
Citation: Detroja, T.S.; Samson, A.O.

Virtual Screening for FDA-Approved

Drugs That Selectively Inhibit

Arginase Type 1 and 2. Molecules

2022, 27, 5134. https://doi.org/

10.3390/molecules27165134

Academic Editors: Anna

Maria Almerico and Marco Tutone

Received: 28 June 2022

Accepted: 9 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Virtual Screening for FDA-Approved Drugs That Selectively
Inhibit Arginase Type 1 and 2
Trishna Saha Detroja and Abraham O. Samson *

The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
* Correspondence: avraham.samson@biu.ac.il

Abstract: Arginases are often overexpressed in human diseases, and they are an important target for
developing anti-aging and antineoplastic drugs. Arginase type 1 (ARG1) is a cytosolic enzyme, and
arginase type 2 (ARG2) is a mitochondrial one. In this study, a dataset containing 2115-FDA-approved
drug molecules is virtually screened for potential arginase binding using molecular docking against
several ARG1 and ARG2 structures. The potential arginase ligands are classified into three categories:
(1) Non-selective, (2) ARG1 selective, and (3) ARG2 selective. The evaluated potential arginase ligands
are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used
clinically to lower blood pressure and treat cancer, infection, kidney disease, and Parkinson’s disease
thus partially validating our virtual screen. Most notable are the antihypertensive drugs candesartan,
irbesartan, indapamide, and amiloride, the antiemetic rolapitant, the anti-angina ivabradine, and
the antidiabetic metformin which have minimal side effects. The partial validation also favors the
idea that the other half of the top 30 potential drugs could be used in therapeutic settings. The three
categories greatly expand the selectivity of arginase inhibition.

Keywords: virtual screening; molecular docking; ARG1; ARG2; arginase; vina; FDA

1. Introduction

Arginase (E.C. 3.5.3.1) is a ureohydrolase homotrimeric binuclear manganese metal-
loenzyme that hydrolyses L-arginine into L-ornithine and urea [1,2] (Figure 1). In ureotelic
animals, this enzyme is primarily involved in the elimination of excess ammonia through
the urea cycle [3]. Interestingly, overexpression of arginase is involved in diseases such
as cancer, cardiovascular, diabetes, asthma, neurodegenerative disease, and infectious
disease [4–8]. In mammals two distinct isoforms of the enzyme exist, namely arginase type
1 (ARG1) and arginase type 2 (ARG2), which are encoded by different genes, and share
approximately 60% sequence homology [9]. The isoenzymes differ in tissue distribution,
intracellular location, and immunochemical characteristics [9]. ARG1 is a cytosolic enzyme
expressed predominantly in the liver, where it plays a key role in urea synthesis [10]. ARG2
is a mitochondrial enzyme that is expressed in most tissues, with high levels found in the
kidney and prostate, but also in blood vessels, intestines, red blood cells, and immune
cells. Recent evidence suggests that ARG2 can translocate from the mitochondrion into the
cytosol leading to an increase in its activity [11].

Arginase competes with several key enzymes for its substrate L-arginine, notably
with nitric oxide synthetase (NOS), arginine decarboxylase (ADC), glycine amidinotrans-
ferase (AGAT), arginine deiminase, etc [12]. Over-expression of ARG1 or ARG2 disrupts
L-arginine homeostasis which leads to metabolic disorder-related diseases, Alzheimer’s
disease (AD), cancer, etc [13–16]. Studies have shown that ARG2 is over-expressed in
AD patients’ brains compared to the control brain [17]. ARG2 over-expression leads to
L-arginine depletion and increased production of urea [18]. Handley et al., observed
increased urea production and hypothesized that an altered urea cycle could be a com-
mon feature of Huntington’s disease [19]. Arginase overexpression is also related to
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increased proline and polyamines synthesis via the arginase-ornithine pathway leading
to fibrosis, tumor growth, and invasion [20,21]. Arginase overexpression also reduces the
bioavailability of NO (nitric oxide) which leads to increased blood pressure and endothelial
dysfunction [22–25]. Furthermore, arginase overexpression impairs T-cell function leading
to immune dysfunction-mediated cancer progression [26,27]. Moreover, it also interacts
with different signaling pathways such as MAPK, STAT3, and AKT-mTOR involved in
tumorigenesis [8,15,28,29]. Another recent study has shown that ARG2 has involved in
obesity-related metabolic dysfunction [30]. Several other studies have shown that ARG2
plays a critical role in advanced inflammation, oxidative stress, and senescence [31–33].
Finally, we have proposed arginase as a potential target in the treatment of AD [34–36].
Hence, arginases present a promising target in the treatment of various diseases (Figure 2).
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Figure 1. Graphical overview of Arginase1 (ARG1) and Arginase2 (ARG2) mediated L-arginine
metabolism in physiologic pathways. Arginase1 (ARG1), nitric oxide synthases (NOS), arginine
decarboxylase (ADC), and L-arginine: glycine amidinotransferase (AGAT) use L-arginine as the
primary metabolic substrate. Arginase1, the final enzyme of the urea cycle, cleaves L-arginine
to form urea and ornithine in the cytoplasm. Arginase2 (ARG2) is also involved in the urea cy-
cle L-arginine metabolism in both the cytoplasm and mitochondria. N-acetyl glutamate synthase
(NAGS), carbamoyl phosphate synthase (CPS1), ornithine transcarbamylase (OTC), argininosucci-
nate synthetase (ASS), argininosuccinate lyase (ASL), glutamate dehydrogenase (GDH), ornithine
aminotransferase (OAT), ornithine decarboxylase (ODC), ∆1-pyrroline-5-carboxylate synthase (P5C),
spermidine synthase (SPDS), spermine synthase (SPMS).
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Figure 2. Arginase inhibition and its clinical relevance. Arginase inhibition results in increased
nitric oxide (NO) production and decreased L-ornithine and urea production. Nitric oxide synthases
(NOS), ornithine aminotransferase (OAT), ornithine decarboxylase (ODC), ∆1-pyrroline-5-carboxylate
synthase (P5C), spermidine synthase (SPDS), spermine synthase (SPMS). The red blunt arrow shows
inhibition, the green arrow represents elevated levels of the substances; blue arrows designate
reduced ones.

There are a few potent and selective inhibitors available that regulate the balance
between NOS and the arginase pathway by controlling arginase activity. For example,
the arginase inhibitors N-omega-hydroxy-L-arginine (NOHA), nor-N-omega-hydroxy-
L-arginine (nor-NOHA), 2(S)-amino-6-boronohexanoic acid (ABH), S-(2-boronoethyl)-L-
cysteine (BEC) are currently in a pre-clinical trial [15,37]. Moreover, plant-derived com-
pounds such as polyphenols “chlorogenic acid” [38], glycoside derivative “Piceatannol-3′-
O-β-D-glucopyranoside” [39], flavonoids “(2S)-5,2′5′-trihydroxy-7,8-dimethoxy” [40], and
cinnamide derivatives [41] are also investigated for developing potent arginase inhibitor.
In addition, arginase inhibition using L-norvaline reverses neurodegeneration in a murine
model of Alzheimer’s disease [42]. However, one potential concern is the lack of selectivity
of the drugs for ARG1 and ARG2. ARG1 expression in macrophages is critical for tissue
repair [43]. Additionally, ARG1 inhibition leads to episodic hyperarginemia and hyperam-
monemia [44]. ARG1 inhibition is detrimental and can cause death if left untreated [45].
Moreover, ARG1 knockout is lethal in mice [46]. In contrast, selective ARG2 inhibition
prevents atherosclerosis [32], delays vascular aging [47], suppresses insulin resistance [48],
ameliorates diabetic renal injury [49], protects against hypoxia-induced pulmonary hy-
pertension [50], and prevents oxidative stress [31]. ARG2 deficiency extends lifespan in
mice [51], with no significant changes in plasma amino acids and ammonia levels [52].
Therefore, in our study, we aimed to identify potential FDA-approved drugs selective to
ARG1 and ARG2 to ameliorate the treatment efficacy.

Virtual screening is a classical tool used to screen novel compounds that target a given
protein of interest. Computational screening approaches have gained an advantage over
high-throughput screening techniques, due to decreased time and cost to select potential
compounds for further experimental validation. In the past, we have used structure-based
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virtual screening to identify potential ligands for Mcl-1 [53] and Pyk2 [54]. For arginase,
several human experimental structures are available and are listed in Table S1.

In this study, we used molecular docking against multiple arginase conformations
(3 X-ray crystallography PDB structures for each of the arginase isozymes) to virtually
screen for novel ligands that can modulate the activity of arginase, both selectively, and
not. In addition, we used molecular dynamics (MD) simulation to validate the protein-
ligand stability of the selected hits (Figure 3). Using these techniques with FDA approved
drug dataset, we identified novel small molecules that could be repurposed for cancer,
Alzheimer’s disease, hypertension, cardiovascular diseases, and other metabolic disorders.
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Figure 3. Overview of the structure-based virtual screening workflow.

2. Materials and Methods

Database selection and ligand preparation: FDA-approved drug datasets (DrugBank FDA
only, version 2018-02-20) were retrieved in Mol2 format from the non-commercial ZINC15
database (https://zinc.docking.org/ (accessed on 7 February 2022) [55]. We then used the
Open Babel package (version 2.3.2) Pittsburgh, PA, USA [56] to convert file format from
Mol2 to pdbqt format, followed by Vina Split [57] to obtain 2115 FDA-approved drugs for
virtual screening.

Target preparation and grid generation: Three High resolution X-ray crystallography
structures [PDB IDs 4HWW(1.30 Å) [58], 4HXQ (1.45 Å) [58], 3SJT (1.60 Å) [59]] of ARG1,
and three X-ray crystallography structures [PDB ID 4HZE (1.60 Å) [58], 4I06 (1.80 Å) [58],
4IXU (1.90 Å) [60]] of ARG2 were selected among the multiple conformations of these
proteins listed in Supplementary Table S1. Protein receptors for virtual screening were
prepared further using AutoDockTools (version 1.5.7), California, CA, USA [61], where
polar hydrogen atoms were added and Gasteiger charges were assigned. The search space
for ligand docking was figured based on the coordinates of the native ligand from the
crystal structure. AutoGrid plugin of PyMOL (version 1.8.4.0) New York, NY, USA [62]
was used to build a cubic grid box measuring 25 × 25 × 34 Å with 0.375 Å spacing at the
binding site of the above-mentioned arginase structures. The X, Y, and Z, coordinates of the
center of the docking box were x: −22.48, y: 15.90, z: −12.11 (4HWW); x: −22.64, y: 16.48,

https://zinc.docking.org/
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z: −11.55 (4HXQ); x: 20.02, y: −13.98, z: 41.4 (3SJT); x: 34.11, y: 87.02, z: 71.22 (4HZE); x:
34.34, y: 86.22, z: 71.47 (4I06); x: 33.34, y: 86.00, z: 72.00 (4IXU).

In Silico’s high-throughput screening: AutoDock Vina (1.1.2 for Linux), California, CA, USA [57]
was used to run the docking on our Urim high-performance cluster equipped with 64 Intel
Xeon processors. In all cases, the default parameters of AutoDock Vina [57] were as follows:
The exhaustiveness of the global search was 8, the maximum number of binding modes to
generate was 9, and the maximum energy difference between the best and worst binding
mode displayed as 3 kcal/moL, thus limiting the number of poses. For each ligand, only
the best pose was retained. In all cases, the binding site on arginase was defined and limited
by a box measuring 25 × 25 × 34 Å3 around different X, Y, and Z, center coordinates.

Protein-Ligand interaction analysis: Protein-ligand interaction analysis was performed
using PLIP (Protein-Ligand Interaction Profiler) [63] to analyze non-covalent interactions
between the arginase and the best docking pose of the selected hit showing fewer
side effects.

MD simulation: All-atom MD simulation of a protein-ligand complex of ARG1 (PDB
ID 3SJT) and ARG2 (PDB ID 4HZE) structures with 5 selected ligands was performed with
NAMD (Nanoscale Molecular Dynamics program; version 2.14, Linux-x86_64-multicore-
CUDA), Illinois, IL, USA [64] using CHARMM36 forcefield (toppar_c36_jul19.tgz) [65–67].
To generate protein parameter files and ligand parameter files VMD (Visual molecular
dynamics; version 1.9.3), Illinois, IL, USA [68] and CHARMM-GUI Ligand Reader and
Modeler module [69] were used, respectively. As manganese ions were undefined in the
CHARMM36 forcefield, we used Mg2+ ion parameters instead of Mn2+ ions of ARG1 and
ARG2, as routinely recommended by Nagagarajan et al. [70]. Solvation and auto-ionization
of the protein-ligand complex were performed using VMD. A standard TIP3 water model
was added as a solvent with periodic boundary conditions, and a padding distance of
10 Å for each dimension [71]. Na+ and Cl− ions were used to neutralize the system. Up
to date, the CgenFF version of CHARMM-GUI [72,73] was used to generate topology and
parameter files for the selected ligands. Periodic boundary conditions were applied. The
particle-mesh Ewald method [74] was used for electrostatic interactions of the system.
Minimization was done for 1000 steps at a constant temperature of 298.15 K. Position
restraints were applied on Mn2+ ion before carrying out equilibration and production run
using NPT (constant particle number, pressure, and temperature) ensemble for 50 ns. Three
sets of simulations [denoted by Set A (ARG1 (s1a–s5a), ARG2 (s1a–s5a)); Set B (ARG1
(s1b–s5b), ARG2 (s1b–s5b)); Set C (ARG1 (s1c–s5c), ARG2 (s1c–s5c))] were performed for 50
ns each. VMD-Hbonds plugin was used to count strong hydrogen bond (Donor-Acceptor
distance 4.0 Å, Angle cutoff 30◦) formation between protein and ligand complex throughout
the trajectory. RMSD trajectory plugin tool in VMD was used to calculate the RMSD of
protein and ligand.

3. Results

Validation of molecular docking assay: Remarkably, our molecular docking assay was
validated using two approaches: (1) First, by comparison of the native crystallographic
ligand pose with the top docked pose. Notably, the native and predicted poses yielded
good fits with heavy atoms RMSD values for PDB IDs 4HZE (1.47 Å), 4IXU (2.84 Å),
4I06 (2.41 Å), 4HWW (2.12 Å), 3SJT (2.14 Å), and 4HXQ (2.09 Å). (2) Second, by com-
parison of the experimental dissociation constant (Kd) of ligands with the predicted
one. Notably, AutoDock Vina [57] correctly ranked the following arginase ligands ac-
cording to their Kd 6-nitro-L-norleucine (6HN) (∆GARG1 = −5.8, ∆GARG2 = −6.1), 2(S)-
amino-6-boronohexanoic acid (ABH) (∆GARG1 = −6.1, ∆GARG2 = −6.2), nor-N-omega-
hydroxy-L-arginine (nor-NOHA) (∆GARG1 = −6.2, ∆GARG2 = −6.3), N-omega-hydroxy-
L-arginine NOHA (∆GARG1 = −5.9, ∆GARG2 = −6.5), S-(2-boronoethyl)-L-cysteine BEC
(∆GARG1 = −6.0, ∆GARG2 = −6.2) to the various PDB structures of ARG1 and ARG2 used
in this study. The predicted Kd was calculated from the free binding energy of Vina (∆G,
using the following equation: Kd = e

−∆G
RT , and was taken as the average of the top poses
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in three distinct arginase structures. The predicted Kd of ARG1 was taken as the average
of the top poses in PDBs 4HZE, 4IXU, and 4I06, while the predicted Kd of ARG2 was
calculated using PDBs 4HWW, 3SJT, and 4HXQ. A plot of the predicted and experimental
dissociation constant (Kd) is shown in Figure S1. The experimental and predicted Kd cor-
relate well, with correlation coefficients (R) of 0.72 for ARG1, and 0.77 for ARG2. These
two approaches validate our screening methodology (Table S2). Thus, the predictive power
of our in-silico assay was proven in a small dataset and paved the way for further analysis
on large datasets.

Less remarkably, the predicted and experimental selectivity of these compounds did
not correlate at all. with R = 0.0023. The ARG1 selectivity was taken as the ratio of
dissociation constant (Kd) of ARG1 divided by ARG2, and the ARG2 selectivity vice versa.
The selectivity plot (Figure S2) of experimental and predicted selectivity shows a weak
correlation, and as a result, we resorted to using MD simulations for potential selectivity.

Virtual docking with FDA-approved drug data set: Virtual docking of 2115 FDA-approved
drugs on the six arginase structures, three of ARG1 (PDB IDs: 4HWW, 4HXQ, 3SJT) and
three of ARG2 (PDB IDs: 4HZE, 4IXU, 4I06) took ~36 h (Table S3). Notably, the top pose of
each ligand is oriented similarly in all three arginases, as indicated by visual inspection,
and low RMSDs, (except in less than 2% of the cases) (Table S11). Table 1 lists the top
15 FDA-approved drugs, both non-selective, ARG1 selective, and ARG2 selective. The top
15 non-selective drugs are ranked according to the total of their average binding energy.
Interestingly, most of the drugs are used to treat inflammation, headache, cancer, metabolic
disorders, and type 2 diabetes which could become clinically relevant for drug repurposing.

Table 1 also lists the top 15 FDA-approved drugs that are potentially selective to
ARG1 and ARG2. The difference between the average free binding energies (∆∆G) of
three ARG1 structures and three ARG2 structures is used to rank the top drugs. The top
drugs that show potential selectivity for ARG1 are associated with treating fungal and
bacterial infection, arthritis, colitis, cancer, depression, and hypertension (Table S4). And
the top ARG2 selective drugs are used to treat pain, hypertension, anxiety, infection, heart
failure, and malaria among others (Table S4 for indications). Of these, some are associated
with severe side effects (i.e., valrubicin, rocuronium, etc.), and are unsafe for repurposing
towards arginase inhibition. Some of the ligands were selected based on their relatively
low toxicity, and adverse effects. For example, the antihypertensive drugs candesartan,
and irbesartan which are angiotensin II receptor blockers (ARB), the thiazide-like diuretic
indapamide, the antiemetic rolapitant which is an NK1-receptor antagonist, the anti-angina
ivabradine which bind binds to HCN4 receptors, the antihypertensive amiloride that is an
epithelial sodium channel (ENaC), the antidiabetic metformin, and the antifungal triazole
isavuconazole. Furthermore, metformin was selected because its pharmacokinetic action
is not completely understood. These approved drugs have minimal side effects and were
further analyzed for their potential repurposing as arginase inhibitors. In particular, we
mapped the interaction networks of the selected ligands and performed MD simulations of
some with ARG1 (PDB ID 3SJT) and ARG2 (PDB ID 4HZE) structures to check the stability
of the protein-ligand interaction.

Interaction analysis of selected molecules: The non-selective lead molecules are can-
desartan (∆GARG1(3SJT) = −8.3, ∆GARG2(4HZE) = −8.7), isavuconazole (∆GARG1(3SJT) = −7.1,
∆GARG2(4HZE) = −7.0) metformin (∆GARG1(3SJT) = −6.2, ∆GARG2(4HZE) = −6.4), amiloride
(∆GARG1(3SJT) = −7.8, ∆GARG2(4HZE) = −8.2) (Table S5).

In ARG1, metformin forms hydrogen bonds with H101, H126, T246, and H141, salt
bridges, with D124, D232, D234, E277, and D128, cation-π with H126 and H141 (Figure 4C).
Similarly, in ARG2, it forms hydrogen bonds with H160 and T265, salt bridges with D143,
D251, D253, E296 andD147, and cation-πwith H145 and H160 (Figure 4D). Note that the
numbering of ARG1 and ARG2 residues is shifted by 19 amino acids (i.e., D124 of ARG1 is
homologous to D143 of ARG2, etc.)
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Table 1. Top FDA-approved drugs bound to ARG1 and ARG2 conformations.

The Average Binding Energy of FDA-Approved Drugs to ARG1 and ARG2 (kcal/moL)

Rank Non-Selective ARG1_Selective ARG2_Selective

ARG1 SD (±) ARG2 SD (±) Ligand SD (±) ∆∆G Ligand SD (±) ∆∆G

1 ZINC000003978005
Dihydroergotamine (−8.4) 0.1 ZINC000003978005

Dihydroergotamine (−9.2) 0.550757 ZINC000003860453
Fluorescein (−8.3) 0.152753 0.833333 ZINC000043450324

Omacetaxine (−8.8) 0.264575 −1.73333

2 ZINC000169289767
Trypan blue (−8.5) 0.435889894 ZINC000169289767

Trypan blue (−9) 0.971253 ZINC000003816514
Rolapitant (−7.6) 1.078579 0.733333 ZINC000049783788

Valrubicin (−9) 0.251661 −1.6

3 ZINC000004212809
Deflazacort (−8.6) 0.152752523 ZINC000004212809

Deflazacort (−8.7) 0.208167 ZINC000019632668
Doxapram (−6.7) 0.72111 0.7 ZINC000001280665

Hydrocodone (−8.2) 0.152753 −1.6

4 ZINC000052955754
Ergotamine (−8.5) 0.152752523 ZINC000052955754

Ergotamine (−8.8) 0.321455 ZINC000000591993
Nisoldipine (−7) 0.34641 0.666667 ZINC000003872931

Irbesartan (−8.7) 0.11547 −1.6

5 ZINC000064033452
Lumacaftor (−8.4) 0.2081666 ZINC000064033452

Lumacaftor (−8.9) 0.11547 ZINC000003629271
Emtricitabine (−7) 0.83865 0.633333 ZINC000004175630

Pimozide (−8.1) 0.208167 −1.56667

6 ZINC000003927870
Fludarabine (−8.5) 0.1 ZINC000003927870

Fludarabine (−8.8) 0.152753 ZINC000000601250
Sulconazole (−6.6) 0.64291 0.6 ZINC000000000903

Alprazolam (−8.2) 0.152753 −1.56667

7 ZINC000014210876
Eluxadoline (−8.7) 0.1 ZINC000014210876

Eluxadoline (−8.6) 0.2 ZINC000072318121
Abemaciclib (−7.6) 0.23094 0.566667 ZINC000000403533

Oxycodone (−8.5) 0.23094 −1.56667

8 ZINC000004097286
Budesonide (−8.4) 0.2081666 ZINC000004097286

Budesonide (−8.8) 0.057735 ZINC148723177
Brigatinib (−6.4) 0.208167 0.566667 ZINC000001485935

Isavuconazole (−8) 1 −1.53333

9 ZINC000003807172
Argatroban (−8.1) 0.458257569 ZINC000003807172

Argatroban (−8.9) 0.152753 ZINC000100016058
Tipranavir (−7.3) 0.360555 0.533333 ZINC000000001370

Estazolam (−8) 0.057735 −1.53333

10 ZINC000003782818
Candesartan (−8.2) 0.057735027 ZINC000003782818

Candesartan (−8.8) 0.11547 ZINC000000538065
Nefazodone (−6.7) 0.1 0.533333 ZINC000100004343

Artemether (−7.2) 0.208167 −1.5

11 ZINC000006745272
Regorafenib (−8.1) 0.173205081 ZINC000006745272

Regorafenib (−8.9) 0.360555 ZINC000002036848
Riboflavin (−8.1) 0.757188 0.533333 ZINC000003806721

Codeine (−8.1) 0.2 −1.5

12 ZINC000013831130
Raltegravir (−8.2) 0.2081666 ZINC000013831130

Raltegravir (−8.7) 0.1 ZINC000003955219
Darunavir (−7.1) 0.351188 0.533333 ZINC000002019954

Articaine (−7.1) 0.057735 −1.46667

13 ZINC000011679756
Eltrombopag (−8.4) 0.152752523 ZINC000011679756

Eltrombopag (−8.4) 0.057735 ZINC000068204830
Daclatasvir (−7.5) 0.635085 0.5 ZINC000029416466

Saquinavir (−7.6) 0.351188 −1.4

14 ZINC000009212427
Leucovorin (−8.3) 0.288675135 ZINC000009212427

Leucovorin (−8.4) 0.23094 ZINC000000000850
Zileutin (−6.4) 1.101514 0.466667 ZINC000003805768

Ivabradine (−6.4) 0.152753 −1.4

15 ZINC000006716957
Nilotinib (−8.3) 0.152752523 ZINC000006716957

Nilotinib (−8.4) 0.11547 ZINC000022016981
Calteridol (−6.2) 0.360555 0.466667 ZINC000053229445

Rocuronium (−7.1) 0.305505 −1.36667
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Figure 4. Ligand poses in arginase binding site. (A,B) Shown is the interaction of the top pose of can-
desartan with ARG1 and ARG2, (C,D) interaction with the top pose of metformin. (E,F) Interaction
of the top pose of isavuconazole. (G,H) Interaction of ARG1 and ARG2 with the best-docked pose of
ligand irbesartan. (I,J) Interaction of best-docked pose of ligand rolapitant with ARG1 and ARG2.
(K,L) Interaction of ARG1 and ARG2 with the best-docked pose of ligand ivabradine. (M,N) Interac-
tion of best-docked pose of ligand amiloride with ARG1 and ARG2. (O,P) Interaction of ARG1 and
ARG2 with the best-docked pose of ligand indapamide.
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In ARG1, amiloride forms hydrogen bonds, with D128, D183, and T246, salt bridges
with D183, E186, and π-stacking with H126, and H141 (Figure 4M); Similarly, in ARG2,
amiloride forms hydrogen bonds with H145, S156, D202, T265, D147, and H160, salt
bridges with D143, D147, D251, D253, E296, and cation-π interaction with H160, in ARG2
(Figure 4N).

In ARG1, candesartan forms a hydrophobic interaction with H126, hydrogen bonds
with N130, T135, S137, N139, and T136, and salt bridge with R21 (Figure 4A). Similarly, In
ARG2, candesartan forms hydrophobic interactions, with R39, H145, T265, and K38, hydro-
gen bonds with N149, T154, S155, S156, and N158, and salt bridge with K38 (Figure 4B).

In ARG1, isavuconazole forms hydrophobic interactions with H126 and T246,
π-stacking with H141, and a halogen bond with S137 (Figure 4E). Similarly, in ARG2, it
forms hydrophobic interactions with H145, and T265, π-stacking with H160, and halogen
bond with S156 (Figure 4F).

The potential ARG1 selective lead molecule is rolapitant (∆GARG1(3SJT) = −8.4,
∆GARG2(4HZE) = −6.8).

In ARG1, rolapitant forms hydrophobic interaction and π-stacking with H126, hydro-
gen bonds with T136, D181, and halogen bonds with H141 and D124 (Figure 4I). On the
other hand, it forms less interaction with ARG2, namely hydrophobic interactions with R39
and T265 and hydrogen bonds with N149, N158, H160, and D202 (Figure 4J).

The potential ARG2 selective lead molecules are irbesartan (∆GARG1(3SJT) = −7.2,
∆GARG2(4HZE) =−8.7), indapamide (∆GARG1(3SJT) =−6.7, ∆GARG2(4HZE) =−7.9), and ivabra-
dine (∆GARG1(3SJT) = −5.1, ∆GARG2(4HZE) = −6.6).

In ARG2, irbesartan forms hydrophobic bonds with Q37, and H145, and hydrogen
bonds with S155, N149, and S156 (Figure 4H). In ARG1, it forms weaker interactions,
namely hydrophobic interaction with T246, and hydrogen bonds with N130, T135, S137,
and D183 (Figure 4G). In ARG2, indapamide forms hydrophobic bonds with R39, T265, and
K38, hydrogen bonds with N149, T154, S156, N158, and H160, and salt bridge with E205
(Figure 4P). In ARG1, indapamide form few interactions, namely hydrophobic bonds with
T136 and D183, and hydrogen bonds with T135 N130, T136, S137, and D183 (Figure 4O).

In ARG2, ivabradine forms hydrophobic interaction with T265, hydrogen bonds
with N158 and HIS160, salt bridges with D200, D202, and π-cation interaction with H145
(Figure 4L). In ARG1 ivabradine forms few interactions, namely a single hydrogen bond
with R21 (Figure 4K).

Finally, codeine causes side effects such as addiction, and budesonide is an inhaled
glucocorticoid. Nevertheless, preliminary analyses were also performed on them.

Budesonide (∆GARG1(3SJT) = −8.5) forms hydrogen bonds with N130, G142, D183, and
salt bridges with H126, and H141 in ARG1 (Figure S3A). Similarly, in ARG2, budesonide
(∆GARG2(4HZE) = −8.8) forms a hydrophobic bond with T265, hydrogen bonds with D147,
N149, S155, G161, and salt bridges with H145, H160 (Figure S3B).

In ARG2, codeine (∆GARG2(4HZE) = −7.9) forms hydrophobic interaction with T265,
hydrogen bonds with S156, N158, H160, T265, and salt bridge with D202 (Figure S3C).
Similarly, in ARG1 (∆GARG1(3SJT) =−6.7), it forms a hydrophobic bond with T246, hydrogen
bonds with N139, H141, and salt bridges with D181, and D183 (Figure S3D).

MD simulation for protein-ligand stability: Three sets of molecular dynamics simula-
tions up to 50 ns were carried out, to assay ligand interactions and arginase selectivity
(candesartan, irbesartan, isavuconazole, codeine, and metformin). Hydrogen bond forma-
tion and RMSD analyses of protein-ligand complexes were assessed to evaluate stability
(Tables S6–S9). Average RMSD and standard deviation of protein and ligand for each set
of the simulation were provided in Table S10. As a control, the binding of the inhibitor
nor-NOHA to ARG1 and ARG2 was also simulated [70,75,76]. nor-NOHA remained in
the binding site for 50 ns and approx. 16 ns (of 50 ns calculated), respectively (data not
shown). Remarkably, candesartan and irbesartan occupied the binding site of ARG1 for
the entire length of the simulation (50 ns). In comparison, candesartan and irbesartan
remained in the binding site of ARG2 less than 37 ns and 13 ns, respectively, suggesting
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they are selective for ARG1. This limits, our earlier results which show irbesartan selectivity
towards ARG2, and both irbesartan and candesartan could potentially favor ARG1. Inter-
estingly, isavuconazole and metformin remained in the binding site of both arginase for
50 ns, potentially suggesting non-selective arginase binding, thus reinforcing our molecular
docking results that isavuconazole and metformin are non-selective. Codeine stayed up to
~8.5 ns with ARG1 before drifting away from the binding pocket to distances obstructive
for binding interactions, and 50 ns with ARG2 thus potentially preferring binding to ARG2
in agreement with our molecular docking prediction. Figures 5 and 6 show hydrogen
bond formation and RMSD of protein-ligand (Set A) during our MD simulation (Set B and
Set C hydrogen bond formation and RMSD of the protein-ligand complex are provided
in Tables S6–S10). Thus, our selectivity predictions should be taken with a grain of salt,
and require experimental validation. Notably, the amino-rich, metformin forms multiple
hydrogen bonds in the binding site with arginase and contributes to complex stability
(Figure 5).
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4. Discussion

ARG1 and ARG2 play a key role in many diseases, such as cancer, Alzheimer’s, hy-
pertension, inflammation, etc. Despite the advances in computer-aided drug design, the
clinical trial time frame is a major obstacle to developing a new commercial drug. Thus,
using an FDA-approved drug repurposing approach could be advantageous to reduce the
clinical trial timeframe and improve treatment. In this study, we used FDA-approved drugs
to identify molecules that are (1) non-selective, (2) ARG1 selective, and (3) ARG2 selective.
We selected 10 FDA-approved drugs with minimal side effects and studied protein-ligand
interaction and stability using a protein-ligand interaction profiler (PLIP) followed by
an MD simulation of five selected ligands. We found the antihypertensive drugs candesar-
tan and irbesartan showed potential high affinity towards arginases. Moreover, irbesartan
also showed more stability with ARG1 (50 ns) than ARG2 (less than 13 ns) despite having
stronger binding energy for ARG2 (∆GARG1(3SJT) = −7.2, ∆GARG2(4HZE) = −8.7). We found
metformin and isavuconazole are non-selective to both the arginases based on binding
energies, protein-ligand interaction, and molecular dynamics. Codeine was more stable
with ARG2 (50 ns), which is corroborated by the binding energy (∆GARG1(3SJT) = −6.7,
∆GARG2(4HZE) = −7.9). Altogether, candesartan, ibersartan, codeine, metformin, and isavu-
conazole qualified as suitable candidates for the development of potential arginase in-
hibitors. Interestingly, irbesartan, and candesartan extend a healthy lifespan in heart failure
patients [77], and improve cognitive function in patients [78]. As such, our study exposes
potential non-selective, and selective ARG1 and ARG2 ligands to the scientific community
for further biological screening, and development of new arginase inhibitors.

As a potential limitation to this study, the AutoDock Vina binding energy is not
a quantitative measure of experimental binding energy, however, they are a good measure
to qualitatively estimate the relative binding affinity. Like molecular mechanics energies
calculated with MM/PBSA and MM/GBSA methods, they are popular approaches to
estimating the free binding energy of small ligands to biological macromolecules. Such
methods have been applied to a large number of systems with varying success [79]. In
this study, we used the AutoDock Vina binding energies to estimate relative binding
affinities. Another limitation is our study uses computational methods, which have not
been validated experimentally. Thus, additional in-vitro and in-vivo studies are required to
characterize ligand binding. Moreover, experimental data and clinical trials are needed to
identify the full potential of these selected candidates to serve as arginase inhibitors and
improve diseases related to old age, such as hypertension, diabetes, and dementia.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27165134/s1, Figure S1: Correlation plot of experimental
and predicted dissociation constant (KD). (A,B) Shown is correlation a plot of experimental and
predicted dissociation constant (Kd) of known arginase inhibitors of ARG1 and ARG2. Notably, the
predicted and experimental values correlate well and attest to the accuracy of our molecular docking
simulations; Figure S2: Predicted and experimental selectivity. Shown is a plot of the predicted and
experimental selectivity of known arginase inhibitors of ARG1 and ARG2; Figure S3: Protein-ligand
interactions. (A, B) Interaction of best docked pose of ligand Budesonide with ARG1 and ARG2.
(C,D) Interaction of best docked pose of ligand Codeine with ARG1 and ARG2; Table S1: Human
arginase structures found in the PDB; Table S2: Validation of docking; Table S3: List of FDA approved
drugs with their binding energies for PDB structures of ARG1 and ARG2; Table S4: List of top
drug candidates—non selective, selective to ARG1 and selective to ARG2; Table S5: Number of
intermolecular interactions of the selected drugs; Table S6: Average number of hydrogen bonds
during MD simulation (for Set A, Set B, Set C); Table S7: RMSDs of protein ligand complex during
MD simulation (Set A); Table S8: RMSDs of protein ligand complex during MD simulation (Set B);
Table S9: RMSDs of protein ligand complex during MD simulation (Set C); Table S10: Average RMSD
and standard deviation of protein and ligand for each set of simulation; Table S11: RMSDs of top
pose of selected ligands in all three PDB structures of each arginase.

https://www.mdpi.com/article/10.3390/molecules27165134/s1
https://www.mdpi.com/article/10.3390/molecules27165134/s1
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