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A framework for clinical diagnosis which uses bioinspired algorithms for feature selection and gradient descendant back-
propagation neural network for classification has been designed and implemented. 'e clinical data are subjected to data
preprocessing, feature selection, and classification. Hot deck imputation has been used for handling missing values and min-max
normalization is used for data transformation. Wrapper approach that employs bioinspired algorithms, namely, Differential
Evolution, Lion Optimization, and Glowworm Swarm Optimization with accuracy of AdaBoostSVM classifier as fitness function
has been used for feature selection. Each bioinspired algorithm selects a subset of features yielding three feature subsets.
Correlation-based ensemble feature selection is performed to select the optimal features from the three feature subsets. 'e
optimal features selected through correlation-based ensemble feature selection are used to train a gradient descendant back-
propagation neural network. Ten-fold cross-validation technique has been used to train and test the performance of the classifier.
Hepatitis dataset and Wisconsin Diagnostic Breast Cancer (WDBC) dataset from University of California Irvine (UCI) Machine
Learning repository have been used to evaluate the classification accuracy. An accuracy of 98.47% is obtained for Wisconsin
Diagnostic Breast Cancer dataset, and 95.51% is obtained for Hepatitis dataset.'e proposed framework can be tailored to develop
clinical decision-making systems for any health disorders to assist physicians in clinical diagnosis.

1. Introduction

Knowledge discovery plays a vital role in extracting
knowledge from clinical databases. Data mining is a step in
the process of knowledge discovery. 'e quality of data for
data mining is improved using preprocessing techniques.
Data mining tasks include association rule mining, classi-
fication, and clustering [1]. Data mining techniques find
tremendous applications in healthcare to analyse the trends
in patient records which lead to improvement in healthcare
applications. Predictive data mining (PDM) plays a major

role in healthcare. 'e goal of PDM in healthcare is to build
models from electronic health records that use patient
specific data to predict the outcome of interest and support
clinicians in decision-making. PDM can be used to build
models for prognosis, diagnosis, and treatment planning [2].
'e symptoms observed on a patient, clinical examination,
and outcomes of laboratory tests might perhaps exemplify
more than one possible disease. Decision-making with
complete certainty is not practical since there exists un-
certainty in clinical data provided by the patients, and taking
an accurate decision is a challenging task. PDM techniques
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can be applied to the data available in electronic health
records to infer clinical recommendations for patients, with
the aid of historic data about the clinical decisions ad-
ministered to patients who exhibited similar symptoms.
Computer-aided diagnosis (CAD) systems can be used by
clinicians as a second opinion in decision-making and
treatment planning.

A framework for knowledge mining from clinical
datasets using rough sets for feature selection and classifi-
cation using backpropagation neural network has been
proposed in [3]. A decision support system for diagnosis of
Urticaria is presented in [4]. A CAD system for predicting
the risk of cardiovascular diseases using fuzzy neurogenetic
approach is proposed in [5]. CAD frameworks for diagnosis
of lung disorders are proposed in [6–12]. A framework for
diagnosing the severity of gait disturbances for patients
affected with Parkinson’s disease is discussed in [13].
Classifying clinical time series data observed at irregular
intervals using a biostatistical mining approach is proposed
in [14]. A CAD system to diagnose gestational diabetes
mellitus is presented in [15].

Classification plays a major role in CAD systems. First,
the classifier is trained using a supervised learning algorithm
with a train set, and second, the performance of the de-
veloped classifier is evaluated using a test set. Classification
using decision tree induction, Bayesian classification, clas-
sification by backpropagation, support vector machines, and
k-nearest neighbour classifiers are the widely used classifiers.
Presence of irrelevant features in the train set affects the
performance of the classifier. Pruning the irrelevant features
and selecting the subset of relevant features will improve the
performance of the classifier.

Feature selection algorithms can be categorized into
supervised [16], unsupervised [17], and semisupervised
feature selection [18] according to whether the training set is
labelled or not. Filter, wrapper and embedded are supervised
feature selection methods. Filter approaches to feature se-
lection are independent of the classification algorithm used.
'e dependency of each and every feature to the class label is
measured, and a predefined number of features are selected.
Relief, Fisher score, information gain, chi-squared test, and
correlation coefficient are some of the feature selection
criteria that can be used in the filter approach. 'e wrapper
method uses the predictive accuracy of a predetermined
learning algorithm to determine the quality of the selected
features. 'e embedded method first incorporates the sta-
tistical criteria, as filter model does, to select several can-
didate features subsets with a given cardinality. Second, it
chooses the subset with the highest classification accuracy
[19]. While unsupervised feature selection works with
unlabelled data, it is difficult to evaluate the relevance of
features. Semisupervised feature selection makes use of both
labelled and unlabelled data to estimate feature relevance
[20].

Computational algorithms inspired by biological pro-
cesses and evolution can provide an enhanced basis for
problem-solving and decision-making [21]. A review of
bioinspired algorithms, namely, neural networks, genetic
algorithm, ant colony optimization, particle swarm, artificial

bee colony, cuckoo search, firefly, bacterial foraging, leaping
frog, bat algorithm, flower pollination, and artificial plant
optimization algorithm has been presented in [22]. Other
bioinspired algorithms have also been proposed by
researchers.

In this research work, a framework for clinical diagnosis
which uses bioinspired algorithms for feature selection and
gradient descendant backpropagation neural network for
classification has been designed and implemented.

'e rest of the paper is organized as follows. Section 2
provides an overview of related research work. An outline of
Wisconsin Diagnostic Breast Cancer (WDBC) dataset and
Hepatitis dataset from University of California Irvine Ma-
chine Learning repository is presented in Section 3. Section 3
also presents a detailed description of the system framework.
Results are discussed in Section 4. Conclusion and the scope
for future work are discussed in Section 5.

2. Related Work

Leema et al. [23], in their work, developed a CAD system
using a backpropagation neural network for classifying
clinical datasets. Differential evolution with global in-
formation (DEGI) for global search and backpropagation
(BP) for local search were used to adjust the weights of the
neural network. DEGI was modelled by considering PSO’s
search ability and differential evolution’s mutation operation
that can assist in the improvement of exploration in PSO.
'e classifier obtained accuracies are 85.71%, 98.52%, and
86.66 when experimented with Pima Indian Diabetes
dataset, Wisconsin Diagnostic Breast Cancer dataset, and
Cleveland Heart Disease dataset from UCI machine learning
repository, respectively.

Sweetlin et al. [24] proposed a CAD system for di-
agnosing bronchitis from lung CT images. 'e ROIs were
extracted from training CT slices and from ROIs, 22 texture
features in four orientations, namely, 0°, 45°, 90°, and 135°,
and 12 geometric features were extracted for feature se-
lection. A hybrid feature selection approach based on ant
colony optimization (ACO) with cosine similarity and
support vector machine (SVM) classifier was used to select
relevant features. 'e training and testing datasets used in
building the classifier model were disjoint and contained
200CT slices affected with bronchitis, 50 normal slices, and
300 slices with cancer. Out of 100 features extracted from
each CT slice, a subset of 60 features was selected for
classification. 'e SVM classifier was used for classifying the
CT slices. Accuracy of 81.66% with the values of n-max and
n-tandem as 60 and 12 was reported.

Emary et al. [25] proposed a feature selection method
using Binary Grey Wolf Optimization. Two approaches for
Grey Wolf Optimization are used in the feature selection
process. 'e objective was to maximize the classification
accuracy and minimize the number of selected features.
Experiments were carried out on 18 datasets from the UCI
machine learning repository among which Wisconsin Di-
agnostic Breast Cancer dataset and lymbhography belong to
clinical data. Mean fitness function values of 0.027 and 0.151
were obtained for the breast cancer and lymbhography
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datasets, respectively, which were comparatively greater
than the values obtained using particle swarm optimization
and genetic algorithm.

Nahato et al. [26] proposed a classification framework by
combining the merits of fuzzy sets and extreme learning
machine. Clinical datasets were transformed into fuzzy sets
by using trapezoidal member function. Classification was
performed using a feedforward neural network with a single
hidden layer using extreme learning machine. Experiments
were carried out on Cleveland heart disease (CHD) with five
class labels, Cleveland heart disease (CHD) with two class
labels, Statlog heart disease (SHD), and Pima Indian Di-
abetes (PID) datasets from UCI machine learning repository
and reported accuracies of 73.77%, 93.55%, 94.44%, and
92.54%, respectively.

Mafarja et al. [27] presented a metaheuristic algorithm
using Ant-Lion Optimizer for feature selection. Six variants
of Ant-Lion Optimizer were analysed by deploying different
transfer functions. Each transfer function was used to map
the continuous search space to a discrete search space of the
domain. 'ree V-shaped and three S-shaped transfer
functions were used in this study. 'e experiments were
conducted using 18 datasets from UCI machine learning
repository and compared with PSO gravitational search
algorithm and two different variants of Ant-Lion Optimizer-
Based Algorithm. 'e experimental results show a better
accuracy compared to the existing methods. For the Wis-
consin diagnostic breast cancer dataset, Ant-Lion Opti-
mizer-Based Algorithm with V-shaped transfer function
obtained an accuracy of 97.4%. Ant-Lion Optimizer with
V-shaped transfer function performs better than using
S-shaped transfer function by avoiding local optima.

Zawabaa et al. [28] have presented a hybrid bioinspired
heuristic algorithm which combines Ant-Lion Optimization
(ALO) and Grey Wolf Optimization (GWO) algorithms for
feature selection. In the hybrid algorithm, the convergence
was obtained towards global optimization by avoiding local
optima and speeding up the search process. 'is hybrid
algorithm individually outperforms the Ant-Lion Optimizer
and Grey Wolf Optimizer, which has been experimented
using 18 datasets from UCI machine learning repository
among which Cleveland Heart dataset and Wisconsin Di-
agnostic Breast Cancer dataset belong to clinical domain.
'e ALO-GWO algorithm showed the exploration of the
search space and exploitation of optimal solution in a much
balanced way. Average fisher score values of 0.765 and 0.077
were obtained for Wisconsin Diagnostic Breast Cancer
dataset and Cleveland Heart Disease dataset, respectively.
'e use of parallel distribution mode was suggested by the
authors to enhance the convergence time of the classifier.

Anter and Ali [29] developed a hybrid feature selection
strategy combined with chaos theory and crow search op-
timization as well as fuzzy C-means algorithm. It is reported
that the proposed integrated framework has the ability to
reach the global optimal solution by avoiding the local
optimal solution. Exploration and exploitation rates were
balanced which increased the convergence speed and per-
formance of the classifier. Experiments have been conducted
for different medical datasets using different chaotic maps.

For the Wisconsin Diagnostic Breast Cancer dataset, the
proposed method showed an accuracy of 98.6% for the best
selected attributes, whereas for Hepatitis dataset, an accu-
racy of 68% was obtained. 'e authors conducted different
experiments and recorded the accuracy over different cha-
otic maps and evaluation criteria. Chaotic version with
parallel bioinspired optimization was recommended to in-
crease the convergence rate.

Paul and Das [30] presented an evolutionary multi-
objective optimization for feature selection. In this work, a
simultaneous feature selection and weighing method, in-
stead of only feature selection, is the novelty. 'e authors
formulated the interclass and intraclass distance measures
and simultaneously used a multiobjective algorithm based
on decomposition. In order to get optimal features, a penalty
mechanism was introduced in the objective function, and
reduced number of features are selected using a repair
mechanism. Experiments were conducted for different
datasets from the UCI machine learning repository and
LIBSUM data repository. For Wisconsin Diagnostic Breast
Cancer Dataset, it provides a better accuracy of 96.53% over
the related existed methods.

Abdul Zaher and Eldeib [31] proposed a CAD system for
classification of breast cancer. 'e authors developed the
system using deep belief network and backpropagation
neural network. 'e Liebenberg Marquardt learning func-
tion was used for the construction of backpropagation
neural network. 'e weights are initialized using deep belief
network. 'e experiments were conducted on Wisconsin
Breast Cancer Dataset with nine features and two classes.
'e results show 99.68% accuracy for the Wisconsin Breast
Cancer dataset. 'e proposed system brings an effective
classification model for breast cancer. 'e development of
parallel approach for learning such a classifier is suggested as
a future work.

Christopher et al. [32] proposed a metaheuristic method
called wind-driven swarm optimization for medical di-
agnosis. Jval, a novel evaluation metric, which considered
both the accuracy of the classifier and size of the rule set, was
introduced for building a classifier model. 'e efficiency of
this work is compared with that of the traditional PSO al-
gorithm and found to be more accurate. Experiments were
carried out on clinical datasets obtained from UCI machine
leaning repository, namely, Liver Disorder dataset and
Cleveland Heart Disease dataset. For the liver disorder data
set, the proposed method gives an accuracy of 64.60% and
the heart disease data set yields 77.8% accuracy.

Aalaei et al. [33] proposed a feature selection method
using genetic algorithm for breast cancer diagnosis. In this
work, the authors proposed a wrapper-based approach using
GA for feature selection. For classification ANN, PS classifier
and GA classifier were used in this study.'e idea was tested
using Wisconsin Breast Cancer (WBC) dataset, Wisconsin
Diagnostic Breast Cancer (WDBC) dataset, and Wisconsin
Prognosis Breast Cancer (WPBC) dataset. 'e results from
the experiments show that the proposed feature selection
algorithm improves the accuracy of the classifier. 'e results
were compared withWBC,WDBC, andWPBC datasets.'e
accuracy for these datasets was 96.6%, 96.6%, and 78.1%,
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respectively, using the GA classifier. When PS classifier was
used, the accuracy for these datasets was 96.9%, 97.2%, and
78.2%, respectively. 'e accuracy for these datasets when
ANN classifier was used was reported as 96.7%, 97.3%, and
79.2%, respectively. 'e accuracy of the proposed method
was better compared to the existing related methods.

Christopher et al. [34] have proposed a system to predict
the presence or absence of allergic rhinitis by conducting
intradermal skin tests; in this work, a rule-based classifi-
cation is followed. 'e details of skin tests conducted on
different patients were collected, and different mining ap-
proaches were performed to build a Clinical Decision
Support System (CDSS). A total of 872 patients were ex-
amined for this work. 'e CDSS diagnoses for allergic
rhinitis produced an accuracy of 88.31%. 'is work could
have been improved by introducing metaheuristic data
preprocessing techniques, by using ensemble classification
approaches.

Zhao et al. [35] proposed feature selection and pa-
rameter optimization for support vector machines. In this
work, an approach was established with the support of
genetic algorithm along with feature chromosomes, and
support vector machine (SVM) was used for data classi-
fication technique. Selection of feature subset, together
with setting the parameter in the SVM’s training pro-
cedure, adds value to the classification accuracy. To validate
the approach, experiments were conducted on the 18
datasets in UCI machine learning repository out of which
Wisconsin diagnostic breast cancer belongs to the clinical
domain.'e results of this work are 99.00% accurate for the
Wisconsin Diagnostic Breast Cancer dataset, grid search
method produced an accuracy of 95.43%, and GA without
the feature chromosome method produced an accuracy of
96.04%.

Zygourakis et al. [36] used a data mining algorithm
called decision tree to analyse the existence of diabetes by
utilizing Gini index and fuzzy decision boundary. In this
work, Pima Indian Diabetes dataset from UCI machine
learning repository is employed. By Preprocessing the
missing value, the dataset size has been diminished to 336
instances from a total of 768 instances. In this work, three-
fold cross-validation was used; the split point was estimated
by implementing Gini index along with the fuzzy decision
boundary. It resulted in an accuracy of 75.8% for Pima
Indian Diabetes dataset.

Seera and Lim [37] proposed a model for clinical data
using fuzzy min-max neural network classification and re-
gression tree (CART) and random forest model for the
hybrid intelligent system. 'is work proposed a system that
was tested with different datasets from UCI machine
learning repository, namely, liver disorder, Wisconsin di-
agnostic breast cancer, and Pima Indian Diabetes datasets.
'e proposed system was tested with three different strat-
ified cross-validations techniques such as 2-fold, 5-fold, and
10-fold cross validations. 'e best performance result was
achieved by applying 10-fold cross validation.'e accuracies
were 78.39% for Pima Indian Diabetes dataset, 95.01% for
Liver Disorder dataset, and 98.84% for Wisconsin Di-
agnostic breast cancer dataset.

Karaolis et al. [38] developed a CAD system using de-
cision tree algorithm to diagnose coronary heart disease.'is
work performed an analysis using data mining on the data
collected from 1500 subjects during 2003–2006 and 2009 at
Paphos General Hospital at Cyprus. C4.5 decision tree al-
gorithm with five different splitting criteria was used to
extract the rules with the following risk factors. 'e un-
changeable risk factors considered are age, gender, family
history, operations, and genetic attributes. 'e changeable
risk factors considered are diabetes, smoking, cholesterol,
hypertension, and high quantity of lipoprotein and tri-
glycerides.'is work used the splitting criteria like gain ratio,
Gini index, information gain, likelihood ratio, chi-squared
statistics, and distance measure. 'is work investigated three
different models, namely, myocardial infarction (MI) vs
non-MI, percutaneous coronary intervention (PCI) vs non-
PCI, and coronary artery bypass graft surgery (CABG) vs
non-CABG. 'e few important factors that were filtered by
the classification rules were age, smoking, and hypertension
for MI; family history, hypertension, and diabetes for PCI;
and age, smoking, and history of hypertension for CABG.
'e classification accuracy scored by each models is MI
models with 66%, PCI models with 75%, and CABG models
with 75%.

Storn and Price [39] have proposed the differential
evolution (DE) algorithm for optimizing nonlinear and
nondifferentiable functions. 'e differential evolution al-
gorithm starts with a population of candidate solutions
followed by recombination, evaluation, and selection. 'e
recombination approach deals with generating new candi-
date solutions based on the weighted difference between two
randomly selected population solution added to a third
population solution. DE was tested on standard benchmark
functions, namely, Hyper–Ellipsoid function, Katsuura’s
function, Rastrigin’s function, Griewangk’s function, and
Ackley’s function. 'e DE was compared to Adaptive
Simulated Annealing (ASA), the Annealed Nelder andMead
approach (ANM), the Breeder Genetic Algorithm (BGA),
the EASY Evolution Strategy, and the method of Stochastic
Differential Equations (SDE). In most instances, DE out-
performed all of the other approaches in terms of number of
function evaluations necessary to locate a global optimum of
the test functions.

Yazdani and Jolai [40] have proposed a metaheuristic
algorithm called Lion Optimization Algorithm (LOA) for
function optimization based on the behaviour of lion troops.
In Lion Optimization Algorithm (LOA), an initial pop-
ulation is generated by a set of randomly formed solutions
called lions. Some of the lions in the initial population are
selected as nomad lions and rest (resident lions) are ran-
domly partitioned into groups known as prides, which in-
clude both male and female lions. For each lion, the best
obtained solution is passed to the next iteration, and during
the optimization process, the solution is updated pro-
gressively using hunting phase, moving towards the safe
place phase, roaming phase, mating phase, defence phase,
migration phase, Lions’ Population Equilibrium phase, and
convergence phase. LOA was tested on different types of
benchmark functions, namely, unimodal, multimodal,
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hybrid, and composition. LOA achieved faster convergence
and global optima achievement when compared to other
metaheuristic algorithms, namely, invasive weed optimiza-
tion (IWO) algorithm, biogeography-based optimization
(BBO) algorithm, gravitational search algorithm (GSA),
hunting search (HuS) algorithm, bat algorithm (BA), and
water wave optimization (WWO) algorithm.

Krishnanand and Ghose [41] have proposed a swarm
intelligence-based algorithm called Glowworm Swarm Op-
timization (GSO) for optimizing multimodal functions. 'e
main objective of the method was to identify all the local
optima of a function. 'e algorithm is modelled based on the
behaviour of glowworms. GSO starts with a random pop-
ulation of glowworms. Each glowworm is evaluated based on
the luciferin content. In each iteration, the glowworms will
update their positions to increase their fitness, resulting in an
optimal position. 'e algorithm was tested on benchmark
functions, namely, Rastrigin’s function, circles function,
staircase function, and plateaus function. 'e performance of
the GSO was compared with that of PSO and is found to be
superior in terms of convergence speed, number of local
optima captured, and computation speed.

It can be inferred from the literature that wrapper ap-
proaches which uses bioinspired algorithms for feature se-
lection yield fruitful results. 'rough this work, efforts have
been made to design and implement a wrapper approach for
feature selection that uses three bioinspired algorithms,
namely, Differential Evolution, Lion Optimization Algo-
rithm, and Glowworm Swarm Optimization with a corre-
lation-based ensemble feature selector.

3. System Framework

'e proposed framework consists of three subsystems,
namely, preprocessing subsystem, feature selection sub-
system, and classification subsystem. 'e preprocessing
subsystem consists of missing value imputation phase and
normalizing phase. 'e feature selection subsystem selects
an optimal set of features to build the classifier model.
Feature selection in this work uses the wrapper method
based on the following algorithms, namely, Differential
Evolution, Lion Optimization Algorithm, and Glowworm
Swarm Optimization with accuracy of AdaBoostSVM as
the fitness function. 'e classification subsystem uses
Gradient Descent with momentum and Variable Learning
Rate Neural Network classifier in training and testing the
system. 'e system framework is shown in Figure 1.

3.1.DatasetDescription. 'e framework was tested with two
benchmark clinical datasets from UCI machine learning
repository, namely, Hepatitis dataset and Wisconsin Breast
Cancer (WDBC) dataset.

Hepatitis dataset consists of 155 instances with two class
labels. 'ere are 19 features in the Hepatitis dataset with 167
missing values. Outline of the attributes (features) is tabu-
lated in Table 1. 'e class labels “live” and “die” from the
dataset were replaced in the present work as “nonfatal” and
“fatal” respectively.

Wisconsin Diagnostic Breast Cancer dataset comprises
of 569 instances with 32 features and two class labels. 'ere
are nomissing values in this dataset. Outline of the attributes
of WDBC dataset are tabulated in Table 2.

3.2. Data Preprocessing. Missing or noisy values in the
dataset can affect the performance of the classifier. 'e
proposed work uses Hepatitis dataset and Wisconsin Breast
Cancer dataset for experimentation among which Hepatitis
dataset contains 167 missing values, whereas WDBC is free
from missing or noisy values. Hot-deck imputation is used
for imputing the missing values. Hot-deck imputation deals
with filling in the missing values with a similar set of data
from the features other than missing data field. 'e data are
compared with the similar record, and the missing value is
filled in with the value present in the similar record [42].
Since the average of missing values in Hepatitis dataset is less
than 30%, missing values are imputed from a similar record
that does not have a missing value.

In clinical datasets, the range and variance of one at-
tribute may vary from another. 'e training data and testing
data are scaled between definite limits in order to increase
the efficiency of the machine learning model. 'is work uses
a technique called min-max normalization to scale the data
between 0 and 1. 'e min-max normalization is represented
using

v′ �
v − minA

maxA − minA

newmaxA
− newminA

􏼐 􏼑 + newminA
, (1)

where v′ is the required normalized value, v is the current
value of the variable, maxA andminA are the maximum and
minimum values of the current range, respectively, and
newmaxA

and newminA
are the maximum and minimum

values of the normalized range, respectively.

3.3. Feature Selection. 'e preprocessed clinical dataset is
subjected to feature selection. 'e feature selection sub-
system employs a wrapper approach using three bioinspired
algorithms, namely, Differential Evolution, Lion Optimi-
zation, and Glowworm Swarm Optimization with the ac-
curacy of AdaBoostSVM classifier as fitness function. Each
bioinspired algorithm selects a subset of features yielding
three feature subsets. Correlation-based ensemble feature
selection is performed to select the optimal features from the
three feature subsets. 'e reduced feature set obtained from
the correlation-based ensemble feature selector is subjected
to classification by a gradient-based backpropagation neural
network.

3.3.1. Differential Evolution. Differential Evolution (DE) is
an evolutionary-based algorithm introduced by Storn and
Price in 1997 [39]. DE includes mutation, crossover, and
selection operations. 'is feature selection subsystem uses
the differential evolution in a wrapper approach to select a
feature subset. Accuracy of the AdaBoost with support
vector machine as a base classifier is used as the fitness
function. 'e steps involved in this process are given below.
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Step 1. A Random population of 100 individuals was chosen
from the dataset. 'e features in each individual can take a
value of 0 or 1. Each individual is a possible solution which
has n number of features.

Step 2. Each individual undergoes evaluation of fitness
function using AdaBoost with support vector machine as
base classifier. 'e accuracy of the AdaBoost classifier is
taken as the fitness function.

Step 3. Genetic operations such as mutation and crossover
were performed on selected individuals. First mutation
operation is performed on the selected five individuals to
produce offspring. 'en, in crossover operation, the selected
individuals are mated with the mutated individuals to
produce the next generation offspring. 'e next generation
is populated by these newly formed individuals.

Step 4. Repeat Step 2 and Step 3 until convergence is met.
'e convergence was met after 20 iterations. 'e individual
havingmaximumfitness is taken as the feature set for further
processing.

3.3.2. Lion Optimization Algorithm (LOA). Lion Optimi-
zation Algorithm is a bioinspired algorithm proposed by
Maziar Yazdani in the year 2016 [40]. 'is feature selection
subsystem uses the Lion Optimization Algorithm in a
wrapper approach to select the feature subset. In LOA, an
initial population is formed by a set of randomly generated
solutions called lions. Some of the lions in the initial pop-
ulation are selected as nomad lions and rest population
(resident lions) is randomly partitioned into subsets called
prides. 'e accuracy of the AdaBoost with support vector
machine as a base classifier is used as the fitness function.
'e steps involved in this process are given below.

Classification
subsystem

Training using back-propagation 
algorithms

Training subsystem

Classification results

Trained classifier

Performance evaluation

Feature subset selection

Handling missing data by 
hot deck imputation

Min-max normalization

Pre-processing
subsystem

Feature selection

Clinical dataset

Feature selection using wrapper 
approach 

Correlation based ensemble feature selector

Feature database
AdaBoost classifier

Candidate
set

Performance
evaluation

Testing dataTraining data

Optimal features

Figure 1: System framework.
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Step 1. Initially a random population of 20 prides and 40
nomads was chosen from the dataset. Each pride and nomad
has n number of features and is unisex, since both female
prides andmale prides go for the hunting phase regardless of
its sex.'e features in each individual can take a value of 0 or
1. If the feature is selected, then it is represented as 1 else 0.

Step 2. Evaluate the prides and nomads by computing the
fitness value using AdaBoost with support vector machine as
a base classifier.

Step 3. All pride lions in the resident territory go for hunting
in a group to find their prey for food.'e position of hunting
lions is updated based on the following assumptions:

(a) 'ese hunters have specific strategies to encircle the
prey from different positions such as left, centre,
and right wings positions to catch it. Hunters are
divided into three subgroups based on the fitness
function. Best 6 prides are taken as the centre wing,
and the rest of the prides are divided for the other
two wings. A dummy prey is considered in centre of
hunters in the following equation:

PREY �
􏽐 hunters x1, x2, x3, . . . , xN( 􏼁

​

number of hunters
. (2)

(b) During the process of hunting, if the hunter im-
proves its own fitness, the prey will escape from the
hunter and find a new position using the following
equation:

PREY′ � PREY + rand(0, 1)∗PI∗ (PREY

− hunter),
(3)

where PREY is the current position, hunter is new
position of the hunter who attacks the prey, and PI is the
percentage of improvement in the fitness value of the
hunter.

(c) 'e new positions of hunters which belong to the
left and right wing are evaluated using the fol-
lowing equation:

hunter′ �
rand((2∗PREY − hunter), PREY), (2∗PREY − hunter)< PREY,

rand(PREY, (2∗ PREY − hunter)), (2∗PREY − hunter)> PREY,
􏼨 (4)

Table 1: Outline of hepatitis datasets.

S. no. Feature Description Datatype
1. Age Age of the patient Numerical
2 Sex Gender of the patient Categorical

3 Steroid Whether the patient has taken anabolic steroids or
not Boolean

4 Antivirals Whether the patient has taken antivirals or not Boolean

5 Fatigue Whether the patient has experienced extreme
tiredness or not Boolean

6 Malaise Whether the patient is having a vague feeling of body
discomfort Boolean

7 Anorexia Whether the patient has lack or loss of appetite for
food Boolean

8 Liver big Whether the patient’s liver is enlarged or not Boolean
9 Liver firm Whether the patient’s liver is firm or not Boolean
10 Spleen palpable Whether the patient’s spleen is enlarged or not Boolean

11 Spiders Whether the blood vessels are near the skin surface
due to the increased estrogen level. Boolean

12 Ascites Whether the fluid is accumulated in the peritoneal
cavity or not Boolean

13 Varices Whether the patient is having bleeding from varices
or not Boolean

14 Bilirubin 'e amount of bilirubin in the blood sample Numerical
15 Alk phosphate Level of alkane phosphate in the blood sample Numerical

16 Sgot 'e amount of serum lutamic oxalo acetic
transaminase in the blood Numerical

17 Albumin 'e amount of serum albumin protein in the clear
liquid portion of the blood sample Numerical

18 Protime Time taken for blood plasma to clot Numerical

19 Histology Class attribute indicates whether the patient survives
or not Boolean
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where PREY is current position of prey, hunter is
current position of hunter, and hunter′ is new po-
sition of hunter

(d) 'e new positions of hunters which belongs to the
centre wing are evaluated using the following
equation:

hunter′ �
rand(hunter, PREY), hunter< PREY,

rand(PREY, hunter), hunter> PREY.
􏼨

(5)

Step 4. Nomad lions roam in an adaptive roaming method
using equations (6) and (7):

Lion′ij �
Lionij, if randj > pri,

RANDj, otherwise,
⎧⎨

⎩ (6)

where Lioni is current position of ith nomad lion, j is the
dimension, randj is a uniform random number within [0, 1],
RAND is random generated vector in search space, and pri is

a probability that is calculated for each nomad lion
independently:

pri � 0.1 + min 0.5,
Nomadi − Bestnomad( 􏼁

Bestnomad
􏼠 􏼡 ,

i � 1, 2, . . . ,number of nomad lions,
(7)

where Nomadi and Bestnomad are cost of current position of
the ith lion in nomads and the best cost of the nomad lion,
respectively.

Step 5. Since prides and nomads are considered as unisex,
the mating process is done between two different lions to
produce two offspring as shown in the following equations:

offspringj1 � β∗ Lioni
j + 􏽘

1 − β
􏽐

NR
i�1 Si

∗ Lionk
j ∗ Si, (8)

offspringj2 � (1 − β)∗ Lioni
j + 􏽘

β
􏽐

NR
i�1 Si

∗ Lionk
j ∗ Si,

(9)

Table 2: Outline of WDBC dataset.

S. no Feature Description Data type
1 ID Patient identification number Numerical
2 Diagnosis Malignant or benign Character
3 Radius (mean) Mean of distances from centre to points on the

perimeter

Real
4 Radius (error) Real
5 Radius (worst) Real
6 Texture (mean)

Standard deviation of grey scale values
Real

7 Texture (error) Real
8 Texture (worst) Real
9 Perimeter (mean)

Perimeter of cell nucleus
Real

10 Perimeter (error) Real
11 Perimeter (worst) Real
12 Area (mean)

Area of cell
Real

13 Area (error) Real
14 Area (worst) Real
15 Smoothness (mean)

Local variation in radius lengths
Real

16 Smoothness (error) Real
17 Smoothness (worst) Real
18 Compactness (mean)

(perimeter̂ 2/area—1.0)
Real

19 Compactness (error) Real
20 Compactness (worst) Real
21 Concavity (mean)

Severity of concave portions of the contour
Real

22 Concavity (error) Real
23 Concavity (worst) Real
24 Concave (mean)

Number of concave portions of the contour
Real

25 Concave (error) Real
26 Concave (worst) Real
27 Symmetry (mean)

Measure of cell symmetry
Real

28 Symmetry (error) Real
29 Symmetry (worst) Real
30 Fractal dimension (mean)

(“Coastline approximation”—1)
Real

31 Fractal dimension (error) Real
32 Fractal dimension (worst) Real
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where j is the dimension, Si equals 1 if Lions i and k are
selected for mating, otherwise it equals 0, NR is the number
of resident in a pride, and β is a randomly generated number
with a normal distribution with mean value 0.5 and standard
deviation 0.1.

Step 6. 'e accuracy of the new offspring compete with the
accuracy of the prides to acquire their territory. If the new
offspring is better, it replaces with the old pride and also if
any nomad has higher accuracy than the pride, then it is
replaced as the new pride.

Step 7. Repeat Step 2 to Step 6 for max of 100 iterations. 'e
max fitness value pride is taken as the feature set for lion
optimization algorithm.

3.3.3. Glowworm Swarm Optimization. Glowworm Swarm
Optimization proposed by Krishnanand and Ghose [41] is a
bioinspired algorithm based on the collective behavior of
glowworms. In this work, Glowworm Swarm Optimization
in wrapper approach selects the feature subset. 'e accuracy
of the AdaBoost with support vector machine as a base
classifier is used as the fitness function. 'e steps involved in
this process are given below.

Step 1. A random population of 50 glowworms is generated
in the search space in such a way that each glowworm has n
number of features. 'e features in each glowworm can take
a value 0 or 1. If the feature is selected, then it is represented
as 1 else 0. Initially, all the glowworms have equal level of
luciferin l0. 'e constant parameters used are shown in
Table 3.

Step 2. 'e luciferin depends on the fitness function at each
glowworm position. 'e accuracy of the AdaBoostSVM
classifier is taken as the fitness function. Each glowworm,
during their luciferin update, adds to its previous luciferin
level as shown in the following equation:

li(t + 1) � (1 − ρ)li(t) + cJ xi(t + 1)( 􏼁, (10)

where li(t) represents the luciferin level associated with
glowworm i at time t, ρ is the luciferin decay constant, c is the
luciferin enhancement constant, and J (xi (t+ 1)) represents
the value of the fitness function of ith glowworm at time t

Step 3. Each ith glowworm decides to move towards a
brighter glowworm which has a greater luciferin value.
Glowworm i selects a brighter glowworm j using a proba-
bilistic mechanism as shown in the following equation:

pij(t) �
lj(t) − li(t)

􏽐kεNi(t)lk(t) − li(t)
, (11)

where j ε Ni(t), Ni(t) � 􏼈j : dij(t)< ri
d(t); li(t)< lj (t)􏼉 is

the set of neighbors of glowworm i at time t, dij(t) rep-
resents the Euclidean distance between the glowworms i
and j at time t, and ri

d(t) represents the variable neigh-
borhood range associated with glowworm i at time t.

Step 4. 'emovement of glow worm i is shown in equations
(12) and (13):

xi(t + 1) � xi(t) + s
xj(t) − xi(t)

xj(t) − xi(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠, (12)

where xi(t) is the location of glowworm i at time t, ||xj(t) −

xi(t)|| is the Euclidean distance between glowworm i and the
glowworm j, and s is the step size.

r
i
d(t + 1) � min rs, max 0, r

i
d(t) + β nt − Ni(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯􏽮 􏽯,

(13)
where r0 is the initial neighbourhood range of each glow-
worm, β is a constant parameter, and nt is a parameter used
to control the number of neighbours.

Step 5. Repeat Step 2, Step 3, and Step 4 for a max of 100
iterations. 'e glowworm which has the maximum luciferin
is taken as the feature set for Glowworm Swarm Optimi-
zation Algorithm.

3.3.4. Correlation-Based Ensemble Feature Selector.
Correlation-based ensemble feature selector calculates the
correlation values of each feature selected from these three
bioinspired optimization approaches, and high similarity
features are removed from each feature set; then, the selected
features from all the three approaches are given to an en-
semble feature selector. 'e final optimal feature set of the
ensemble feature selector is obtained by majority voting on
the output of their individual feature set. 'e steps involved
in correlation-based feature selector are explained below.

Step 1. 'e arithmetic mode of the features selected using
Differential Evolution, Lion Optimization Algorithm, and
Glowworm Swarm Optimization is calculated using the
following equation:

Outensemble feature selection � mode

· OutDE,OutLION,OutGW0􏼈 􏼉.

(14)

Step 2. 'e correlation coefficient matrix is calculated for
the features which are selected in the output of the Out
ensemble feature selection using the following equation:

correlation coefficient

�
N 􏽐 xy − 􏽐 x( 􏼁 􏽐 y( 􏼁

������������������������������

N 􏽐 x2 − 􏽐 x( 􏼁
2

􏽨 􏽩 N 􏽐 y2 − 􏽐 y( 􏼁
2

􏽨 􏽩

􏽱 ,
(15)

Table 3: Parameter setting for Glowworm Swarm Optimization.

Parameter Value
ρ 0.4
c 0.6
β 0.08
nt 5
s 0.03
l0 5
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where x and y are attribute values under consideration and
N is the total number of instances.

Step 3. correlation values are compared pairwise. Let x and
y be the attributes which are compared in such a way that if
it has correlation value greater than 0.95, x and y are highly
correlated and either of them will be removed; otherwise,
both will be selected by the correlation-based ensemble
feature selector.

Step 4. the feature set selected by the correlation-based
ensemble feature selector is given as an input to the clas-
sification subsystem

3.4. Classification. 'e neural network used in this work is a
gradient descent backpropagation neural network with
variable learning rates. Backpropagation neural network
consists of three layers: input layer, hidden layer, and output
layer. Sigmoidal function is used as the activation function
for the hidden layer, and linear activation function is used
for output layer. 'e total number of hidden nodes is cal-
culated as in the following equation:

H � (2n + 1), (16)

where H is the number of hidden nodes and n is the number
of input nodes. 'e steps involved in this process are given
below.

Step 1. 'e features selected by the correlation-based feature
selector are given as the input of the BPNN. Initial pa-
rameters were initialized as shown in Table 4.

Step 2. 'e input of the hidden layer and the output of the
hidden layer are calculated using equations (17) and (18):

Ij � 􏽘 wijOj +∅j, (17)

where wij are the weights of each input nodes and ∅j is the
bias.

Oj �
1

1 + e− Ij
. (18)

Step 3. 'e error rate is computed using gradient descent
algorithm. When error rate is low, the learning rate in-
creases, whereas when the error rate is high and the learning
rate is decreased.

Step 4. 'e new weights and bias are updated based on the
error rate and learning rate using gradient descent back-
propagation algorithm. 'e Step 2 and Step 3 are repeated
till the error rate converges.

4. Results and Discussion

'e proposed work on Hepatitis and WDBC dataset has
been implemented using Python 3.6.'e feature importance
of both the datasets, namely, Hepatitis and WDBC, has been
calculated using information gain and is listed in Tables 5
and 6.

'e proposed work selects relevant attributes using the
wrapper approach based on the three bioinspired algo-
rithms, namely, differential evolution, Lion Optimization,
and Glowworm Swarm Optimization, keeping the accuracy
of the AdaBoostSVM classifier as fitness function. 'e
wrapper approach selects features which are tied to a
learning algorithm and depends on the performance of the
classifier. 'ey do not depend on the values of the statistical
class separability measure. 'e selected features using Dif-
ferential Evolution, Glowworm Swarm Optimization, Lion
Optimization, and Correlation-based feature selector for
both datasets are shown in Tables 7 and 8.

Feature selection plays a major role in healthcare ap-
plications for efficient classification [43–47]. Devijver and
Kittler define feature selection as the process of extracting
the relevant information from the raw data to improve the
classification performance [48]. Feature selection gives a
clear view of data visualization and data understanding to
improve the prediction performance [49].

In the case of Hepatitis dataset, out of 18 attributes, 3
attributes, namely, Anorexia, Liver_Big, and Spleen_Palpable
are pruned, and all others are selected by the proposed
correlation-based feature selector, whereas in the case ofWDBC,
out of 31 attributes, 12 attributes, namely, P_id, Mean_
perimeter, Standard_error_perimeter, Standard_error_area,

Table 4: Parameter setting for BPNN.

Parameter Value Meaning

n Features selected by correlation-
based ensemble feature selector

Number of input
nodes

H (2n+ 1) Number of
hidden nodes

Hlayer 1 Hidden layer
O Linear Output
Initial weights and bias are randomly assigned with small random variables
ranging from − 0.5 to 0.5, and the learning rate is kept as 0.5.

Table 5: Feature importance of Hepatitis dataset.

S. no. Feature Feature importance Rank
1 Age 0.335503 3
2 Sex 0.014356 15
3 Steroid 0.011443 16
4 Antivirals 0.033793 11
5 Fatigue 0.022269 13
6 Malaise 0.019788 14
7 Anorexia 0.010061 17
8 Liver big 0.007907 18
9 Liver firm 0.032248 12
10 Spleen palpable 0.036895 10
11 Spiders 0.095853 9
12 Ascites: 0.099008 8
13 Varices 0.110238 7
14 Bilirubin 0.202373 6
15 Alk phosphate 0.532782 1
16 SGOT 0.511008 2
17 Albumin 0.21938 5
18 Protime 0.294931 4
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Standard_error_smoothness, Standard_error_concavity, Con-
cavepoints_standard_error, Standard_error_symmetry, Stand-
ard_error_fractaldimension, Worst_radius, Worst_perimeter,
and Worst_area are pruned, and all others are selected by the
proposed correlation-based feature selector. Also, the authors
have consulted with clinicians and research papers for the
medical relevance of the selected features [50–53].

Accuracy, precision, sensitivity, and specificity are used
to assess the performance of classifiers which are represented
using equations (19)–(22):

accuracy �
samples correctly classified

total samples classified

�
TP + TN

TP + FP + FN + TN
,

(19)

precision �
samples correctly classified as positives
total samples classified as positives

�
TP

TP + FP
,

(20)

sensitivity �
samples correctly classified as postives
total postives samples in the test dataset

�
TP

TP + FN
,

(21)

specificity �
samples correctly classified as negatives
total negatives samples in the test dataset

�
TN

TN + FP
,

(22)
where TP, TN, FP, and FN are true-positive rate, true-
negative rate, false-positive rate, and false-negative rate,
respectively, which are obtained from the confusion
matrix.

'e classifier accuracy is compared by changing the
hidden nodes. From Figures 2 and 3, it can be inferred that
the BPNN experimented with (2n+ 1) hidden nodes has
yielded better results for both Hepatitis andWDBC datasets.

'e confusion matrix of the BPNN classifier with (2n+1)
hidden nodes for the datasets hepatitis and WDBC is shown
in Tables 9 and 10. For Hepatitis dataset, there are 38 true

Table 6: Feature importance of WDBC dataset.

S. no. Feature Feature importance Rank
1 ID 0.852635 24
2 Radius (mean) 0.860782 22
3 Radius (error) 0.835712 27
4 Radius (worst) 0.926704 10
5 Texture (mean) 0.928031 8
6 Texture (error) 0.776179 29
7 Texture (worst) 0.909129 16
8 Perimeter (mean) 0.93506 2
9 Perimeter (error) 0.94209 1
10 Perimeter (worst) 0.735037 30
11 Area (mean) 0.836177 26
12 Area (error) 0.933734 5
13 Area (worst) 0.864297 20
14 Smoothness (mean) 0.931545 6
15 Smoothness (error) 0.925377 11
16 Smoothness (worst) 0.93505 3
17 Compactness (mean) 0.923189 12
18 Compactness (error) 0.928030 9
19 Compactness (worst) 0.858593 23
20 Concavity (mean) 0.818137 28
21 Concavity (error) 0.917486 14
22 Concavity (worst) 0.900307 17
23 Concave (mean) 0.863435 21
24 Concave (error) 0.898584 18
25 Concave (worst) 0.935045 4
26 Symmetry (mean) 0.719719 31
27 Symmetry (error) 0.918347 13
28 Symmetry (worst) 0.930219 7
29 Fractal dimension (mean) 0.914832 15
30 Fractal dimension (error) 0.845395 25
31 Fractal dimension (worst) 0.891554 19
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negatives, 39 true positives, 2 false positives, and 3 false
negatives, whereas for WDBC, there are 118 true negatives,
116 true positives, 2 false positives, and 1 false negative.

Table 11 indicates that the proposed framework has
achieved an accuracy of 98.734%, precision of 98.305%,
sensitivity of 99.145%, and specificity of 98.333% for WDBC

Table 8: Features selected for WDBC dataset.

Correlation-based feature selector LION GSO DE
0 0 0 0 P_id
1 1 1 0 Mean_radius
1 1 1 1 Mean_texture
0 1 1 0 Mean_perimeter
1 1 1 1 Mean_area
1 1 1 0 Mean_smoothness
1 1 1 0 Mean_compactness
1 1 1 0 Mean_concavity
1 1 1 1 Concavepoints_mean
1 1 1 1 Mean_symmetry
1 1 1 0 Mean_fractaldimension
1 1 1 1 Standard_error_radius
1 1 0 1 Standard_error_texture
0 1 1 0 Standard_error_perimeter
0 0 0 0 Standard_error_area
0 0 0 1 Standard_error_smoothness
1 1 1 0 Standard_error_compactness
0 0 0 0 Standard_error_concavity
0 0 0 1 Concavepoints_standard_error
0 1 0 0 Standard_error_symmetry
0 0 0 1 Standard_error_fractaldimension
0 0 0 1 Worst_radius
1 1 1 0 Worst_texture
0 0 0 1 Worst_perimeter
0 1 1 1 Worst_area
1 1 1 1 Worst_smoothness
1 0 1 1 Worst_compactness
1 1 0 1 Worst_concavity
1 1 0 1 Concavepoints_worst
1 1 1 0 Worst_symmetry
1 0 1 1 Worst_fractaldimension
1 1 1 1 Diagnosis

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

n/4 n/2 n 3n/2 2n – 1 2n + 1 3n 10n

Hidden nodes vs accuracy of classifier (Hepatitis dataset) 

Accuracy of the classifier

Figure 2: Comparison of classifier accuracy achieved by changing the number of hidden nodes for Hepatitis dataset.
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and an accuracy of 93.902%, precision of 95.121%, sensitivity
of 92.857%, and specificity of 95% for hepatitis. 'e results
obtained were validated by physicians.

'e performance of correlation-based ensemble feature
selector was compared with results of individual feature
selection algorithms (Differential Evolution, Glowworm

n/4 n/2 n 3n/2 2n – 1 2n + 1 3n 10n

Accuracy of the classifier

96%

97%

97%

98%

98%

99%

99%
Hidden nodes vs accuracy of classifier (WDBC dataset) 

Figure 3: Comparison of classifier accuracy achieved by changing the number of hidden nodes for WDBC dataset.

Table 9: Confusion matrix for proposed framework used to train and test the Hepatitis dataset.

Predicted

Expected
Nonfatal Fatal

Nonfatal 38 (TN) 2 (FP)
Fatal 3 (FN) 39 (TP)

Table 10: Confusion matrix for proposed framework used to train and test the WDBC dataset.

Predicted

Expected
Benign Malignant

Benign 118 (TN) 2 (FP)
Malignant 1 (FN) 116 (TP)

Table 11: Performance evaluation of the proposed framework.

Measure WDBC (%) Hepatitis (%)
Accuracy 98.734 93.902
Precision 98.305 95.121
Sensitivity 99.145 92.857
Specificity 98.333 95

Table 12: Performance of correlation-based ensemble feature selector and individual feature selector for Hepatitis dataset.

Measure Proposed work (%) DE (%) GSO (%) Lion (%)
Accuracy 93.902 91.46 92.6 92.68
Precision 95.121 92.68 95 95.12
Sensitivity 92.857 90.69 90.47 90.69
Specificity 95 92.5 95 94.87
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Swarm Optimization, and Lion Optimization Algorithm) as
shown in the Tables 12 and 13 for Hepatitis and WDBC
datasets. It is observed that the performance of correlation-
based ensemble feature selection with backpropagation
neural network classifier outperforms the other single op-
timization algorithms (Differential Evolution, Glowworm
Swarm Optimization, and Lion Optimization Algorithm)
with backpropagation neural network for the WDBC and
Hepatitis datasets.

'e performance of the proposed framework was also
compared with results of other classifiers (naive Bayes, J48,
decision table, AdaBoostMI, multilayer perceptron, and
random forest) using the WEKA tool, and the results are
tabulated in Tables 14, and 15 for WDBC and Hepatitis
datasets. It is observed that the performance of correlation-
based ensemble feature selection with backpropagation
neural network classifier outperforms the other classifiers for
the WDBC and Hepatitis datasets.

5. Conclusion and Future Work

'is work presents a novel feature selection strategy which
uses a wrapper approach comprising of three bioinspired
algorithms, namely, Differential Evolution, Lion Optimi-
zation Algorithm, and Glowworm Swarm Optimization
Algorithm with AdaBoostSVM as the underlying classifier.
A correlation-based ensemble feature selector is used to
select the relevant features from the clinical dataset. 'e
novelty of correlation-based ensemble feature selection at-
tributes to the diverse bioinspired algorithms used to
evaluate the features.'e system has achieved an accuracy of
93.902%, sensitivity of 92.857%, specificity of 95%, and

precision of 95.121% for hepatitis and an accuracy of
98.734%, sensitivity of 99.145%, specificity of 98.333%, and
precision of 98.305% for WDBC. 'e proposed framework
can be tailored to develop CDSS for other clinical datasets
with domain specific changes. Other bioinspired algorithms
and classifiers can also be used to enhance the performance
of the proposed framework.
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