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Introduction
Transcriptome analysis is a powerful strategy to connect geno-
type to phenotype of cells. Essentially, all cells share the same 
genetic code inherited from their ancestor, but transcriptomes 
of individual cells characterize a subset of genes expressed to 
reflect their epigenetic status or their genetic regulatory system 
leading to specific phenotypes.1,2 Hence, ideally, the transcrip-
tome should be profiled for each individual cell; however, 
owing to technical limitations, until recently, most transcrip-
tomic profiling has been done on bulk cells, yielding only aver-
age behavior of tens of thousands of cells. Recent advances in 
next-generation sequencing technologies have allowed in-
depth investigation of the transcriptome at a single-cell resolu-
tion,3 thereby opening avenues for innovative target discovery.4 
A recent theoretical analysis has compared phenotype classifi-
cation based on single-cell expression trajectories with mean 
expression levels across multiple cells, as is the case with both 
ordinary RNA-Seq and expression microarrays.5 Bulk expres-
sion measurement (multiple-cell averaging) destroys both 
intercell and dynamical information, and therefore using sin-
gle-cell trajectories should be expected to achieve lower mis-
classification rates for phenotype classification. In the work by 
Karbalayghareh et al.,5 cell trajectory versus average cell clas-
sification is studied in the context of Boolean networks with 
perturbation (BNp) and, except in some cases where the 

network attractors have special form,6–8 single-cell trajectory 
data outperform average cell measurements. In practice, regula-
tory asynchronicity would lead to missing values.9 Moreover, 
lower amounts of messenger RNA in individual cells can cause 
experimental issues that would also lead to dropouts.10 Thus, 
the modeling in the work by Karbalayghareh et al.5 assumes 
random missing values in trajectory readouts, with missing 
value rates as high as 50%.

Looking into the future, we should expect that nondynami-
cal (nontrajectory) single-cell data in sufficient supply for can-
cer classification will become available before sufficient 
dynamical single-cell data. In this case, because a gene’s expres-
sion is not static, expression measurements for a gene will pos-
sess a distribution over the cell collection and not simply from 
measurement error. Moreover, as genes interact, they will pos-
sess a joint expression distribution. Reducing this multivariate 
distribution to a set of averages entails a significant compres-
sion of information. If single-cell measurements were available, 
then each cell would yield an expression vector, the collection 
of cells would yield a sample of expression vectors, sample 
moments (not just averages) can be computed, and moment-
based classification could proceed using higher order and 
mixed moments. The latter can be particularly useful because 
they reveal interaction and the alteration of signaling pathways 
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can significantly alter gene interaction, thereby enabling phe-
notype discrimination.

Methods
For moment-based classification, suppose that for each tissue, 
n  cells are collected and for each cell an expression vector is 
formed from g  genes. This yields a sample of n  expression 
vectors Y Y Y1 2, , , n, where Yi i i igY Y Y= [ , , ,1 2  ]. From these, 
we can compute empirical moments. A feature vector is com-
posed of some set of moments. We focus on the first 3 moments, 
µ1

i, µ2
i , µ3

i, for each gene expression e Y Y Yi i i ni= [ , , , ]1 2  , and 
the second-order mixed moments, µij, i j g, 1, 2, ,=  , with  i 
≠ j, for (e ei j, ). This gives a total of d g g g g( ) ( / ) ( )= + −3 1 2 1  
moments for each tissue and these form a feature vector 
X = ( , , , )( )X X Xd g1 2  , where X X X1 1

1
2 1

2
3= = =µ µ, ,  

µ µ µ µ µ1
3

4 2
1

3
3

3 1 12 3 2 13 4 1, , , , , , ,X X X X Xg g g g g= = = =+ + − 

= = = −µ µ µ1 4 21 1k g d g g gX X, , , ( ) , . We will not consider addi-
tional moments due to the sample size being small, which is 
typical in genomics applications.

If there are N  tissue samples, N 0  from phenotype 0 and 
N1  from phenotype 1, then we have the training sample 
S S S= ∪0 1, with N 0  moment feature vectors from class 0 and 
N1  from class 1. Because it is typically the case in biomedicine 
that sampling is separate and not random, meaning that tissues 
are chosen randomly from each class but not from the popula-
tion as a whole, so that prior probabilities c P L0 0= =( )  and 
c P L1 1= =( ), where L  is the class label, cannot be estimated 
from the data11; we assume that they are known.

Synthetic data via a gene regulatory network

If we assume a network model, then we can solve for the 
Bayes classifier and generate synthetic data to study classi-
fier design and feature selection.12 We shall assume 
Gaussian networks generated from hidden discrete net-
works, which we will take to be BNp6 but which could also 
be probabilistic Boolean networks8 or Bayesian networks.13 
Knowing the generating BNp allows us to study the effects 
of regulatory alteration, for instance, classifying between a 
nominal network and another resulting from mutation or 
drugs. Using Gaussian measurements allows us to model 
basal-level expressions and variability. We describe the net-
work model for a single BNp and later return to classifica-
tion with 2 BNps.

Consider a BNp with g  genes. States are of the form 
V = ( , , , )V V Vg1 2  , where Vi ∈ { , }0 1 , and there are 2 g  states. 
The 2 2g g×  transition probability matrix (TPM) can be ana-
lytically derived and the steady-state distribution π can be 
derived from the TPM. Let   be the d g( )  moment vector 
associated with π. We assume a Gaussian observation. The 
observation Yi  of the ith  gene is normally distributed:

Y Vi i i∼ + ( , )λ δ σ 2

where λi  is the mean expression when the ith  gene is con-
sidered off, λ δi +  is the mean expression when the ith  gene 
is on, and σ 2  is the expression variance. There is no theo-
retical difficulty in making δ  and σ  depend on i , but to 
keep the results more transparent and the simulations less 
burdensome, we will not. Y = ( , , , )Y Y Yg1 2   is the observa-
tion corresponding to the hidden state V = ( , , , )V V Vg1 2  . 
For a single subject, there are n  cells observed. This yields 
observations Y Y Y1 2, , , n ,  where Y j j j jgY Y Y= ( , , , )1 2  , 
Y N Vji i ji∼ +( , )λ δ σ 2 , V j j j jgV V V= ( , , , )1 2  , and V1, V2, 
…, Vn are randomly drawn from π. A moment feature vector 
X , where X = ( , , , )( )X X Xd g1 2   is defined earlier in the 
section, is calculated from Y Y Y1 2, , , n .

When the BNp is perturbed, a different TPM will follow 
which results in a different steady-state distribution. We refer 
to the steady-state distribution for the unperturbed and per-
turbed BNps as π0 and π1, respectively. We are interested in 
studying whether including different moments will improve 
the classification. Therefore, we categorize 3 types of moment 
features: 1  for first moment features only, 2  supersetting 
1  but also including the second and third moment features, 
and 3  supersetting 2  but also including mixed moments.

If there are N  subjects, each with n  cells in the sample, 
then this procedure yields a training sample S S S= ∪0 1,  
where S L L LN N0 01 01 02 02 0 0{( , ),( , ), ,( , )}

0 0
= X X X  and 

S L L LN N1 11 11 12 12 1 1{( , ),( , ), ,( , )}
1 1

= X X X , with N 0  and 
N1  feature vectors based on the steady-state distributions π0  
and π1, respectively, with Luv  being the observed labels, and 
N N N= +0 1. Randomness in X  results from randomness in 
V V V1 2, , , n  and randomness in the observations Y ji.

In this study, we generate synthetic data using 2 pathway 
networks: Pathway Network 1 (PN1) is a mammalian cell 
cycle network and Pathway Network 2 (PN2) is melanoma-
related pathway network (Figure 1). Both of these have been 
previously proposed and described.14 Briefly, PN1 includes a 
few key genes in the mammalian cell cycle whose signals and 
controls play a critical role in cell growth, among which P27 
is active in the absence of the cyclins and blocks the action of 
CycE or CycA. When P27 is mutated and always off, it intro-
duces a mutated phenotype where the growth factors are 
inactive. On the other hand, PN2 focuses on gene Wnt5a, 
which has been found to be highly discriminating between 
cells with properties typically associated with high versus low 
metastatic competence, as validated in melanoma cells. A dif-
ferent type of perturbation is applied to PN2, where we added 
the regulatory predictor Ret1 for S1000p (dashed arrow from 
Ret1 in Figure 1) as a function wiring modification. A sum-
mary of these networks is shown in Table 1.

Real data from fluorescent protein reporters

Ideally, single-cell RNA-Seq technology could be used to 
profile the whole transcriptome of hundreds of cells from 
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individual patients/cell lines. However, because this tech-
nology is still under intensive development and not widely 
adopted with a common protocol, current publicly available 
single-cell RNA-Seq data sets are generated to demonstrate 
the ability of a certain methodology, usually the amount and 
quality of cells profiled per patient/cell line. As a result, 
these data sets contain extremely small numbers of patient/
cell line sample points per phenotype, usually 1 or 2, thus 
thwarting any effort for realistic classification based on such 
data. Thus, in this study, we use an in-house data set col-
lected through a high-content imager that tracks a given 
gene’s transcription level in individual cancer cells via fluo-
rescent protein reporters.15,16

Prior to the introduction of single-cell RNA-Seq, fluores-
cent protein reporters, along with single-molecule fluores-
cent in situ hybridization and single-cell quantitative 
polymerase chain reaction, have been the most common 
approaches to examine transcriptional heterogeneity among 
cells.17–20 In the fluorescent technology, the protein reporter 
is assembled by fusing the coding sequence of a fluorescent 
protein reporter with the promoter region of the target gene 
and then transfecting it into target cells. The abundance of 

the fluorescent protein indicates the transcriptional level and 
it can be captured by an epifluorescent microscope. In our 
experimental setup, each cell is transfected with just one 
reporter to follow the transcription of one specific target 
gene. The fluorescent images are commonly taken as 2-color 
image pairs with a blue channel for the nuclei and a green 
channel for the fluorescent reporters. Then, the expression 
levels of individual cells are extracted using an in-house soft-
ware that first identifies the individual nuclei in the nuclei 
channel and then extracts the corresponding fluorescent pro-
tein signal in the other channel.

Compared with single-cell technology, the fluorescent 
protein reporter technology detects only 1 gene, rather than 
the whole transcriptome. An advantage of a high-content 
imager is that one can capture the transcriptional activities in 
many wells on the plate simultaneously, where each well is an 
independent sample point from the corresponding cell line. 
With this size, we can test the potential of moment classifi-
cation, even with just a single gene. The drawback is that 
there are no second-order mixed moments. Nonetheless, we 
can test moment classification using the first 3 moments and 
demonstrate its advantage over classification using only the 
mean.

Our simulation study involves 2 cell lines, HT-29 and 
HCT-116, that are resistant and sensitive to the drug lapat-
inib, respectively. Lapatinib is a cancer drug that has been 
approved for treating breast cancer by inhibiting Egfr and 
Erbb2, 2 membrane-bound protein receptors commonly 
associated with cancer. Thus, we have selected Egfr and 
Erbb2 as the 2 genes to be profiled. Because each cell has 
only 1 fluorescent protein, Egfr and Erbb2 expressions are 
profiled separately. The number of wells (sample points) 
available for each (cell line, gene) combination from our 
experiment is shown in Table 2. The images are taken 2 hours 
before lapatinib is added.

Figure 1. Logical regulatory network graphs for a mammalian cell cycle 

network (PN1) and a melanoma-related pathway network (PN2), modified 

from Figures 3 and 1 in Qian and Dougherty,14 respectively. An arrow 

represents activation regulation, whereas an arrow ending with a bar 

represents inhibition. A different steady-state distribution resulted from 

P27 stuck-at-0 change (shaded node in PN1) or regulatory change 

(dashed arrow in PN2). PN1 indicates Pathway Network 1; PN2, Pathway 

Network 2.

Table 1. A summary of the pathway networks in this study.

PATHwAy 
NETwoRK (PN1)

PATHwAy NETwoRK 
(PN2)

Description Mammalian cell 
cycle

Melanoma-related 
pathway

No. of genes 10 7

Perturbation P27 mutated and 
stuck at 0

Adding regulatory 
predictor

Table 2. Number of wells/samples measured for every gene and cell 
line.

HT-29 HCT-116

Egfr 43 24

Erbb2 24 24

Median number of cells per well: 247.
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Results and Discussion
Synthetic data
To compare classification error rates using features from differ-
ent moments, we repeatedly sample R = 200  times from both  
π0 and π1. For sample r = 1 2 200, , , , a sequential forward 
search21 is used to find k ∈ { , , }3 4 5  features from X , estimated 
with ∼ ±200 25( )  cells. For k = 3 4 5, , , the error rates 
ε ε ε1 2 3
r k r k r k, , ,, ,  are computed from a large set of test data for 

each category of moment features,   1 2 3, , , respectively, 
and average error rates ε ε ε  

1 2 3, ,
k k k  are computed from the R  

samples. We have computed error rates for linear discriminant 
analysis (LDA), quadratic discriminant analysis (QDA), a sup-
port vector machine (SVM) with linear kernel, and a shallow 
feedforward neural network with hidden layer of size 10 
(NNet). We use sample sizes N = 100  and N = 200, which 
are representative of many studies in genomics.

Figure 2 shows data plots for network PN1, with sample 
size N = 200, for k = 3 4 5, , , where for k = 4 5, , multidimen-
sional scaling22 has been used to reduce the plot to 3 dimen-
sions. For each value of k, there are 2 data plots arising from 
different samples: one possessing low LDA error (top figures) 
and the other possessing high LDA error (bottom figures). In 
all figures, the data appear to be compatible with linear dis-
crimination, an observation that is born out in the error rates. 
Table 3 shows the average error rates for feature sets 
  1 2 3, , , feature counts k = 3 4 5, , , and sample sizes 
N = 100 200,  for networks PN1 and PN2.

A considerable amount of insight can be gleaned from 
Table 3. Focusing first on PN1 with N = 200, we see the kind 
of behavior one might expect regarding the relation between 
  1 2 3, , and . For all values of k , the errors decrease from 
1  to 2  to 3. Hence, using single-cell measurement is 
important. Most critically, the decrease from 2  to 3  is 
much greater than the decrease from 1  to 2. This means 
that adding mixed moments has a more significant effect than 
adding higher order single-variable moments. This behavior is 
important for genomics: the mixed moments capture gene-
gene interaction, which is affected by regulatory mutations. If 
we fix the feature class, we do not see improvement for increas-
ing k  (a slight bit for 3). This means that 3 features are 
enough (for N = 200), the issue being to have mixed-moment 
features in the mix.

For the smaller sample size N = 100 , the errors are greater 
but again the decrease from 2  to 3  remains significant 
for all values of k  (albeit less than for N = 200). Much of the 
advantage of the added high-order moments is lost from 1  
to 2  so that the errors remain essentially the same. We are 
observing the peaking phenomenon23–25: for fixed sample size, 
as the overall number of features grows, at first, the error 
decreases, but then it increases, the phenomenon being more 
prominent for small samples. Thus, the advantage of a superset 
of features is diminished and can actually be harmful. For a 
fixed feature class and increasing k, for 1 and 2, the errors 
get worse, and for 3, they remain the same. Feature selection 
mitigates to some extent the effect of peaking; however, as 

Figure 2. The 3-dimensional scatterplots for network PN1 sample points, with sample size N = 200, for k = 3  ((a) and (d)), k = 4  ((b) and (e)), and 

k = 5  ((c) and (f)). For k = 4 5, , multidimensional scaling has been used to reduce the plot to 3 dimensions. For each value of k, there are 2 data plots 

arising from different samples: one possessing low LDA error ((a)-(c)) and the other possessing high LDA error ((d)-(f)). LDA indicates linear discriminant 

analysis; PN1, Pathway Network 1.
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opposed to earlier studies in previous works,23–25 in which there 
is no feature selection, the results in the work by Sima and 
Dougherty26 demonstrate that peaking behavior is affected in 
peculiar ways by feature selection and is dependent on the clas-
sification rule.

Similar effects are seen for network PN2 with LDA but the 
improvement is significantly less for PN2 as compared with 
PN1. In part this is because the overall error rates are much 
smaller and, perhaps, in part because there are less mixed 
moments to choose from or because there are no strong mixed-
moment effects due to regulatory change (which can happen if 
the effects of the regulatory change are spread out in the 
steady-state distribution).

To get a better sense of the contribution of extra features 
resulting from single-cell classification, in Figure 3, we have 
plotted the distributions   1 2 3

k k k, ,  for the LDA error 
rates ε ε ε1

,
2
,

3
,, ,r k r k r k , respectively (mean errors shown on the 

horizontal axis), for N = 200  and k = 3 5, . For both net-
works, classification improvement when moving from 1  
to 2  to 3  is apparent as the error rate distributions 
shift to the left.

QDA, SVM, and NNet show similar behavior to that of 
LDA for network PN1 and N = 200. Most importantly, for all 
k, the errors decrease from 1  to 2  to 3, and the decrease 
from 2  to 3  is much greater than the decrease from 1  
to 2 . Once again, the differences are less pronounced for 
N = 100  on account of peaking. Analogous comments also 
apply to network PN2, but to a lesser degree, as is the case with 
LDA.

Real data

For the fluorescent imaging data, as we have profiled 1 gene for 
each cell, for each case, there are 3 features associated with that 
gene: mean, variance, and skewness. To test the potential of 
moment-based classification, we have tested all 7 feature com-
binations: mean, variance, skewness, mean plus variance, mean 
plus skewness, variance plus skewness, and all 3 features. Linear 
discriminant analysis is used for classification (QDA performs 
poorly on account of small sample size). The 10-fold cross-
validation averaged over 10 repeats has been used to estimate 
errors. The simulation results are summarized in Table 4.

Table 3. Average error rates ε ε ε  

1 2 3
k k k
, ,  for k ∈ { , , }3 4 5  and both networks PN1 and PN2.

k = 3 k = 4 k = 5

 M1 M2 M3 M1 M2 M3 M1 M2 M3

 
ε1
3 ε 2

3 ε 3
3 ε1

4 ε 2
4 ε 3

4 ε1
5 ε 2

5 ε 3
5

PN1 LDA N = 100 0.2070 0.2073 0.1867 0.2092 0.2093 0.1867 0.2109 0.2106 0.1868

 N = 200 0.2008 0.1970 0.1629 0.2005 0.1973 0.1607 0.2006 0.1975 0.1590

 QDA N = 100 0.2121 0.2129 0.1914 0.2189 0.2190 0.1948 0.2274 0.2270 0.2011

 N = 200 0.2029 0.1999 0.1684 0.2054 0.2030 0.1683 0.2084 0.2063 0.1696

 SVM N = 100 0.2145 0.2152 0.1962 0.2163 0.2193 0.1992 0.2200 0.2226 0.1996

 N = 200 0.2040 0.2004 0.1699 0.2041 0.2014 0.1679 0.2045 0.2025 0.1692

 NNet N = 100 0.2476 0.2412 0.2198 0.2479 0.2542 0.2234 0.2611 0.2563 0.2230

 N = 200 0.2219 0.2216 0.1868 0.2224 0.2196 0.1850 0.2268 0.2204 0.1820

PN2 LDA N = 100 0.1019 0.1017 0.0995 0.1015 0.1018 0.0991 0.1002 0.1014 0.0998

 N = 200 0.0936 0.0907 0.0869 0.0923 0.0892 0.0847 0.0910 0.0882 0.0840

 QDA N = 100 0.1048 0.1050 0.1035 0.1064 0.1069 0.1053 0.1076 0.1097 0.1079

 N = 200 0.0965 0.0935 0.0895 0.0962 0.0932 0.0893 0.0951 0.0938 0.0885

 SVM N = 100 0.1081 0.1085 0.1092 0.1079 0.1119 0.1111 0.1085 0.1139 0.1147

 N = 200 0.0985 0.0953 0.0922 0.0981 0.0956 0.0917 0.0976 0.0956 0.0923

 NNet N = 100 0.1358 0.1304 0.1277 0.1285 0.1319 0.1264 0.1349 0.1347 0.1266

 N = 200 0.1112 0.1059 0.1051 0.1095 0.1043 0.1030 0.1060 0.1046 0.1028

Abbreviations: LDA, linear discriminant analysis; NNet, neural network; PN1, Pathway Network 1; PN2, Pathway Network 2; QDA, quadratic discriminant analysis; SVM, 
support vector machine.
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With higher moments added to the feature pool, classifica-
tion performance can improve significantly. For Egfr, it is hard to 
classify with only the mean. Using variance and skewness, clas-
sification performance improves from 0.597  to 0.376 . For 
Erbb2, with the mean, the performance is already very good at 
0.083 . By adding variance, the error rate is cut by more than half 
to 0.038 . Clearly, the higher moments improve performance.

Conclusions
The advent of single-cell expression measurement creates the 
potential for high-throughput expression-based classification 
with much greater accuracy than simply using mean expression 
over many cells. As we have demonstrated with both synthetic 
data generated from real networks and real single-cell data, 
higher order moments can improve moment-based classifica-
tion, and the inclusion of mixed moments can make a more 

substantial improvement, not only because there are simply more 
features but also because mixed moments can capture gene-gene 
regulatory differences. Hopefully, these results will spur the 
development of more sophisticated single-cell technology so 
that practical sample sizes can be efficiently generated.
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