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A B S T R A C T   

Subchondral bone marrow lesions (BMLs) are areas of disease within subchondral bone that appear as T1 
hypointense and T2 hyperintense ill-defined areas of bone marrow on magnetic resonance imaging. The most 
common bone marrow lesions include subchondral lesions related to osteoarthritis, osteochondral defects, and 
avascular necrosis. Emerging therapies include autologous biologic therapeutics, in particular mesenchymal stem 
cells (MSCs), to maintain and improve cartilage health; MSCs have become a potential treatment option for BMLs 
given the unmet need for disease modification. Active areas in the preclinical research of bone marrow lesions 
include the paracrine function of MSCs in pathways of angiogenesis and inflammation, and the use of bioactive 
scaffolds to optimize the environment for implanted MSCs by facilitating chondrogenesis and higher bone vol-
umes. A review of the clinical data demonstrates improvements in pain and functional outcomes when patients 
with knee osteoarthritis were treated with MSCs, suggesting that BM-MSCs can be a safe and effective treatment 
for patients with painful knee osteoarthritis with or without bone marrow lesions. Preliminary data examining 
MSCs in osteochondral defects suggest they can be beneficial as a subchondral injection alone, or as a surgical 
augmentation. In patients with hip avascular necrosis, those with earlier stage disease have improved outcomes 
when core decompression is augmented with MSCs, whereas patients in later stages post-collapse have equiv-
alent outcomes with or without MSC treatment. While the evidence for the use of MSCs in conditions with 
associated bone marrow lesions seems promising, there remains a need for continued investigation into this 
treatment as a viable treatment option.   

1. Introduction 

Bone marrow lesions (BML) are areas of disease within subchondral 
bone that are typically visualized with magnetic resonance imaging 
(MRI) (Munsch et al., 2021). The first description in the literature was by 
Wilson and colleagues in 1988 (Wilson et al., Jun 1988); when imaging 
patients with severe hip and knee pain, he used the term “bone marrow 
edema” to describe ill-defined areas of bone marrow in the affected joint 
with decreased T1 signal intensity and increased T2 signal intensity. 
This term was revised by Zanetti and colleagues in 2000 (Zanetti et al., 
2000), who recommended “ill-defined signal intensity abnormality” or 
“edema-like MR imaging abnormality” as new terms, given that histo-
pathology studies had also shown fibrosis, necrosis, and trabeculae ab-
normalities in addition to edema (Plenk et al., Jan 1997). These changes 

are thought to result from culminating effects of microdamage and 
altered bone remodeling (Driban et al., 2012). It is thought that the T2 
hyperintense MRI signal changes of BML may represent the increased 
vascularization and increased bony remodeling within the region 
(Shabestari et al., 2016). More recently, the term “bone marrow lesion” 
has become standard usage to describe these focal MRI signal changes in 
the subchondral bone, especially in the osteoarthritis (OA) imaging 
research community (Hunter et al., 2006; Roemer et al., Sep 2009; Li 
et al., 2013). 

Bone marrow lesions have complex pathological mechanisms. The 
initial classifications were based on three etiologies: ischemic, me-
chanical, and reactive (Hofmann et al., 2004); however, this has evolved 
to broader classifications such as traumatic versus atraumatic, reversible 
versus irreversible, cystic versus non-cystic, transient versus chronic 
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(Roemer et al., 2009; Hunter et al., 2008). The most common bone 
marrow lesions include subchondral lesions related to osteoarthritis, 
osteochondral defects, and avascular necrosis (AVN)/primary osteo-
necrosis. These subtypes can be further categorized by their unique 
clinical and imaging characteristics (Table 1). Other less common BML 
subtypes include post-surgical, subchondral bone erosion, transient 
osteoporosis, osteochondritis dissecans, red marrow, tumor and malig-
nant infiltration (Munsch et al., 2021; Roemer et al., 2009; Kon et al., 
2016; Gobbi et al., 2021). 

Subchondral bone is complex and has a rich arteriovenous network 
that permeates the entire layer up to the calcified cartilage (Imhof et al., 
Jun 1999). When the subchondral bone is stressed with higher loads, it 
responds by increasing the blood supply (Lane et al., Aug 1977). While 
subchondral bone pain mechanisms are still being elucidated, one pro-
posed etiology of pain in bone marrow lesions is that repetitive micro-
trauma may impair venous drainage, causing increased intraosseous 
pressure (Arnoldi et al., 1980). Given that bone and bone marrow have 
rich concentrations of nociceptive pain fibers, this increased pressure 
may give rise to increase in hyperalgesia. This mechanism has been 
demonstrated to reduce pain by mechanically reducing intraosseous 
pressure through bone fenestrations in patients (Dey et al., 1989). 
Another mechanism that contributes to an increase in nociceptive pain is 
the replacement of normal fatty bone marrow with fibrovascular tissue, 
driving an increase in nerve growth factor expression and unmyelinated 
sensory nerves growth into the non-calcified articular cartilage (Walsh 
et al., 2010; Saltzman and Riboh, 2018). 

Currently, there are no disease-modifying treatments for sub-
chondral bone marrow lesions. Current standard of care treatments have 
included oral non-steroidal anti-inflammatory drugs, joint offloading 
with protected weight-bearing, pharmacologic treatment with prosta-
cyclin and bisphosphonates, and surgical treatments such as core 
decompression, bone grafting with osteochondral restoration, and end- 
stage joint replacements (Munsch et al., 2021; Kon et al., 2016). More 
recently, emerging therapies have included autologous biologic thera-
peutics, in particular mesenchymal stem cells (MSCs) to maintain and 
improve cartilage health, and these have become a potential treatment 
option for BMLs given the unmet need for disease modification. 

There are two major types of mesenchymal stem cells: pluripotent 
and adult. Pluripotent stem cells can undergo self-renewal and develop 
into mesenchymal, hematopoietic, or neural stem cells (Wobus and 
Boheler, 2005). There are two types of pluripotent stem cells: embryonic 
stem cells (derived from the inner cell mass of pre-implanted embryos) 
and induced pluripotent stem cells (cell reprogramming of adult somatic 
cells) (Romito and Cobellis, 2016). Adult mesenchymal stem cells are 
also self-renewing but are multipotent, and can develop only into the 
various cell types of the mesodermal lineage (i.e. bone, cartilage, mus-
cle, fat, tendons/ligaments) (Caplan, 1994). MSCs can be isolated from 
different tissues, including adipose, bone marrow, synovium, and um-
bilical cord blood (Caplan, 2015). MSCs affect the healing response via 
activation of cell proliferation and differentiation, as well as decreased 
cell apoptosis and inflammation (Caplan and Dennis, 2006). 

MSCs have been an area of therapeutic interest since their initial 
description by Friedenstein and colleagues in 1968 as multipotent pro-
genitor cells with variable proliferative, differentiation, and immuno-
regulatory potential (Friedenstein et al., 1968). Emerging technologies 
in tissue engineering and regenerative medicine are highlighting the 
potential of MSCs as an effective treatment of damaged tissues. As such, 
MSCs have risen to the forefront of treatment for difficult musculo-
skeletal conditions such as BMLs. The scope of this review will focus on 
the application of MSCs obtained from adult bone marrow (BM-MSC), as 
well as adipose tissue (AD-MSC); clinically, these cells are gaining favor 
due to their availability for point-of-care use, ease of extraction, and 
favorable properties for isolation, expansion, and differentiation into 
chondrogenic and osteogenic lineages (Arinzeh, 2005). Given the need 
for more precise definitions to help standardize stem cell research, the 
International Society for Cellular Therapy (ISCT) published their posi-
tion paper in 2006 establishing minimal criteria for defining multipotent 
mesenchymal stromal cells. At that time the following criteria were 
established: plastic adherence in standard culture conditions, expression 
of CD105, CD73, negativity for CD45, CD34, CD14, CD11b, CD19, HLA- 
DR, and trilineage differentiation potential in osteoblasts, adipocytes, 
and chondroblasts in vitro (Dominici et al., 2006). Since the publication 
of these criteria, there has been an increased focus in both pre-clinical 
and clinical research regarding the use of MSCs to treat and augment 
procedures relating to bone pathology, including BMLs found in osteo-
arthritis, osteochondral lesions, and avascular necrosis. 

The first clinical application of MSCs in orthopedics was described in 
a case report by Hernigou and colleagues in 1997; a bone marrow 
allograft was used to treat osteonecrosis of the humeral head secondary 
to sickle cell disease (Hernigou et al., Nov 1997-a). After three months, 
the patient demonstrated reconstruction of the humeral head with 
normalization in the marrow signal, which remained stable during their 
four-year follow up. Since then, the safety of injecting MSCs for ortho-
pedic conditions has been examined (Yubo et al., 2017; Hernigou et al., 
2013; Centeno et al., 2016), as well as the role of MSCs in articular 
cartilage and subchondral bone repair (Madry et al., 2017; Orth et al., 
2013), which we will discuss in more detail below. 

The scope of this narrative review is to examine the applications of 
mesenchymal stem cells as potential disease-modifying therapies that 
result in reduced pain and improved function in bone marrow lesions. 
We will highlight in brief the pre-clinical works of MSCs as they directly 
apply to subchondral bone, osteochondral defects and avascular ne-
crosis. We will further discuss more in depth the clinical evidence for 
MSCs in the treatment of BMLs related to three clinical disease states: 
osteoarthritis, osteochondral lesions, and avascular necrosis. 

2. Pre-clinical evidence for the direct and regulatory effects of 
MSCs in bone healing 

Early in vitro models by Kadiyala and Jaiswal demonstrated osteo-
genic differentiation of MSCs in vitro by manipulating culture conditions 
through the inclusion of dexamethasone, L-ascorbic acid-2-phosphate, 

Table 1 
Clinical characteristics of three common bone marrow lesions.  

Diagnosis Location Clinical history Typical appearance on MRI Associated imaging findings Prognosis 

Subchondral 
osteoarthritis- 
associated BML 

Subchondral anywhere 
in the joint, but 
commonly weight- 
bearing surfaces 

Non-traumatic, degenerative, in 
patients >40 years old with 
cartilage lesions 

Diffuse BML directly 
adjacent to cartilage lesion; 
will enhance after contrast ( 
Fig. 1) 

Other signs of OA (joint space 
narrowing, subchondral cysts, 
subchondral sclerosis, 
osteophytes) 

Lesions can 
fluctuate in size 

Osteochondral 
defect 

Localized defect of 
articular cartilage and 
subchondral bone 

May occur acutely or as a result of 
chronic conditions (osteochrondritis 
dissecans, collapse of subchondral 
bone, etc.) 

Osteochondral lesion with 
surrounding BML (Fig. 2) 

Effusion with possible 
osteochondral fragmentation or 
associated soft tissue injuries 

Depends on stage 
of disease 

Avascular necrosis/ 
primary 
osteonecrosis 

Epiphyseal and 
metaphyseal 

Non-traumatic, usually ages 40–50, 
may have risk factors (i.e. steroid 
use, alcohol abuse, underlying 
systemic disease, etc.) 

Subchondral lesion of 
centrally preserved fatty 
marrow +/− peripheral rim 
sign (Fig. 3) 

Peripheral rim will enhance after 
contrast administration. +/− focal 
flattening of subchondral bone and 
underlying cartilage 

Depends on size 
of lesion and if 
there is articular 
collapse  

R.M. Pasculli et al.                                                                                                                                                                                                                             



Bone Reports 17 (2022) 101630

3

and Beta-glycerophosphate. By doing so, they found consistent differ-
entiation though morphologic analysis, mineralization of the extracel-
lular matrix, and expression of osteogenic markers such as alkaline 
phosphatase and osteocalcin (Jaiswal et al., 1997; Kadiyala et al., 
1997a). Subsequent in vivo fracture models demonstrated osteogenic 
differentiation with effective bone and cartilage formation, as well as 
evidence of neovascularization in both rat and larger animal canine 
models when loading BM-MSCs on implanted scaffolds (Kadiyala et al., 
1997a; Kadiyala et al., 1997b). 

Following these initial models, a more nuanced understanding has 
developed of the complex pathways leading to osteogenic differentiation 
of MSCs and subsequent bone repair (Shibli et al., 2022). Important 
signaling pathways include BMP, TGF-β, Ca2+, FGF, IGF, PDGF/VEGF, 
and Notch (Hayrapetyan et al., 2015). BMP/TGF-β signaling contributes 
to many cellular processes involving osteogenesis, and disruption of this 
signaling is implicated in the development of osteoarthritis. While Ca2+

signaling and the wnt pathways are vital for osteoblast differentiation, 
FGF and IGF also play an important role. Cytokines/growth factors such 
as TGF-β, FGF, IGF, and PDGF are involved in osteoblast activity and 
bone formation, whereas Notch signaling prevents osteoclast precursors 
from differentiating into mature osteoclasts. Currently in the United 
States, the FDA restricts use of cells exceeding minimal manipulation 
leading to alteration of relevant characteristics of the tissue relating to 
the utility for reconstruction, repair or replacement, or processing that 
alters relevant biologic characteristics, pre-clinical work continues to 
expand our understanding of the mechanisms at play leading to the 

potential therapeutic effects of MSCs (Manchikanti et al., 2020; Food 
and Drug Administration and Department of Health and Human Ser-
vices, 2020). 

Additionally, there is increasing interest in the paracrine function of 
MSCs (Doorn et al., 2012). MSCs have been found to regulate osteo-
genesis and osteoclastogenesis via various cytokines and growth factors 
(Fernández Vallone et al., 2013). PDGF, IGF, TGF-β, IL-17, RANKL and 
others act as migration factors when they are released at injured tissue 
and help to attract MSC movement toward the damaged microenvi-
ronment (Yagi et al., 2010). VCAM-1, MMP-2, and β-1/α-4 integrins help 
circulating MSCs with migration as well as adherence to the vascular 
endothelium. MSCs themselves also secrete various growth factors and 
cytokines such as IL-6, IL-11, LIF, and M-CSF that influence the differ-
entiation of hematopoietic stem cells (Kim et al., 2005). These effects 
have been best demonstrated by a study by Zhang and colleagues in 
which femoral defects were induced in a mouse model with subsequent 
intramuscular injection of AD-MSCs transduced with bFGF adjacent to 
the fracture site. In comparison to controls, improved bone healing was 
observed in the bFGF group; however, only a small fraction of AD-MSCs 
remained in the healing callus at 21 days, suggesting a mechanism of 
bone healing driven by paracrine function rather than direct cell 
replacement (Zhang et al., 2017). 

Fig. 1. Typical MRI appearance of subchondral osteoarthritis-associated BML in the knee: (a-c) Coronal and sagittal PD FS images showing diffuse cartilage thinning 
of the lateral compartment with focal full-thickness chondral defects along the weightbearing femoral condyle and tibial plateau with underlying reactive signal 
change in the subchondral bone (arrows); (d-e) Coronal and sagittal PD FS images showing diffuse cartilage thinning of the medial compartment with scattered focal 
full-thickness chondral defects along the weightbearing femoral condyle with underlying reactive signal change in the subchondral bone (arrows). 
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3. Pre-clinical evidence for MSCs in treatment of bone marrow 
lesions 

3.1. Subchondral (cortical and trabecular) bone 

Treatment of subchondral bone in weight-bearing joints is chal-
lenging given limited physiologic remodeling at sites of persistent joint 
loading, thereby leading to increased stress and impaired healing. As 
such, BMLs can be significant sources of pain, dysfunction, and pro-
gressive damage leading to joint collapse and potential need for joint 
arthroplasty in the end-stages of disease. As further mechanisms of BML 
are elucidated, the interactions between subchondral cortical and 
trabecular bone, and the cartilage interface are increasingly investigated 
as therapeutic targets. Additionally, there is interest in intervening at the 
early stages to prevent disease progression (Goldring and Goldring, 
2016) through interventions such as subchondroplasty (SCP) and MSC 
treatments (Zhu et al., 2020). 

In its original development, SCP is a surgical technique utilizing 
bioactive materials such as calcium phosphate as bone substitute ma-
terials (BSMs). BSMs can be injected into the subchondral bone to pro-
vide a scaffold for local bone remodeling and stabilization of the local 
bone environment. To improve the efficacy of this procedure, recent 
studies have investigated the use of biologics in augmenting SCP in post- 
traumatic subchondral bone marrow lesions. In a canine model, Oliver 
and colleagues compared SCP alone vs SCP with PRP and BMAC. At six 
months they found an improved comfortable range of motion in the PRP 
and BMAC-treated canines compared to controls. At one year post- 
treatment, the percentage of total pressure index was higher in treated 
groups, with improvements in pain range of motion seen in the PRP and 
BMAC groups compared to control. Interestingly, no statistically sig-
nificant differences in arthroscopic or histological pathology were noted 
further highlighting the discordance between functional and structural 
endpoints (Oliver et al., 04 2020). 

Yu and colleagues explored the use of injectable hydrogel along with 
AD-MSCs genetically modified to overexpress TGF-β1 in a surgically- 
induced rat osteoarthritis model. The hydrogel with properties similar 
to native extracellular matrix was associated with a favorable micro-
environment for cell proliferation when injected intraarticularly into the 
rat knees. Furthermore, paracrine effects from TGF-β1 were observed to 
decrease expression of pro-inflammatory TNF-α leading to reductions in 
cartilage degeneration, joint inflammation, and subchondral bone loss 
(Yu et al., 2021). 

3.2. Osteochondral defects 

Osteochondral defects involve disruption of both the chondral sur-
face and underlying subchondral bone. To address the challenges of 
osteochondral defect repair, there has been much attention to the role of 
surgically implanted scaffolds in optimizing the environment for 
implanted MSCs. This is an active area of research spanning from pre- 
conditioning, genetic modification, and increasing interest in various 
bioactive scaffolds to enhance cell survival, engraftment, and osteogenic 
potential of MSCs (García-Sánchez et al., 2019). Advancements in 3D 
bioprinting technologies have led to the creation of a BM-MSC-laden 
3D–printed multilayer bioactive scaffolds for osteochondral defect 
repair. In comparison to 2D scaffolds, 3D scaffolds demonstrate higher 
metabolic activity of MSCs with an associated decrease in bone resorp-
tion (Spreda et al., 2021). BM-MSCs in such scaffolds in vitro create a 
favorable environment resulting in greater formation of cartilage- 
specific extracellular matrix, while in vivo studies in rat models found 
improved chondrogenesis and function in treatment of osteochondral 
defects at the femoral trochlea by promoting collagen II and suppressing 
IL-1β (Liu et al., 12 2021). Recent in vitro models of bone remodeling 
and regeneration have recognized the natural homeostasis occurring in 
bone remodeling between osteoblasts and osteoclasts. This has led to 
investigations of the role co-cultured scaffolds combining both 

osteoblasts and osteoclasts to more closely replicate the dynamic 
remodeling process that occurs in vivo (Borciani et al., 05 2020). 

Xu and colleagues utilized an ultra-purified alginate gel containing 
BM-MSCs (UPAL-BMAC) in the treatment of osteochondral defects in a 
rabbit model. Defects treated with UPAL-BMAC demonstrated favorable 
histological qualities as seen in hyaline cartilage with well-structured 
collagen formation and increased bone volume, as well as improved 
mechanical function compared to control groups (Xu et al., 2021). In a 
rabbit model with surgically induced osteochondral defects of the knee, 
a hyaluronic acid (HA)-based scaffold was applied to the defect area 
with microfractures. The experimental group also received adipose- 
derived stromal vascular fraction (SVF) injected intraarticularly at the 
knee. Near complete filling of the defect area with hyaline cartilage was 
observed in the experimental group at 8 weeks (Şahin et al., 2021). 

Although there is encouraging data, the utilization of MSCs in 
osteochondral defects is an ongoing area of investigation and 
biochemical changes do not always correlate with improved functional 
outcomes. In a sheep model of large condylar osteochondral defects, 
Tamaddon and colleagues implanted concentrated BM-MSCs with a 
collagen/hydroxyapatite scaffold. At six months, there were no differ-
ences between groups in bone regrowth, mineral density, or functional 
weightbearing despite an upregulation in type-I and type-II collagens in 
the BM-MSC group (Tamaddon et al., Oct 2021). 

Given the ease of administration, there is interest in the utility of 
injection-based therapies for osteochondral defects compared to tradi-
tional surgical approaches. Zhang and colleagues investigated the effi-
cacy of human MSC exosomes for the repair of osteochondral defects in a 
micropig model (Zhang et al., 2022). Bilateral osteochondral defects 
were surgically induced at the medial femoral condyle. MSC exosomes 
and HA or HA alone were injected intraarticularly after surgery at 8 and 
15 days. Exosomes + HA treated defects demonstrated improved MRI 
scores compared to HA-treated defects at 15 days, 2 and 4 months. 
Additionally, defects treated with exosome + HA had improved histo-
logic and biomechanical properties at 4 months with micro-CT evidence 
of higher bone volume and increased trabecular thickness in sub-
chondral bone. 

3.3. Avascular necrosis/primary osteonecrosis 

The underlying pathology of avascular necrosis is complex; however, 
it has been shown that increased apoptosis of osteocytes, lipid accu-
mulation in osteoblasts and osteocytes lead to deficient bone repair, thus 
negatively affecting the osteoblastic differentiation of native mesen-
chymal progenitor cells (Weinstein et al., Aug 2000; Yin et al., 2006). 
This disruption in the resorptive component of bone repair leads to 
structural instability and subchondral fracture (Shah et al., Sep 2015). 
This alteration in the bone microenvironment is attributed to vascular 
disruption with resulting ischemia leading to the severely hypoxic na-
ture of osteonecrotic bone (Ciapetti et al., 2016). Implantation of MSCs 
to necrotic bone in AVN has been observed to increase the number of 
osteoblasts, capillary formation, as well as improve expression of VEGF 
and BMP-2 (Song et al., 2015). Further supporting the role of angio-
genesis, Müeller and colleagues cultured human MSCs in vitro. When 
cultured in low-oxygen tensions, decreased proliferation and osteogenic 
differentiation was noted; however, significant secretion of VEGF was 
seen in the presence of interferon-gamma (Müller et al., 2008). 

Other notable cellular changes in AVN include increased adipo-
genesis of MSCs (Gillet et al., 2017). In this environment, protective 
mechanisms against lipotoxicity such as stearyl-coenzyme A desaturase 
1 and carnitine palmitoyl transferase are dysregulated, leading to a pro- 
inflammatory environment. Looking particularly at the Wnt pathway, 
Huang and colleagues found higher MSC expression of GSK3β in stem 
cells in osteonecrosis of the femoral head, with resulting downregulation 
of the Wnt signaling pathway, including Runx2 and β-catenin, leading to 
reduced osteogenic differentiation (Huang et al., 2018). 

These characteristics have made MSCs an intriguing therapeutic 
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option for treatment of AVN, both on their own, and as a modality to 
augment procedures such as core decompression. In a canine model of 
osteonecrosis, Yan and colleagues transplanted autologous MSCs after 
decompression of the femoral head and tracked them utilizing green 
fluorescent protein (GFP). GFP-positive cells were found in the necrotic 
area up to 12 weeks after transplantation and demonstrated prolifera-
tion from 15 % at week 2 to 38 % at week 12. Furthermore, a statistically 
significant improvement in trabecular bone volume was noted at 8 and 
12 weeks compared to saline controls (Yan et al., 2009). In a rabbit 
model utilizing allogeneic peripheral blood derived MSCs, cells were 
transplanted locally into osteonecrotic areas of the femoral head with an 
observed increase in bone density and trabeculation (Fu et al., 2016). 
Ciapetti and colleagues conducted an in vitro analysis of BM-MSCs from 
patients with AVN of the femoral head under hypoxic conditions (Cia-
petti et al., 2016). They found enhanced proliferation and colony 
forming ability in hypoxia exposed MSCs. Additionally, increased 
expression of bone-related genes such as ALP, Type-I collagen, and 
osteocalcin was seen under hypoxic conditions, suggesting that MSCs 
can proliferate and differentiate in the hypoxic environment of AVN 
with appropriate pre-conditioning. 

Following core-decompression in a canine model of osteonecrosis of 
the femoral head, Hang and colleagues implanted transgenic VEGF(165) 
BM-MSCs. A significant increase in newly generated capillaries were 
noted after treatment with VEGF(165) cells compared to normal BM- 
MSCs and core decompression alone. Additionally, improved trabecu-
lation and organization of bony tissue was seen, reinforcing the impor-
tant relationship between vascularization and osteogenesis in treatment 
of osteonecrosis (Hang et al., 2012). FGF-2 transfected BM-MSCs in a 
rabbit model of ONFH in vivo demonstrated >80 % repair at six weeks, 
and complete repair at 12-weeks following implantation. Compared to 
control groups, greater new bone formation and vascular density were 
observed (Zhang et al., 2018). In vitro studies of rabbit BM-MSCs found 
enhanced activity and inhibition of apoptosis in co-cultured osteoblasts. 
When co-cultured, cells demonstrated greater concentrations of VEGF 
and BMP-2. Furthermore, in vivo treatment of a rabbit osteonecrosis of 
the femoral head with BM-MSCs demonstrated improved osteoblast 
concentrations and vascularization, as well as increased expression of 
VEGF and BMP-2 resulting in improved capillary formation (Song et al., 
2015). 

An alternative delivery strategy was investigated in a rabbit model of 
osteonecrosis of the femoral head. Wen and colleagues utilized a fibrin 
glue with hepatocyte growth factor (HGF) transduced BM-MSCs. In vitro 
fibrin glue did not alter the molecular activity of MSCs. In vivo the 
femoral heads of rabbits with MSCs implanted with fibrin glue were 
found to have greater MSC concentrations at 8 weeks and prolonged 
gradual release of HGF with improved proliferation and osteogenesis 
(Wen et al., 2014). 

Additionally, a potential role for intra-osseous injections was 
explored by Lebouvier and colleagues. In a pig model, BM-MSCs were 
injected directly into the pig femoral head and detected by quantitative 
real-time polymerase chain reaction, cytometry, or combination of his-
tologic analysis and in situ hybridization. At 30 min and 24 h, the 
grafted cells were detected in isolation at the injection site. Initial bone 
healing was observed as early as two weeks, with complete healing at 
nine weeks with MRI, and histological analysis similar to that of normal 
femoral head morphology (Lebouvier et al., 2015). 

4. Clinical evidence for MSCs in the treatment of bone marrow 
lesions 

4.1. Osteoarthritis 

The role of MSCs in osteoarthritis (OA) has expanded over the pre-
vious 10 years with emerging clinical evidence regarding its efficacy and 
safety. Treatment options vary from intra-articular (IA) injections to 
intra-osseous (IO) subchondral injections directly addressing the bone 

marrow or chondral lesion. Most of the evidence to date lies within 
prospective case series and clinical trials for intra-articular injections 
that involve three primary types of MSC interventions: bone marrow 
aspirate concentrate (BMAC), microfragmented adipose tissue (MFAT), 
and stromal vascular fraction (SVF). Intra-articular treatments are 
readily integrated in outpatient care, performed under local anesthesia 
with precision-guided ultrasound utility and minimal patient discom-
fort. These IA injections allow placement of autologous MSCs that allow 
for the modulation of a wide range of trophic factors that can inhibit 
inflammatory pathways, apoptosis, and oxidative stress. These trophic 
factors also play a part in mobilizing MSCs from the synovium to pro-
mote cell proliferation (Hernigou et al., 2021; Zhang et al., 2019). We 
will further delineate the various tissue specific autologous MSC's in 
clinical trials. 

4.1.1. Bone marrow aspirate concentrate (BMAC) 
Several randomized clinical trials have investigated the use of IA- 

BMAC (Table 2). Centeno and colleagues randomized 48 patients with 
Kellgren-Lawrence (KL) grades 2 or 3 knee osteoarthritis to receive 
either BMAC or an exercise therapy protocol. At three months, pain and 
function significantly improved within the BMAC group compared to the 
exercise therapy group, and all patients within the exercise group 
crossed over to receive BMAC. The clinical improvement continued two 
years after the initial treatment (Centeno et al., 2018). Another study 
investigated 111 patients with KL 2–4 knee osteoarthritis randomized to 
BMAC, hyaluronic acid (HA), or leukocyte-rich platelet rich plasma (LR- 
PRP). Within the first 21 days, BMAC had the highest improvement in 
pain and function measured with the Western Ontario and McMaster 
Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoar-
thritis Outcome Score (KOOS), and International Knee Documentation 
Committee (IKDC). Although all groups improved over 12 months, the 
highest statistically significant improvement was seen in the BMAC 
group, with no difference found between hyaluronic acid and LR-PRP 
(Dulic et al., 2021). The efficacy of BMAC over hyaluronic acid is 
further supported in a single blinded randomized pilot trial studying 32 
patients with knee OA. Significant improvement in the KOOS for the 
BMAC group peaked at 12 months versus 6 months in the HA group; 
however, there was no significant difference between the two groups at 
12 months (Ruane et al., 2021). These trials encompassed a total of 176 
patients treated with BMAC and the results suggest that BMAC is an 
effective treatment option for knee OA with or without bone marrow 
lesions. 

It should be noted that despite the clinical success of these above 
studies, three randomized clinical trials demonstrated no significant 
difference between BMAC and other treatment modalities in patients 
with bilateral knee OA. Shapiro and colleagues randomized 25 patients 
to receive a single injection of BMAC in one knee and a single injection of 
saline in the other. Both groups had a similar decrease in pain without a 
significant difference seen between the two (Shapiro et al., Oct 2019). 
Another trial investigated IA PRP versus BMAC in 86 patients and 
demonstrated no difference in WOMAC or IKDC between either treat-
ment group at all time points up to 12 months (Anz et al., 2020). Boffa 
and colleagues compared BMAC to HA in 56 patients and claimed no 
significant clinical superiority between groups, finding similar clinical 
scores, failures, adverse events, and minimal clinically important dif-
ference (Boffa et al., 2021). 

While the safety profile of autologous BMAC is apparent in the above 
studies, there is lack in standardization of BMAC therapy resulting in 
conflicting outcomes between studies. For example, in Boffa's study, 
extracted bone marrow from the proximal tibial metaphysis may have 
led to decreased cell count and reduced efficacy of treatment. It has been 
established that the optimum location to isolate stem cells is from the 
iliac crest, as there exists a higher number of MSCs in this location 
compared to the tibia and femur (Davies et al., 2017). Anz and Boffa 
used a larger 30 mL syringe for aspiration; aspirations obtained from 
smaller 10 mL syringes have greater concentration of MSCs and 
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progenitor cells than when taken from larger syringes (Hernigou et al., 
Nov 2013-b). Both studies also extracted cells from a single site. There is 
debate within the literature as to if extraction from multiple sites pro-
vides a higher number of MSCs with Oliver and colleagues reporting 
similar outcomes (Oliver et al., 2017), but Peters and Watts noting that 
multiple insertions (up to four) result in a higher volume and concen-
tration of BMAC components (Peters and Watts, 2016). Finally, and most 
importantly, cell count and molecular characterization should always be 
reported and analyzed for all patients. Although the optimal cell count, 
composition, and dosage are not yet known, a larger cell count (>4 ×
108 nucleated cells) has been shown to have a greater clinical effect than 
a low count (Centeno et al., 2015). Boffa and colleagues did not mention 

cell count; Anz and colleagues only analyzed the cellular components of 
four patients, which is below the minimal reporting of biologics studies 
(Murray et al., 2017). Shapiro and colleagues did analyze cell counts on 
each patient, but the study was designed for establishing safety; there-
fore, only 25 patients (50 knees) were investigated, which would not be 
enough to establish therapeutic efficacy. Within those 25 patients who 
received BMAC, there was a high variability of MSCs, which may alter 
the efficacy of the treatment. 

Despite these study flaws, trials that suggest no significant 
improvement between treatments are important to consider given that 
the average cost of bone marrow in the US is $3000 versus the average 
cost of PRP is $714, and hyaluronic acid is covered by most insurance 

Table 2 
Clinical randomized trials examining intra-articular BMAC in knee OA.  

Author Primary 
intervention 

Comparator Study 
Design 

Harvest 
site 

N Age Follow- 
up (mos) 

Adverse 
events 

Conclusion 

Centeno 
et al. 
2018 

BMAC +
platelet 
products Exercise therapy 

Unblinded 
RCT PSIS 

26/ 
22 54/57  24 

1 (persistent 
popliteal fossa 
fluid) 

BMAC + platelet products cohort had 
significantly improved pain and function 
compared to exercise therapy cohort in 
moderate-severe OA 

Shapiro 
et al. 
2019 BMAC 

Saline in 
contralateral 
knee Blinded RCT PSIS 25 60  12 None 

Both groups had a significant 
improvement in pain and quality of life, 
with no difference between cohorts in 
patients with bilateral knee OA 

Anz et al. 
2020 BMAC 

Leukocyte-rich 
PRP 

Unblinded 
RCT PSIS 

45/ 
41 

54.1/ 
55.8  12 None 

Both groups had a significant 
improvement in pain and function, with 
no difference between cohorts in patients 
with mild-moderate knee OA 

Boffa et al. 
2021 BMAC 

Hyaluronic acid 
in contralateral 
knee 

Double- 
blinded RCT Tibia 56 57.8  24 None 

Compared to HA, BMAC showed a 
significantly higher improvement in pain 
and function at longer timepoints and in 
knees with mild OA. 

Dulic et al. 
2021 BMAC 

PRP or 
hyaluronic acid RCT Tibia 

111/ 
34/ 
30 

56.9/ 
59.4/ 
58.8  12 None 

All groups significantly improved in pain 
and function after 21 days and long-term, 
but BMAC group was significantly more 
improved compared to HA/PRP at all 
time points in moderate-severe knee OA. 

Ruane 
et al. 
2021 

BMAC then 
PRP 

Hyaluronic acid 
(Gel-One) 

Single- 
blinded RCT 

Posterior 
iliac crest 

17/ 
15 

58.1/ 
58.6  12 None 

Both groups had a significant 
improvement in function with no 
difference between cohorts. The BMAC 
cohort had significantly decreased long- 
term pain compared to HA in knee OA.  

Fig. 2. Typical MRI appearance of an osteochondral defect in the knee: (a) Axial PD FS image showing osteochondral injury of the patella with 6.5 mm full-thickness 
chondral defect (arrow) and underlying marrow edema; (b) Sagittal PD FS image redemonstrating the chondral defect with associated intra-articular loose 
body (arrow). 
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companies (Anz et al., 2020; Piuzzi et al., Sep 2019). Cost alone warrants 
further trials to further determine the efficacy of MSCs and proper pa-
tient selection. 

4.1.2. Microfragmented adipose tissue (MFAT) 
There are few high quality investigations examining the efficacy of 

MFAT, however no double blind randomized placebo control trials. In an 
observational prospective study of 110 patients with knee osteoarthritis, 
there was a statistically and clinically significant improvement in Visual 
Analog Scale (VAS) and Oxford Knee Score (OKS) 12 months after 
treatment (Heidari et al., 2020). In a case series of 220 patients, there 
was a statistically significant improvement in the quality of life at 24 
months in patients who were deemed suitable for knee replacement 
(Heidari et al., 2021). 

A similar time of efficacy was observed in a multi-centric interna-
tional open label study of 75 elderly patients (120 knees) with KL2–4 
OA. At 24 months, 88.3 % of patients had functional and quality of life 
improvement measured by the KOOS at all time points (Gobbi et al., May 
2021). Efficacy was further supported in the largest cohort to date which 
showed clinical and functional response at 24 months in a total of 456 
patients (Borg et al., 2021). Interestingly, the study demonstrated that 
90 % of women responded to the treatment versus only 60 % of men, 
while 64 % of women had a >20-point drop in VAS compared to only 40 
% of men. The discrepancy in outcomes based on gender opens the 
question as to who the ideal candidate is for each procedure and what 
factors influence outcomes. This question paired with the difficult de-
cision in discerning the optimal MSC treatment remains a primary 
challenge. 

Only one retrospective comparative study looked at outcomes for 
BMAC versus MFAT in knee osteoarthritis. In this retrospective review of 
prospectively collected data, Mautner and colleagues concluded no 
difference in pain and function between groups, both providing 
improvement at 1.9 and 1.08 years, respectively (Mautner et al., Nov 
2019). Overall, treatment results with MFAT have a high percentage of 
success totaling over 900 knees treated in the literature up to now, 
supporting its potential for further use. The lack of comparison and 
randomized clinical trials highlight a further need for research within 
this area before making treatment recommendations and guidelines. 

4.1.3. Stromal vascular fraction (SVF) 
SVF is an alternative treatment measure that involves the enzymatic 

digestion and culture expansion of adipose derived tissue. This method 
is not currently approved within the United States as it is considered by 
the FDA to be more than minimally manipulated tissue. Trials can be 
conducted with proper approval using an investigational new drug 
protocol, and the use is still implemented internationally. Still, there are 
few randomized clinical trials to date that support its use. 

In a small, prospective double-blinded randomized-controlled trial 
examining the effect of high-dose SVF, low-dose SVF, or placebo intra- 
articular knee injections for 39 patients with painful knee OA, both 
SVF groups had significantly improved WOMAC scores at one year 
compared to placebo (Garza et al., 2020). In a small randomized trial of 
16 patients with bilateral knee osteoarthritis, Hong and colleagues 
compared arthroscopic debridement with either SVF or hyaluronic acid. 
At 12 months, the SVF-treated knees showed significant improvement in 
VAS, WOMAC, and range of motion compared to the HA-treated group. 
The SVF group also demonstrated improvement of the articular cartilage 
as judged by the Magnetic Resonance Observation of Cartilage Repair 
Tissue (MOCART) scoring system (Hong et al., 2019). In one of the only 
trials comparing different biologics, 89 patients with knee osteoarthritis 
were treated with either intra-articular PRP, BMAC, or adipose-derived 
MSC (SVF) (Estrada et al., 2020). Those with stage I OA received PRP, 
stage II received BMAC, and stage III received SVF. All groups demon-
strated similar statistically significant improvement in knee function up 
to one year. It is important to acknowledge the limitations of this study 
as each group treated a different degree of pathology with different 

biologics. 
Beyond these clinical trials, there exists a paucity of literature on 

SVF. Several case series demonstrate positive outcomes (Gibbs et al., 
2015; Koh et al., Apr 2013; Nguyen et al., Jan 2017; Pintat et al., Dec 
2017), but the effects are difficult to discern given the heterogeneity of 
treatments, and inclusion of other confounding factors such as single or 
multiple injections of PRP, hyaluronic acid or other surgical treatments. 
In addition, not all of these series have included quantification of cell 
count, growth factors, cytokines, and molecular analysis of treatments. 
These details are necessary in further evaluating efficacy to determine 
optimal dosage, effect, and cellular contents. 

4.2. Osteochondral defects 

4.2.1. Percutaneous treatments 
Few studies have investigated the use of subchondral injections for 

osteochondral lesions. One unblinded trial examining patients with both 
primary and secondary OA investigated a single subchondral injection of 
BMAC in one knee and compared to the contralateral knee that received 
a total knee arthroplasty rather than any injection treatments (Hernigou 
et al., Nov 2018-c). At 12 years follow up, 3 % of knees that received cell 
therapy progressed to surgery vs 20 % in the TKA group that required 
subsequent surgical intervention or revision. Clinical and functional 
outcomes improved similarly in both groups. Those that received the 
cellular based treatment demonstrated an increased percentage of 
cartilage volume measured with MRI compared to baseline, and a 
regression of the bone marrow lesion over 5 years. 

Another trial investigating an elder population with bilateral knee 
OA treated one knee with a subchondral injection of BMAC and the other 
knee with a single intra-articular injection of BMAC (Hernigou et al., Feb 
2021). At 15 years, the yearly arthroplasty incidence was significantly 
lower in the subchondral cell therapy group compared to the intra- 
articular group. In another pilot study, patients with knee OA received 
both an IA and two subchondral injections of BMAC into the femoral 
condyle and tibial plateau; this resulted in clinical improvement at 3, 6, 
and 12 months as measured by the IKDC, KOOS, and VAS with objective 
MRI evidence of reduction in bone marrow edema (Kon et al., Dec 
2021). The conclusions warrant larger multicenter placebo-controlled 
trials. 

Only one study concluded equivocal outcomes of subchondral BMAC 
for knee osteoarthritis; in a non-randomized prospective study, patients 
underwent either an IA knee injection with BMAC and PRP or an intra- 
osseous and IA injection with BMAC and PRP for the treatment of 
advanced knee osteoarthritis (Centeno et al., May 2021). Although both 
treatment groups improved, there was no difference between the two at 
24 months. Notable limitations of the study were the small sample size, 
inability to control for multiple injections, having multiple providers 
perform the procedure, and variable sizes of the bone marrow lesion. 

There have been surgical techniques described in the treatment of 
pediatric osteochondritis dessicans lesions, utilizing retrograde drilling/ 
decompression and intraosseous injection of BMAC, but no clinical trials 
or comparative studies (Andelman et al., 2020). 

4.2.2. Surgical treatments – scaffold base 
Multiple surgical options exist for the treatment of osteochondral 

bone marrow lesions. These include marrow stimulation techniques, 
fixation procedures, transplantation grafts and cell-based procedures, 
which require a two-step procedure, such as autologous chondrocyte 
implantation (ACI). Marrow stimulation procedures such as micro-
fracture have the most historical data, in addition to fixation techniques 
where the OCD is preserved or fixated with pins or screws. Autograft and 
allograft osteochondral grafts have gained the most clinical traction over 
recent years (Fig. 4). The implementation of MSC-based treatment into 
surgical practice has challenged these traditional methods. More 
research has developed using MSCs combined with a bioscaffold for 
management of BMLs with successful results. Seeding a bio-scaffold with 
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MSCs and progenitor cells must be compatible with the local tissue and 
provide an environment that would promote cellular differentiation. 
Several scaffolds exist that have been studied in the literature to 
accomplish this including fibrin, collagen fibers (either hydrogel or 
sponge), and hyaluronic acid. 

Gigante and colleagues published the first clinical study using BMAC 
with a scaffold for treatment of cartilage lesions of the knee (Gigante 
et al., 2010). In this small study of five patients with mean lesion size of 
3.7 cm2, the affected knee underwent arthroscopic microfracture with 
implant of a type 1 collagen scaffold seeded with bone marrow 

Fig. 3. Typical MRI appearance of avascular necrosis in the hip: (a) T1 coronal image showing a focal area of T1 hypointensity (arrow) within the superior aspect of 
the femoral head measuring 8 × 8 mm with <25 % involvement of the femoral head and the overlying chondral surface is intact without fragmentation or collapse; 
(b) T2 coronal image redemonstrating the focal area as T2 hyperintense signal (arrow). 

a.                                           b.                                          c.                                         d. 

e.                                          f.

Fig. 4. Example of an osteochondral allograft transplantation, a technique that has gained traction in the United States as a standard of care, prior to any imple-
mentation of MSCs; (a-b) arthroscopic views of the femoral condyle showing an osteochondral defect measuring 34 × 20 mm; (c-d) arthroscopic image through the 
lateral viewing portal showing a cored-out site of the defect to prepare for recipient site where 2 plugs were necessary to fill in the defect; (e-f) final result after 
impaction of the donor graft. 
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concentrate. At 12 month follow up, clinical and histological data sug-
gested that the procedure achieved a nearly normal arthroscopic 
appearance and satisfactory repair of damaged tissue. 

Primary findings in a systematic review of 23 studies (13 human 
clinical) investigating BMAC in the treatment of focal chondral lesions of 
the knee found that chondral defect filling could be achieved with 
fibrocartilage or hyaline-like cartilage material (Cavinatto et al., 2019). 
The studies achieved good to excellent clinical results for both short- and 
long-term outcomes without any adverse events, but it should be noted 
that most of the research was low level evidence with several limita-
tions. The systematic review included two prospective cohorts that 
compared different treatment options, ACI and microfracture. Gobbi 
and Whyte investigated 50 patients with grade IV chondral lesions of the 
knee treated either with HA-BMAC or microfracture. At two years follow 
up, 100 % of knees in the HA-BMAC were classified as normal or near 
normal on the IKDC, significantly greater than those in the microfracture 
group (Gobbi and Whyte, 2016). Of interest, age >45, increased size of 
lesion (>4 cm2), and treatment of multiple lesions did not affect out-
comes in the HA-BMAC group, but poorer outcomes were observed in 
the microfracture group. Another small study comparing HA-BMAC to 
matrix-induced chondrocyte implantation (MACI) for patellofemoral 
chondral defects found significant improvements in pain and function in 
both groups at 2 years, without a significant difference between the two 
treatments (Gobbi et al., 2015). The findings in this study are important 
given the higher cost and potential complications of a two-step MACI 
procedure. 

These effects of MSC applications have been mirrored in osteo-
chondral lesions of the talus (OLT), although limited quality studies 
exist. A systematic review of only four studies examining BMAC for OLT 
showed varying degrees of beneficial outcomes for the treatment of 
moderately sized defects (Chahla et al., 2016). Three of the four studies 
supported good cartilage defect filling as demonstrated by MRI, and 
most patients were able to return to athletic activity. BMAC in these 
studies was not used alone, but in conjunction with synthetic scaffolds, 
OAT, or bone marrow stimulation (BMS). More recently, Vannini and 
colleagues reported on 56 patients that underwent a one-step procedure 
of BMAC-seeded in situ on a scaffold for OLT, where there was statisti-
cally significant improvement in pain and function at 10 years post 
treatment (Vannini et al., 2021); however, 33 % of subjects were 
considered failures to treatment. 

Overall, surgical management with scaffolds and MSCs have shown 
successful results both clinically and radiographically in osteochondral 
lesions of the knee and talus. It should be considered as a viable treat-
ment option with other procedures such as autograft and allograft OATs 
procedures, MACI, and microfracture, but further higher-level clinical 
trials are necessary to standardize its applications and indication of use. 

4.2.3. Surgical treatments – subchondroplasty 
Subchondroplasty is an alternative option for BMLs that has 

increased in its use over the previous decade. Subchondroplasty involves 
the injection of calcium phosphate into the trabeculae of cancellous 
bone within the subchondral region of the joint, which fills in the 
trabecular space of a bone marrow lesion providing a scaffold for 
osseous remodeling. A recent systematic review identified 17 studies 
with 756 patients that have investigated subchondroplasty as a treat-
ment for BML (Nairn et al., Nov 2021). Of the 17 studies, 13 involved the 
knee versus 4 of the ankle. All but one of the studies were level IV evi-
dence. The results demonstrated significant clinical and functional 
success measured by the VAS, IKDC, and KOOS with median time for 
follow up at 12 months, with low rates of conversion to knee arthro-
plasty. There were seven complications (incidence 0.009 %), some of 
which were serious including avascular necrosis, osteomyelitis, and 
deep vein thrombosis. Only one clinical study to date has augmented 
subchondroplasty with MSCs; 11 patients with symptomatic osteo-
chondral defect of the talus (average defect size 1.3 cm × 1.4 cm) un-
derwent subchondroplasty with BMAC in a retrospective review, and 

experienced statistically significant decreased pain with weight-bearing 
and increased function (Chan et al., 2018). 

The literature for subchondroplasty continues to evolve, but long- 
term outcomes are needed to continue to evaluate its success and 
whether MSCs can provide a superior outcome. However, it remains an 
alternative treatment to potentially delay total knee arthroplasty. 

4.3. Avascular necrosis/primary osteonecrosis 

The standard of care for AVN in the femoral head is total hip 
arthroplasty (THA). Although hip arthroplasty has a high success rate in 
the general population, survival of the prosthesis can be of concern in 
AVN, given that the condition can affect younger and middle-aged in-
dividuals. It therefore becomes critical to recognize AVN in its early 
stages to halt progression to THA. With early recognition, procedures 
such as core decompression can be a successful treatment (Jindal et al., 
2021). Core decompression (CD) works by providing a channel within 
the femoral head and neck for neovascularization to occur. Success rates 
have been described as up to 84 % for stage I, 63 % for stage II, and 29 % 
for stage III AVN (Castro and Barrack, 2000). Recently, MSCs have been 
added to core decompression to improve those success rates. In AVN, it 
is hypothesized that the femoral head is devoid of progenitor cells and 
by adding MSCs in the necrotic area, the healing potential is enhanced 
(Pawar et al., Jan 2022). 

This combination technique was first researched in 2002 in a pro-
spective study examining functional outcomes and progression to THA 
over 10 years in patients with hip AVN (Hernigou and Beaujean, 2002). 
Of patients with stages I and II AVN, only 6 % progressed to THA, 
compared to patients with stages III and IV, where 57 % required THA. 
Those with higher progenitor cell counts were found to have better 
outcomes. Similar long-term positive results were reported in a retro-
spective study investigating 10-year data on 44 patients with hip AVN 
who underwent core decompression with BMAC (Tomaru et al., 2019); 
they found that across all patients, 34 % required conversion to THA, but 
for patients with stages I and II, the number decreased to 14 %. 

The low success rates in patients with stages III and IV AVN in these 
studies are consistent across the literature and post-collapse AVN re-
mains difficult to treat. A retrospective review on 100 patients with hip 
AVN found that among collapsed cases of AVN, there was no difference 
in clinical failure rate for core decompression versus core decompression 
with BMAC (Kang et al., 2018). Another small study investigated CD 
with saline compared to CD with BMAC in patients with stage III AVN, 
and found no difference between THA requirements, clinical tests, or 
radiological evolution, and 65 % of these patients progressed to THA at 
24-months follow up (Hauzeur et al., 2018). A systematic review and 
meta-analysis evaluating CD plus BMAC in the treatment of post collapse 
AVN of the hip found that 40 % of stage III cases worsened to stage IV 
after treatment, and approximately 30–40 % of stages III and IV hips 
eventually required THA over five years. 

The consensus remains that the results for MSCs for stage III and IV 
AVN are inconclusive. Nonetheless, there has been some success with 
additional treatments combined with CD and BMAC; one study 
augmented core decompression with BMAC and PRP (Houdek et al., 
2021). At 7 years follow up, the overall survivorship free of femoral head 
collapse leading to THA was 84 % and survivorship free from THA for all 
causes was 67 %; these rates increased to 96 % and 72 % for stages I and 
II. 

It is unclear at this time if other methods of MSC extraction would 
provide different outcomes, and BMAC remains the predominant choice 
for MSC extraction in this patient population. Only one study used 
adipose-derived MSCs enzymatically digested to produce SVF cells in 17 
patients, and 82 % did not require THA at 2 years (Yoon et al., 2021). 
This small study is in line with BMAC outcomes, but further studies are 
needed to confirm its success and determine the ideal cell count and 
patient selection for each group. 
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4.4. Clinical safety of MSCs 

The overall safety of MSC treatments has been well established. A 
retrospective analysis examined a cohort of 1873 adult patients treated 
with autologous bone marrow-derived concentrated progenitor cells for 
various orthopedic conditions (Hernigou et al., 2013). They found that 
none of the patients developed cancer at the site of injection, and the 
rate of cancer diagnosed at other sites was less than the incidence in the 
general population over an average follow up of 12.5 years. Similar 
findings were demonstrated in a multi-center analysis of 2372 adult 
patients who underwent percutaneous autologous stem cell therapy for 
various orthopedic conditions examined overall safety and risk of 
neoplasm over a period of 2.2 years (Centeno et al., 2016). The study 
reported a total of 325 adverse events; most events were post-procedure 
pain (3.9 %) or pain secondary to progressive joint disease (3.8 %). Only 
seven cases reported neoplasm within that time, which was a lower rate 
than in the general population. Recently, a Delphi study examining the 
utility of BMAC applications practices to treat musculoskeletal diseases 
demonstrated consensus among experts in BMAC's safety profile (Cen-
teno et al., 2021). 

In a systematic review of minimally manipulated MSCs in the 
treatment of knee osteoarthritis, SVF resulted in zero serious adverse 
events (utilized in 13 articles) (Di Matteo et al., 2019). In an alternative 
review of 8 studies of knee OA, they described no complications re-
ported with BMAC treatment (Keeling et al., 2021). Furthermore, no 
adverse events were reported in trials that utilized cellular therapy for 
intra-osseous injections (Hernigou et al., 2021; Hernigou et al., Nov 
2018-c; Centeno et al., May 2021), and only few with core decompres-
sion similar to typical post-surgical complications (Hernigou and 
Beaujean, 2002). 

5. Conclusion 

The literature examining the use of MSCs in bone marrow lesions has 
dramatically increased over the past several decades; however, there are 
still translational gaps in its clinical applications. While the mechanism 
of MSC's application in BML is complex, there is robust data to support 
the strong paracrine function of MSCs in pathways of angiogenesis and 
inflammation (Doorn et al., 2012; Bouland et al., 2021). Another active 
area of research includes the use of bioactive scaffolds to optimize the 
environment for implanted MSCs by facilitating chondrogenesis and 
higher bone volumes, especially in osteochondral defects (García- 
Sánchez et al., 2019; Cavinatto et al., 2019); future preclinical and 
clinical studies should examine a head-to-head comparison of the 
various scaffolds including fibrin, collagen fibers, and hyaluronic acid. 

We understand the patient population studied in the literature re-
flects the most commonly affected joints related to each pathology; 
however, one limitation we experienced is that the majority of clinical 
literature published on subchondral-associated BMLs in osteoarthritis 
and BMLs related to osteochondral defects focused mainly on the knee, 
with relatively few studies on the ankle and other joints. In contrast, the 
literature on avascular necrosis almost exclusively concentrates on the 
hip joint. Future research of treatment of bone marrow lesions should 
include patient populations with other affected joints. 

In knee osteoarthritis, most of the evidence for MSCs thus far lies in 
case series and small, randomized trials. Overall, there were improve-
ments in pain and functional outcomes when patients were treated with 
MSCs, and the results suggest that BM-MSCs can be a safe and effective 
treatment for patients with painful knee osteoarthritis with or without 
bone marrow lesions. In patients with hip avascular necrosis, those with 
earlier stage disease have improved outcomes (longer time to THA) 
when core decompression was augmented with BM-MSCs, whereas pa-
tients in later stages post-collapse have equivalent outcomes with or 
without MSC treatment. Given that an osteochondral defect is a 
morphologic finding and is found in several clinical conditions (both 
acute and chronic), there is a wide variety of treatment strategies that 

range from conservative to surgical (Gorbachova et al., 2018; Badekas 
et al., 2013; Howell et al., 2021). Preliminary data in smaller cohort 
studies examining MSCs in osteochondral defects suggest they can be 
beneficial as a subchondral injection alone, or as a surgical augmenta-
tion with a bioscaffold or subchondroplasty and should be considered as 
a viable treatment option with other procedures such as OAT, MACI, and 
microfracture; additional clinical trials with robust designs are neces-
sary to support its use in the future. 

In order to improve the quality of future clinical trials, studies need 
to standardize methodology in harvesting MSC's, for example restricting 
BMAC collection to the iliac crest and using smaller syringes for aspi-
ration to optimize yield and ensure quality (Davies et al., 2017; Herni-
gou et al., Nov 2013-b). We also recommend that studies report the cell 
count and molecular characterization to help researchers identify the 
optimal cell count for these procedures that would correlate with patient 
outcomes (Centeno et al., 2015). 

While the evidence for the use of MSCs in conditions with associated 
bone marrow lesions seems promising, there remains a need for 
continued investigation into this treatment as a viable treatment option. 
There is a need for well-powered, randomized-controlled trials exam-
ining MSCs as a treatment for bone marrow lesions, both as a non- 
surgical therapy and in augmentation of surgical procedures. 
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