shows the training losses at the beginning and
after 100 epochs.

We implemented the Ensemble-GAN on top of Macro–
Micro GANs [15]. We used all 2D slices from the axial view
with size 256×256 for the CHAOS dataset and 512×512 for
the LiTS dataset. For data augmentation, we applied random
cropping, mirroring, scaling, enhancement, and [−10,+10]
degree random rotation in all the experiments. The networks
were trainedon aworkstation equippedwithfiveNvidiaTitan
X GPUs.

Evaluation criteria

The evaluation and comparison of the Ensemble-GAN were
performed using the quality metrics introduced by each
challenge organizer. We evaluated the performance of the
proposed method with the F1 score and precision–recall as a
measure for handling the imbalanced issue.

For the LiTS competition, the primarymetricwas theDice
score. A volume overlap error (VOE), relative volume dif-

ference (RVD), average symmetric surface distance (ASSD),
and maximum symmetric surface distance (MSSD) were
considered for the evaluation of the predicted region of the
liver and the liver lesions. Tables 1 and 2 describe the quanti-
tative results and comparisonswith top-rankedmethods from
the LiTS leaderboard.3

Among the four metrics determined by the CHAOS orga-
nizer for evaluating the multi-organ segmentation,4 Dice
coefficient, average symmetric surface distance (ASSD), rel-
ative volume difference (RVD), and maximum symmetric
surface distance (MSSD) were utilized to determine the
potential over- and under-segmentation boundaries.

Results

To understand the performance gains, we analyzed the accu-
racy on the imbalanced liver tumor segmentation dataset,
where we can see the unbalanced labels between the large
organs and very small lesions. Based on the leaderboard,
most of the top-ranked models used cascade networks to
segment the liver and the lesions simultaneously [20] or sep-
arately [21,22]. The generative ensemble networks provided
a good solution against the imbalanced labeling.

Table 1 shows the Dice scores for the liver and lesion
segmentation. The highest scores obtained by our proposed
framework were 0.94 for the liver and 0.84 for the lesions.
Based on a comparison of the first two rows of Table 1, we
find that the effect of the ensemble of discriminators on the
final result increased up to 9% for the liver segmentation and
up to 3% for the segmentation of lesions.

For the LiTS dataset, lesions with an approximate diame-
ter equal to or larger than 10 mmwere defined as large, while
lesions with a diameter of less than 10 mm were defined as
small. Our method achieved an average Dice score of 0.91

3 https://competitions.codalab.org/competitions/.
4 https://github.com/emrekavur/CHAOS-evaluation.
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Fig. 3 Semantic segmentation
results obtained by
Ensemble-GAN (3) on LiTS
dataset
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Table 3 The top three rows
show the average accuracy for
the semantic segmentation of
abdominal CT and MR images
with respect to the
measurements obtained by the
challenge organizer

Architecture VOE RAVD ASSD MSSD DICE F1 Precision Recall

Ensemble-GAN (1) 0.14 6.9 6.1 39.1 0.91 0.95 0.96 0.89

Ensemble-GAN (2) 0.15 5.7 5.8 40.1 0.92 0.94 0.96 0.88

Ensemble-GAN (3) 0.12 3.1 2.9 32.1 0.94 0.96 0.97 0.90

cGAN 2 −1 10.8 17.3 51 0.83 0.85 0.69

PKDIA [13] – 8.43 6.37 33.1 0.88 – – –

OvGUMEMoRIAL [13] – 50 5.2 74.0 0.85 – – –

IITKGP-KLIV [13] – 13.5 16.6 130 0.63 – – –

ISDUE [13] – 14.0 9.81 37.1 0.85 – – –

VOE volume overlap error, RAVD relative volume absolute difference, ASSD average symmetric surface
distance, MSSD maximum symmetric surface distance are defined by CHAOS organizers. The average F1
score, precision, and recall are calculated as measures for the handling of the class imbalance problem

Table 4 Effectiveness of each component and network architecture

Architecture CHAOS LiTS

Liver Spleen Right kidney Left kidney Liver Lesion

Conditional GAN

1 Disc. Lmae 0.88 ± 0.08 0.80 ± 0.08 0.84 ± 0.09 0.91 ± 0.02 0.87 ± 0.02 0.82 ± 0.11

1 Disc. LDice 0.89 ± 0.06 0.83 ± 0.12 0.86 ± 0.03 0.92 ± 0.05 0.88 ± 0.01 0.84 ± 0.05

1 Disc. Lcce 0.89 ± 0.03 0.81 ± 0.14 0.85 ± 0.08 0.92 ± 0.03 0.88 ± 0.02 0.83 ± 0.07

1 Disc. Lbce 0.87 ± 0.14 0.77 ± 0.20 0.83 ± 0.05 0.90 ± 0.05 0.86 ± 0.02 0.82 ± 0.04

Cyclic-Ensemble-GAN

2 Disc. Lmae + Ladv 0.89 ± 0.05 0.88 ± 0.03 0.91 ± 0.06 0.91 ± 0.04 0.89 ± 0.01 0.85 ± 0.08

Ensemble-GAN (1)

2 Disc. Lmae + LDice 0.89 ± 0.02 0.87 ± 0.10 0.90 ± 0.04 0.91 ± 0.09 0.92 ± 0.07 0.84 ± 0.02

2 Disc. Lbce + LDice 0.89 ± 0.04 0.88 ± 0.06 0.91 ± 0.03 0.92 ± 0.03 0.93 ± 0.01 0.86 ± 0.23

2 Disc.L1Attri + Lcce 0.92 ± 0.02 0.89 ± 0.05 0.92 ± 0.02 0.94 ± 0.02 0.93 ± 0.02 0.85 ± 0.22

2 Disc. L1Attri + Lbce 0.91 ± 0.03 0.88 ± 0.02 0.91 ± 0.14 0.93 ± 0.03 0.93 ± 0.02 0.85 ± 0.05

Ensemble-GAN (2)

3 Disc. L1 + Lcce + LDice 0.92 ± 0.02 0.90 ± 0.12 0.91 ± 0.05 0.94 ± 0.03 0.92 ± 0.02 0.88 ± 0.02

Ensemble-GAN (3)

3 Disc. L1 + Lcce + L1Attri 0.95 ± 0.05 0.92 ± 0.03 0.93 ± 0.02 0.94 ± 0.04 0.96 ± 0.07 0.89 ± 0.02

3 Disc. L1 + LFocal + L1Attri 0.94 ± 0.08 0.93 ± 0.03 0.93 ± 0.06 0.93 ± 0.05 0.96 ± 0.02 0.90 ± 0.01

The F1 scores obtained across 100 epochs using the different datasets with different imbalanced ratios and image modalities are shown in the table.
Bold scores indicate the best F1 score obtained for each dataset

and anASSDof1.4 in the lesion segmentation, indicating that
the method can distinguish between small and large lesions.

The heterogeneous structures of the predicted liver and all
lesions from the local test set are shown in Fig. 3. We used a
fivefold cross-validation for the training due to the different
intensity distributions of the cases. In the test phase, the voted
average of these models was used for making a prediction for
each case in the test dataset.

The top three rows of Table 3 show the quantitative
results achieved by the different Ensemble-GAN architec-
tures. According to Table 3 and Fig. 4, the predicted semantic
segmentation by Ensemble-GAN (3) outperformed the other
architectures, which demonstrates the success of passing the
dual output of the generator as global and one output of local

feature vectors into three individual pretrained discrimina-
tors. The local features include more details on edges, while
the global features contain more localized features. Having
two adversarial losses for global and local discriminators
besides binary cross-entropy of generative model leads to
a better recognition and smoother boundaries of segmenta-
tion in both benchmarks than with the other approaches. As
reported by CHAOS [13], the three top-ranked teams in task
4 used different deep ensemble discriminator networks such
as cascade architectures and therefore reported a more stable
result in the test phase. The achieved Cohen’s kappa scores
by Ensemble-GAN (1–3) on CHAOS dataset are 0.77, 0.78,
and 0.8, respectively, where the average kappa score is 0.64
by the conditional GAN.
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Fig. 4 Semantic segmentation
results obtained by
Ensemble-GAN (3) on CHAOS
dataset
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Fig. 5 Different losses induce different qualities of results. Each column shows the results predicted by different models

Table 5 Effectiveness of
hyperparameter λ on semantic
segmentation results in terms of
F1 score

Architecture CHAOS LiTS

Liver Spleen r-kidney l-kidney Liver Lesion

Conditional GAN

1 Disc. Lbce 0.86 0.77 0.83 0.89 0.84 0.82

Ensemble-GAN (1)

λ1 = 1

2 Disc. λ1Lmae + Lbce 0.89 0.88 0.90 0.91 0.90 0.84

λ1 = 10

2 Disc. λ1Lmae + Lbce 0.89 0.89 0.91 0.91 0.91 0.85

λ1 = 100

2 Disc. λ1Lmae + Lbce 0.90 0.89 0.91 0.92 0.91 0.85

Ensemble-GAN (3)

λ1 = 1, λ2 = 1, λ3 = 1

3 Disc. λ1Lmae + λ2Lcce + λ3L1Attri 0.94 0.90 0.93 0.94 0.95 0.87

λ1 = 10, λ2 = 10, λ3 = 10

3 Disc. λ1Lmae + λ2Lcce + λ3L1Attri 0.95 0.91 0.93 0.94 0.96 0.89

λ1 = 25, λ2 = 25, λ3 = 100

3 Disc. λ1Lmae + λ2Lcce + λ3L1Attri 0.95 0.92 0.93 0.94 0.96 0.89

The F1 scores obtained across 100 epochs on both datasets are shown in the table

Figure 5 andTable 4 represent and compare qualitative and
quantitative results achieved by different Ensemble-GAN
setting and configuration.

The results showed (Table 5) that choosing larger λ can
generate more accurate semantic segmentation images. The
adversarial loss influences if the generator model can output
images that are acceptable in the target domain. Therefore,
the combination of other losses and adversarial loss regu-
larizes the generator model to output images that are an

acceptable translation of the source image.We controlled the
impact of additional losses by a λ hyperparameter, where set
to 10 means giving ten times importance of Lmae loss than
the adversarial loss during training and testing. To explore
effect of hyperparameter of λ in the task of medical image
semantic segmentation, we did several experiments shown in
Table 5 in terms of F1 score.
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Discussions and conclusions

In this study, we introduced a novel Ensemble-GAN frame-
work to mitigate the issues introduced by an imbalanced
training set. The Ensemble-GAN framework enables a single
generator to learn from an ensemble of discriminators that
differ by initialization, loss, and subsets of the training data.
The Ensemble-GAN enhances the prior developments of the
MD-GAN [12] and Micro–Macro GAN [15] by its different
network architecture and the handling of imbalanced data.

Our experiments on multiple datasets demonstrated that
the Ensemble-GAN greatly alleviates the imbalanced data
problem and provides better generalization than existing
approaches in the semantic segmentation of CT and MR
images. Compared to a conditional GAN, the Ensemble-
GAN also increases the stability of training over time by
enabling the generator to receive more feedback from the
discriminators.

Moreover, we introduced various modifications to condi-
tionalGAN that lead to better trade-off betweenprecision and
recall, thereby preventing local and global inconsistency in
the output prediction. Our segmentation results on two popu-
lar abdominal benchmarks indicate that the Ensemble-GAN
is robust with respect to global inconsistencies such as slice
misalignment and different image protocols, as well as to
local inconsistencies such as blurring of the images. Given
its high accuracy, the Ensemble-GAN has the potential to
be practically useful in clinical routine. In future work, we
would like to investigate the prediction of semantic segmen-
tation by ensemble generators that learn from an ensemble
of discriminators through adversarial process. A study of the
implications of using STAPLE [24] on top of a fixed gener-
ator that would receive an average of different discriminator
losses would be another topic for a future study.
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