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Natural killer (NK) cells are critical effectors of the immune system. NK cells recognize
unhealthy cells by specific ligands [e.g., MHC- class I chain related protein A or B
(MIC-A/B)] for further elimination by cytotoxicity. Paradoxically, cancer cells down-
regulate MIC-A/B and evade NK cell’s anticancer activity. Recent data indicate that
cellular-stress induces MIC-A/B, leading to enhanced sensitivity of cancer cells to
NK cell-mediated cytotoxicity. In this Perspective article, we hypothesize that current
chemotherapeutics at sub-lethal, non-toxic dose may promote cellular-stress and
up-regulate the expression of MIC-A/B ligands to augment cancer’s sensitivity to
NK cell-mediated cytotoxicity. Preliminary data from two human breast cancer cell
lines, MDA-MB-231 and T47D treated with clinically relevant therapeutics such as
doxorubicin, paclitaxel and methotrexate support the hypothesis. The goal of this
Perspective is to underscore the prospects of current chemotherapeutics in NK cell
immunotherapy, and discuss potential challenges and opportunities to improve cancer
therapy.
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INTRODUCTION

Cancer continues to be one of the leading causes of death (Global Burden of Disease Cancer
Collaboration et al., 2015). Our understanding of carcinogenesis has significantly advanced in
the recent decades. Consequently, several novel strategies and potential anticancer therapeutics
have emerged, although with limited success in translation. Some of the common challenges
that block successful clinical translation of potential therapeutics include resistance to therapy,
metastasis, etc. Apart from the biological challenges, the cancer drug development program is
also impeded by the high-cost and extensive time incurred for the development of de novo drugs
(Ishida et al., 2016). Recently, there has been an interest to exploit serendipitous anticancer effects
of therapeutics that are indicated for other ailments. This process of recognition of new indications
of a clinically approved therapeutic is referred as “drug repositioning” or “drug repurposing”
(Ishida et al., 2016). Emerging reports indicate that such drug repositioning and repurposing could
have desirable outcome in the management of cancer. For example, compounds of cardiovascular
treatments (Ishida et al., 2016), anti-diabetic agents (Gadducci et al., 2016) and HIV therapeutics
(Maksimovic-Ivanic et al., 2017) have been found to promote anticancer effects. In this context,
extended application of current chemotherapeutics to enhance the efficacy of immunotherapy has
also been indicated (Fournier et al., 2017).
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Cancer chemotherapeutics at their maximum tolerated dose
or the most efficacious dose have long been known to cause
undesirable effects, including immune-suppression (Hersh and
Oppenheim, 1967). Reports from two independent groups,
Browder et al. (2000) and Klement et al. (2000) demonstrated
that repeated, low-dose chemotherapy at frequent cycles promote
desirable anticancer effects. Interestingly, a decade earlier it
was shown that a combinatorial approach using a low-dose
of cyclophosphamide with a low-dose of IL-2 had synergistic,
improved anticancer effects (Eggermont and Sugarbaker, 1988).
However, the inferences were mainly focused on the combination
therapy. Nonetheless, these studies provided the foundation for
the modern concept of “metronomic therapy.” Consequently,
metronomic treatment has gained much attention (Figure 1A)
(Romiti et al., 2017), and has been expected to play a significant
role in the context of personalized medicine as well (Andre
et al., 2014). Concomitantly, data also emerged indicating that
conventional maximum tolerated dose of chemotherapeutics
affect anticancer immune cells (e.g., NK cells) (Saijo et al., 1982;
Sewell et al., 1993). Furthermore, post-chemotherapy though a
recovery in total number of immune cells was observed, the
functional recovery was not evident indicating loss of immune
cell function in breast cancer as well as lung cancer (Saijo
et al., 1982; Sewell et al., 1993). On one hand, the anticancer
function of immune cells such as NK cells has been known to
be affected by high dose chemotherapeutics; on the other hand,
low-dose metronomic therapy improves anticancer effects. With
this background, emerging concepts point to the optimization of
drug regimen that could augment or facilitate anticancer immune
activity (Emens et al., 2001; Emens and Middleton, 2015). Yet,
there is paucity of data on the immunotherapeutic potential of
chemotherapeutics to enhance the efficacy and/or opportunity
for natural killer (NK)-cells, a principal component of the
immune system. Here, in this Perspective in the light of recent
research, we discuss the potential of sub-lethal, non-toxic dose of
current chemotherapeutics to induce the expression of MIC-A/B
to sensitize cancer cells to NK-cell mediated cytotoxicity.

TUMOR CELLS, IMMUNE EVASION, AND
NK CELLS

Cancer cells evade immune surveillance, and this “immune
evasion” has recently been recognized as one of the hallmarks
of cancer (Hanahan and Weinberg, 2011). Though earliest
report on the anticancer potential of the immune system dates
back to the 19th century (Coley, 1898), only in the past
few decades the clinical relevance and plausible outcomes of
immunotherapies have been recognized (Burnet, 1957). For
example, recent reports on tumor microenvironment (TME)
and understanding the impact of cancer metabolism on TME
have shed light in deciphering the anti-immune properties of
TME (Ganapathy-Kanniappan, 2017a,b). Emerging data indicate
that the alteration of TME could impact the antitumor immune
response (Husain et al., 2013; Fu et al., 2015). Among immune
cells, besides the T cells, studies on NK cells have also
gained momentum. NK cells are an integral component of the

immune system and are considered as the “first line” of defense
(Lodoen and Lanier, 2006). NK cells detect and target unhealthy
or diseased cells including cancer, and induce cytotoxicity.
Thus, NK cell-mediated cytotoxicity is an effective anticancer
immunotherapeutic approach (Ljunggren and Malmberg, 2007).
Mechanistically, cell surface receptors on NK cells recognize
specific ligands (commonly known as NK-G2D ligands) on
target cells to induce cytolytic processes. Among the NKG2D
ligands, MHC- class I chain related protein A or B (MIC-
A/B) are known to be up-regulated during cellular pathology.
Paradoxically, cancer cells have been known to reduce the surface
expression of MIC-A/B ligands through multiple mechanisms
such as cleavage/shedding of the extracellular domain of MIC-
A/B or down-regulation of expression (Rzymski et al., 2012;
Chitadze et al., 2013). Multiple lines of evidence indicate that
restoration of MIC-A/B expression render cancer cells sensitive
to NK cell mediated cytotoxicity (de Kruijf et al., 2012; Okita et al.,
2012). Thus, interference with cancer’s mechanism of down-
regulation of MIC-A/B to up-regulate the expression may be an
effective approach to enhance cancer’s sensitivity to NK cells.
Akin to this, disruption of energy metabolism of cancer (Fu
et al., 2015), induction of thermal stress (Dayanc et al., 2013),
exposure to pro-oxidants such as hydrogen peroxide (Yamamoto
et al., 2001) and reactive oxygen species (Soriani et al., 2014)
have been shown to up-regulate the expression of MIC-A/B in
cancer. However, the underlying mechanism of such cellular
or metabolic stress-related MIC-A/B up-regulation remains to
be known. Nevertheless, the characteristic feature that MIC-
A/B are stress-inducible provides a window of opportunity to
envisage clinically relevant approaches to induce stress in cancer
cells.

CHEMOTHERAPEUTICS AND THE
POTENTIAL FOR SENSITIZATION TO NK
CELLS

Current chemotherapeutics play a pivotal role in the
management of cancer, especially in advanced stages such
as metastatic cancers. Ever since the recognition of chemical
agents as potential therapeutics in the dawn of 20th century, the
field of chemotherapy has advanced remarkably (refer review
by DeVita and Chu, 2008). While some chemotherapeutics
have been indicated to interfere with the efficacy of NK
cell mediated killing of cancer cells others have proven to
be effective in enhancing the outcome of NK cell mediated
immunotherapy. Besides, in the presence of natural compounds
(e.g., fruit extracts of Morus alba L.) chemotherapeutic like
5-fluorouracil demonstrated increased anticancer efficacy which
involved enhanced NK cell activity (Markasz et al., 2007).
Similarly, inhibitors of histone deacetylases (HDACs) such as
Trichostatin A have been shown to sensitize cancer cells to
NK cell mediated cytotoxicity (Tiper and Webb, 2016; Shin
et al., 2017). Recently, Yang et al. (2015) have documented
that the HDAC inhibitor, suberoylanilide hydroxamic acid
(SAHA) upregulates MIC-A/B by facilitating gene-specific
acetylation. Thus, deregulation of epigenetic mechanisms
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have been indicated to up-regulate MIC-A/B based on genetic
regulation.

Irrespective of the diverse class of chemotherapeutics such as
DNA-damaging agents (e.g., doxorubicin), antimetabolites (e.g.,
methotrexate), mitotic inhibitors (e.g., paclitaxel), nucleotide
analogs (6-mercaptopurine) or inhibitors of topoisomerases
(e.g., etoposide), anticancer agents in general mediate their
effects by induction of cell death mechanisms (Herr and
Debatin, 2001). Noteworthy, a common underlying mechanism
is the induction of specific or overall cellular stress, and

the severity of which determines the outcome (i.e.) cell
death (Herr and Debatin, 2001). Invariably, the majority of
chemotherapeutics implicate the induction of cellular-stress
during their anticancer effects (Gewirtz, 1999; Minotti et al.,
2004). Since chemotherapeutics could induce cellular-stress and
the MIC-A/B ligands required for NK cell recognition are stress-
inducible, it is intriguing to verify whether chemotherapeutics
could be exploited to up-regulate MIC-A/B. To test this
hypothesis it is imperative to include couple of guidelines.
(i) The objective of using the chemotherapeutic is not to

FIGURE 1 | Effect of sub-lethal non-toxic dose of chemotherapeutics on MIC-A/B induction in MDA-MB-231 cells. (A) Schematic showing potential effects of
metronomic chemotherapy (MCT) (e.g., angiogenic inhibitor) on cancer and immune modulation [reproduced with permission of Springer, © Springer
Science+Business Media New York 2016 (Romiti et al., 2017)]. (B) Determination of sub-lethal, non-toxic dose of respective chemotherapeutics over 24, 48 and
72 h of treatment. The concentrations indicated in the square box is the dose used for metronomic treatment. (C) Effect of respective chemotherapeutics on the
induction of MIC-A/B as evidenced by specific staining (red fluorescence). The nuclear stain by DAPI (blue) and light microscopic images have been shown to
indicate cell-specific staining of MIC-A/B (red fluorescence). Numerical data below the fluorescent images represent specific-signal intensity obtained by the ratio
between DAPI and MIC-A/B staining. Scale-100 µm.
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achieve cytotoxicity but to induce the expression of MIC-
A/B to facilitate NK cell mediated cytotoxicity. This would
facilitate effective infiltration and targeting of cancer cells by
the NK cell population providing a repertoire of immunological
responses against cancer. (ii) The selection of chemotherapeutic
dose (sub-lethal, non-toxic low-dose) should be sufficient to
cause sustainable cellular stress to allow the induction of
MIC-A/B.

For preliminary investigation, two human breast cancer
cell lines, MDA-MB-231 and T47D were examined with one
or more of the following clinically relevant therapeutics such
as doxorubicin, paclitaxel, 4-hydroxy tamoxifen (4-HT) and
methotrexate. As indicated in Figures 1B, 2A, the sub-lethal,
maximum non-toxic dose of respective chemotherapeutics was
determined (IC10) and the cells were subjected to treatment
at the dose equivalent or lesser than the IC10. The IC10 was
determined by Celltiter-Glo Bioluminescent assay (Promega,
Co., United States). In brief, a day before the metronomic

treatment, cells growing in log-phase were plated to attain∼60%
confluency in 96-well plates (for toxicity assay). The following
day, metronomic treatment was initiated with the replacement
of complete-growth medium with various concentrations of the
drugs to be tested. The drug-containing media was replaced
every 48 h, and the viability assay was performed 4-days
from the initiation of treatment. For MIC-A/B immunostaining,
only the chosen concentration (the dose equivalent or lesser
than the IC10) was used, but the cells were plated in 8-well
chamber/cover-glass slides (for immunofluorescence imaging).
The treatment was performed as described and staining
was performed with specific antibodies. Immunofluorescence
imaging showed that treatment with sub-lethal, non-toxic dose
of chemotherapeutics elevated the expression of MIC-A/B
compared to untreated (control) cells (Figures 1C, 2B).
Quantification of specific signal intensity normalized with
nuclear stain (DAPI) signal showed chemotherapy-dependent
induction of MIC-A/B (Figures 1C, 2B). As discussed earlier,

FIGURE 2 | Effect of sub-lethal non-toxic dose of chemotherapeutics on MIC-A/B induction in T47D cells. (A) Determination of sub-lethal, non-toxic dose of
respective chemotherapeutic over 24, 48 and 72 h of treatment. The concentrations indicated in the square box is the dose used for metronomic treatment.
(B) Effect of respective chemotherapeutics on the induction of MIC-A/B as evidenced by specific staining (red fluorescence). The nuclear stain by DAPI (blue) and
light microscopic images have been shown to indicate cell-specific staining of MIC-A/B (red fluorescence). Numerical data below the fluorescent images represent
specific-signal intensity obtained by the ratio between DAPI and MIC-A/B staining. Scale-100 µm.
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genetic or epigenetic regulation of MIC-A/B by specific inhibitors
like SAHA have already been known (Yang et al., 2015). Yet, the
up-regulation of MIC-A/B by clinically relevant chemotherapy-
dependent cellular stress remains to be known.

OPPORTUNITIES, CHALLENGES, AND
FUTURE DIRECTIONS

Clinical data obtained from 30 patients demonstrated that the
functional status of NK cells during or after chemotherapy
strongly correlated with the disease-free survival or tumor
recurrence (Mackay et al., 1983). Similarly, an overall increase
in immune-infiltration of tumors following chemotherapy has
also been known (Hernberg et al., 1997). However, due to
the lack of mechanistic insights, skepticism overruled the
immunotherapeutic potential of chemotherapeutics. Emerging
reports unravel the possible mechanisms and provide significant
insights on chemotherapy-related sensitivity of cancer to immune
cells such as T cells and NK cells. Using clinically relevant
chemotherapeutics it has also been demonstrated that induction
of cellular stress or genotoxic stress render cancer cells sensitive
to NK cells (Fine et al., 2010). Further, it has been shown
that chemotherapy-dependent down-regulation of C-type lectin
related receptor on cancer cells was coordinated with an
up-regulation of NKG2D ligands (Fine et al., 2010). Note,
MIC-A/B are also NKG2D ligands that are recognized by NK
cells. In fact, in end-stage patients it has been demonstrated
that low-dose metronomic treatment with cyclophosphamide
depletes the regulatory T cells (Tregs- that inhibit the cytotoxic
T lymphocytes), and restores the activity of T-cells as well as
NK cells (Ghiringhelli et al., 2007). However, a direct molecular
link between tumor sensitivity and NK cell efficacy following
chemotherapy still remains obscure. Recent data demonstrated
that induction cellular stress (e.g., H2O2, thermal stress,
metabolic stress) followed by the up-regulation of MIC-A/B is
a direct molecular link that sensitizes cancer cells to NK cell
mediated cytotoxicity (Yamamoto et al., 2001; Dayanc et al., 2013;
Fu et al., 2015). It has also been shown that such stress conditions
decrease the rate of shedding or cleavage of the MIC-A/B a
mechanism that enables cancer cells to evade NK cell recognition
(Chitadze et al., 2013). These reports unequivocally indicate
that induction of cellular stress could be pivotal to up-regulate
NKG2D ligands (Fine et al., 2010) and sensitize cancer cells to
NK cell activity.

The preliminary data shown here certainly necessitates
detailed investigation for further validation. Yet, the results
provide first indication of the possible application of current
chemotherapeutics at non-lethal metronomic doses to induce
cellular stress followed by the expression of stress-inducible
MIC-A/B. Importantly, as the therapeutics are used at very low,
non-toxic doses it is likely to avoid or prevent potential systemic
toxicities or undesirable effects that are frequently encountered
with conventional chemotherapy. For example, chemotherapy-
related complications on gastrointestinal tract (Boussios et al.,

2012) and cardiovascular toxicities (Swain et al., 2003; Jones
et al., 2007; Khouri et al., 2012) have already been reported.
Furthermore, chemotherapy related toxicities on the central
nervous system (e.g., methotrexate) (Cordelli et al., 2017) and
cardiomyopathy (e.g., doxorubicin) have also been reported
(Chatterjee et al., 2010). Besides toxicities, the undesirable
effect of some therapeutics (e.g., tamoxifen) involves impact on
patient’s face, eyelids, and eyebrows, resulting in frequent visits to
the optometrist as well (Omoti and Omoti, 2006).

Paclitaxel, doxorubicin, and methotrexate are common
chemotherapeutics approved for the use in the treatment of
many cancers. However, using the maximum effective dose
with extended periods between treatment cycles has proven
to decrease the outcome, with increased systemic toxicity.
Recently, metronomic chemotherapy has been suggested as an
alternative option to mitigate unwanted side-effects of maximum
effective dose (Scharovsky et al., 2009). Thus, by using non-
toxic, sub-lethal dose the risk of systemic toxicity is likely to
be lowered, if not eliminated. More importantly, such low-dose
chemotherapeutics would not hinder or block host immune cells’
function.

Arguably, the use of low-dose chemotherapeutics by
metronomic treatment may contribute for the emergence of a
resistant or “addiction” phenotype. Such cancer cells may become
insensitive to any dose escalation if necessary. In principle, cancer
cells that are subjected to cellular stress and induction of MIC-
A/B would be sensitive to NK cells hence would be eliminated.
Thus, cells that are exposed to low-dose metronomic treatment
are likely to be eliminated by NK cell mediated cytotoxicity.
Furthermore, data also indicate that cancer cells that acquired
resistance to low-dose chemotherapy are still sensitive to the
maximum tolerated effective dose (Emmenegger et al., 2011).
So, it is plausible that despite the low-dose exposure the cancer
cells still be responsive to high-dose chemotherapy. Nevertheless,
additional pre-clinical as well as clinical investigations are
mandatory to verify any potential concerns. Future studies on
the stability and half-life of MIC-A/B ligands that are induced
by low-dose, non-toxic chemotherapeutic would be critical to
ascertain if the MIC-A/B induction will sensitize cancer cells to
NK cells. In addition, as cancer cells evade NK cell recognition
by shedding or cleavage of the MIC-A/B, it is imperative to
determine whether low-dose chemotherapy mitigates or inhibits
such shedding of MIC-A/B. Thus, current chemotherapeutics
may have an extended application to induce or enhance cancer’s
sensitivity to NK cell mediated cytotoxicity.
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