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IL-17 cytokines are pro-inflammatory cytokines and are crucial in host defense against 
various microbes. Induction of these cytokines by microbial antigens has been investi-
gated in the case of ischemic brain injury, gingivitis, candidiasis, autoimmune myocarditis, 
etc. In this study, we have investigated the ability of amino acid sequence of antigens 
to induce IL-17 response using machine-learning approaches. A total of 338 IL-17-
inducing and 984 IL-17 non-inducing peptides were retrieved from Immune Epitope 
Database. 80% of the data were randomly selected as training dataset and rest 20% 
as validation dataset. To predict the IL-17-inducing ability of peptides/protein antigens, 
different sequence-based machine-learning models were developed. The performance 
of support vector machine (SVM) and random forest (RF) was compared with different 
parameters to predict IL-17-inducing epitopes (IIEs). The dipeptide composition-based 
SVM-model displayed an accuracy of 82.4% with Matthews correlation coefficient = 0.62 
at polynomial (t = 1) kernel on 10-fold cross-validation and outperformed RF. Amino acid 
residues Leu, Ser, Arg, Asn, and Phe and dipeptides LL, SL, LK, IL, LI, NL, LR, FK, SF, 
and LE are abundant in IIEs. The present tool helps in the identification of IIEs using 
machine-learning approaches. The induction of IL-17 plays an important role in several 
inflammatory diseases, and identification of such epitopes would be of great help to the 
immunologists. It is freely available at http://metagenomics.iiserb.ac.in/IL17eScan/ and 
http://metabiosys.iiserb.ac.in/IL17eScan/.
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BacKgrOUnD

Human body harbors complex microbial communities which may exist in planktonic forms or as 
higher order structures termed as biofilms (1). The interaction of the peripheral immune system 
with these microbes has an essential role in the pathophysiology of different diseases (2). One of 
the key components of the peripheral immune system is IL-17 family of cytokines, which play 
regulatory roles in host defense and during inflammatory diseases. They mediate pro-inflammatory 
responses via surface receptors on target cells and play several protective roles in host defense 
against pathogens at epithelial and mucosal barriers including skin, colon, and lung (3).

Abbreviations: AAC, amino acid composition; ACC, accuracy; AUC, area under curve; DPC, dipeptide composition; FN, false 
negative; FP, false positive; IEDB, Immune Epitope Database; IIE, IL-17-inducing epitope; INIE, IL-17 non-inducing epitope; 
HLA, human leukocyte antigen; MCC, Matthews correlation coefficient; MHC, major histocompatibility factor; RBF, radial 
bias function; RF, random forest; SEN, sensitivity; SPC, specificity; SVM, support vector machine; TN, true negative; TP, true 
positive; TSL, two sample logo.
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The induction of IL-17 by antigens present in gut commensal 
microbes and its relation with ischemic brain injury/stroke has 
been well established (2). The intestinal commensal microbes 
modulate the lymphocyte populations, which lead to various 
pathological conditions or dysbiosis. Similarly, in case of oral 
biofilms, the peptides Kgp467–477 of lysine-gingipain protein 
from Porphyromonas gingivalis induce IL-17 and further immu-
nopathology in the case of periodontitis and gingivitis (4). On the 
other hand, the induction of IL-17 by peptide from agglutinin-
like sequence protein in the case of oropharyngeal candidiasis 
makes it a suitable candidate for immunotherapeutics.

Similarly, there are reports of an increased level of gastric 
mucosal IL-17 level in response to Helicobacter pylori biofilm 
in mice (5, 6). The pneumococcal surface adhesin A231–268 
(PsaA231–268), which is a highly conserved region in clinically 
relevant S. pneumonia strains, can induce an IL-17 response 
in mice upon infection (7). Furthermore, the Myelin basic 
protein 85–99 mimicking bacterial peptide can induce IL-17 
in humanized transgenic mice (8). Likewise, myocarditogenic 
mimicry epitopes, such as BAC 25–40 peptide of Bacillus sp., 
induce IL-17 in autoimmune myocarditis in mouse model 
suggesting a role in its mediation (9). IL-17 secretion can 
also be triggered when CD4+ T-cells encounter viruses. For 
example, AA242–259 of rotaviral VP6 protein induces an IL-17 
response in spleen cells from mice (10). Briefly, the induction 
of IL-17 in response to various antigens plays a pivotal role in 
initiation and/or development of several allergic inflammatory 
responses and autoimmune diseases such as multiple sclerosis 
(11), autoimmune encephalomyelitis (12), rheumatoid arthritis 
(13), systemic lupus erythematous (14), Behcet’s disease (15), 
and psoriasis (16). These evidences suggest that there is a 
peptide-sequence-specific induction of IL-17 through biofilms 
and planktonic microbial communities, which further leads to 
pro-inflammatory responses and pathogenesis. Further the role 
of selected residues in an epitope was demonstrated by a study 
carried out by mutating the key binding residues of epitopes 
and showed that the IL-17-producing CD8+ T cells were largely 
epitope specific (17). Similarly, five key residues essential for 
T cell activation were identified by replacing the residues with 
alanine amino acid in env122–141 epitope of Friend murine leuke-
mia virus (18).

Several studies have focused on the in silico prediction of differ-
ent types of immune epitopes such as IL4-inducing peptides (19), 
IFN-gamma inducing major histocompatibility factor (MHC) 
binders (19), MHC binders (20), T cell epitopes (21, 22), B-cell 
epitopes (23, 24), and allergenicity (25, 26). However, there are no 
reports of any study in which the prediction of IL-17 induction 
by peptides was carried out. In this study, we have developed a 
classification method to predict the IL-17-inducing property 
of peptides using sequence-based features from experimentally 
validated IL-17-inducing and non-inducing epitopes.

MeThODs

Dataset
To ensure a clean and experimentally validated data, the epitope 
(peptide) sequences reported as IL-17 (IL-17 A or IL-17 F) 

inducing and non-inducing in different assays were downloaded 
from the Immune Epitope Database (IEDB) (27). The length of 
peptides in the epitope data was between 5 and 30 amino acids, 
and the longer peptides were not included in the study. A total 
of 338 IL-17-inducing unique epitopes (IIEs) were retrieved and 
labeled as positive data. The negative data comprised of 984 unique 
IL-17 non-inducing epitopes (INIEs) which do not elicit an IL-17 
response. The peptides in the positive dataset which showed an 
exact match with the peptides present in the negative dataset 
were removed from the negative dataset (50 common peptides 
were removed from 1,034 peptides of negative data). Thus, the 
sequences of IIEs and INIEs were mutually exclusive with no 
overlapping peptides in the two groups. Of the total dataset, 80% 
of the sequences were randomly selected as the training dataset, 
and 20% data were kept as the validation dataset (Figure 1). The 
final training dataset contained 271 IIEs (positive data) and 786 
INIEs (negative data), whereas the validation dataset consisted of 
67 IIEs and 198 INIEs.

To examine the positional amino acid conservation in 
terminal residues, five residues were cut from both the N′ and 
C′ terminals of the epitope sequences. The two sample logos  
(TSLs) were prepared with TSL software (http://www.twosam-
plelogo.org/) (28).

input Features Model Development
Composition-Based Features
Amino Acid Composition (AAC)
Amino acid composition is the percentage of each amino acid in 
a peptide of given length. AAC has been widely used in binary 
classification problems in machine learning (29–31). Each pep-
tide/protein can be represented by percentage composition of the 
20 naturally occurring amino acids making a vector size of 20. 
AAC for each amino acid can be calculated as:

 
AAC i

Total number of amino acid i
Total number of all possible am

( )=
( )

iino acids
100× ,

 

where AAC(i) is the AAC of the amino acid (i).

Dipeptide Composition (DPC)
Dipeptide composition is another widely used input feature for 
peptide/protein composition-based classification (23, 29, 31), 
which is calculated using the percentages of the 400 dipeptide 
combinations. Several immune epitope prediction algorithms 
have used the DPC-based classification (19, 23). Apart from the 
composition, DPC additionally provides information about the 
local arrangements of amino acids in a sequence. Percentage of all 
possible pairs of amino acids was calculated using the following 
equation:

 
DPC i

Total number of dipeptides i
Total number of all possibled

( )=
( )

iipeptides
100× ,

 

where DPC(i) is the dipeptide frequency of dipeptide (i) and the 
dipeptide (i) is one out of 400 dipeptides.

Amino Acid Pair (AAP)
Amino acid pair can be defined as weighted DPC in which each 
pair carries a weight based on its propensity in the given dataset. 

http://www.frontiersin.org/Immunology/
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FigUre 1 | Flowchart showing steps involved in the development of prediction model and web server. The figure shows the steps involved in retrieval of data, 
training, validation, and construction of the IL17eScan tool.
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The AAP-based feature has been used for the prediction of B-cell 
epitopes and IL4-inducing epitopes in the past by different 
authors (19, 23). The AAP feature was calculated as described in 
the earlier studies (19, 24, 32).

Machine learning-Based Prediction 
Models
Support Vector Machine (SVM)
Support vector machine is a supervised machine-learning 
algorithm that can learn to classify positive and negative data 
by drawing an optimal hyperplane in high-dimensional feature 
space separating the two with the highest possible distance. This 
learning can be used for the classification of unlabeled data.  
It performs very well on biological data because of its abil-
ity to handle large feature spaces and avoid over-fitting, and 
thus, has been extensively implemented in several immune 
epitopes prediction tools (19, 33, 34), protein structure predic-
tion (35) and genomic data (36). In this study, SVMlight pack-
age, available at http://svmlight.joachims.org/ was used for 
SVM-based predictive modeling. The linear, polynomial, and 
radial bias function (RBF) kernels were tested using various  
parameters.

Random Forest (RF)
Random forest is an ensemble-based classification and regression 
method in which a large number of independent decision trees 
are formed and are then combined to give the final decision. It was 
implemented in this study as it has a fast and robust algorithm. 
In this study, the randomForest package in R has been used for 
developing the classification model. Different mtry and ntrees 
were tested to build the models.

Performance evaluation of Prediction 
Models
To evaluate and compare the machine-learning methods and 
prediction models, cross-validation technique was adopted. 
Cross-validation is a widely accepted method which involves 
division of the data into two segments. The first part is used to 
train the model and the other holdout or test data are used to 
test the model. A 10-fold cross-validation was carried out, where 
nine parts were used for training of the model, and the 10th one 
was used for testing the model. The process is iterated 10 times 
to test all the segments. Results obtained from all the 10 predic-
tions are taken together for measuring the performance using 
threshold-dependent and threshold-independent parameters. 
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FigUre 2 | Amino acid composition analysis of IL-17-inducing epitopes (IIEs) and IL-17 non-inducing epitopes (INIEs). The proportions of amino acid in IIEs and 
INIEs along with the p-values (Welch’s t-test) are shown.
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The threshold-independent parameter, area under curve (AUC), 
was measured using PERF software. ACC, sensitivity (SEN), 
specificity (SPC), and Matthews correlation coefficient (MCC) 
were threshold-dependent parameters and were calculated as per 
the following equations:

 
ACC TP TN

TP FN FP TN
=

+
+ + +

,
 

 
SEN TP

TP FN
=

+
,
 

 
SPC TN

TN FP
=

+
,
 

 
MCC TP TN FP FN

=
( × ) − ( × )

( + )( + )( + )( + )
,

TP FP TP FN TN FP TN FN  
where TP  =  True Positive, FP  =  False Positive, FN  =  False 
Negative, TN = True Negative.

Prediction of il-17-inducing Peptides  
in Microbes
To compare the distribution of IL-17-inducing epitopes 
(IIEs) in different microbes known to induce Th17 responses, 
or known to induce interleukins other than IL-17 and non-
inducing saprophytic microbes (37, 38), the protein sequences 
of Segmented Filamentous Bacteria, Staphylococcus aureus, 
Candida albicans, Listeria monocytogenes, Mycobacterium 
tuberculosis, Acetobacter aceti and Propionibacterium acnes 

were retrieved from NCBI. Random synthetic peptides were 
generated in 10 different sets with 1,000 peptides (15-mers) 
in each set using in-house Perl scripts and were predicted for 
their IL-17-inducing property. The IIEs were predicted using 
the IL17eScan web server.

resUlTs

composition and Position-Based 
conservation analysis
The AAC analysis revealed Leu, Ser, Arg, and Asn as the most 
abundant amino acids in IIEs as compared with INIEs. Similarly, 
Ala, Asp, Gly, and Pro were found to be rich in INIEs (Figure 2; 
Data Sheet S1 in Supplementary Material). Furthermore, some 
dipeptides were found to be significantly abundant (Welch’s 
t-test, p < 0.01) in IIEs. The top 10 most abundant and significant 
dipeptides present in IIEs were LL, SL, LK, IL, LI, NL, LR, FK, SF, 
and LE, whereas top 10 most abundant and significant dipeptides 
present in INIEs were PG, GA, AA, GP, PA, PP, AG, GD, PE, and 
AP (Figure 3; Data Sheet S2 in Supplementary Material).

To explore the positional conservation of the amino acid 
residues, the first five residues from N′- and C′-terminal of 
epitopes were examined. The TSL analysis revealed the con-
servation and abundance of Leu residues at various positions 
(particularly at the N′-terminal), which was also observed as 
abundant in the compositional analysis of the positive dataset 
(Figure 4).

http://www.frontiersin.org/Immunology/
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FigUre 3 | Distribution of dipeptide composition of IL-17-inducing epitopes (IIEs) and IL-17 non-inducing epitopes (INIEs). Significant dipeptides in IIEs and INIEs 
with p-value < 0.01 (Welch’s t test) are shown.

FigUre 4 | Two sample logo showing positional conservation of five residues at both the terminals (N′- and C′-) in IL-17-inducing epitopes and IL-17 non-inducing 
epitopes. At both N and C terminals, amino acid L was found abundant and conserved at different positions.
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human leukocyte antigen (hla)-allele 
Distribution analysis
Antigenic epitopes are identified by HLA molecules in the host, 
and the presence of different HLA types is a key determinant of 
epitope’s action in IL-17 induction (39). The HLA-allele distribu-
tion analysis was carried out to examine the association of any 

specific allele with IIEs. The analysis revealed the association of 
HLA alleles such as HLADRB1*15:01, H2 s class II, HLAA*02:01, 
and HLADR with IL-17 induction. Similarly, HLA alleles, such 
as H2 Iab, H2 b class II, and H2 Iaq, showed association with 
INIEs (Figure  5; Data Sheet S3 in Supplementary Material). 
Some previous studies also suggested the association of HLADR 
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TaBle 2 | Performance of random forest-based models on different sequence-
based features using various mtry.

Feature mtry acc spec sens Matthews 
correlation 
coefficient

Amino acid composition mtry = 8 81.08 83.00 71.01 0.45
mtry = 7 80.70 82.48 70.81 0.44
mtry = 4 80.79 82.07 72.97 0.44

Dipeptide composition mtry = 160 82.12 84.35 71.81 0.49
mtry = 140 82.12 84.19 72.28 0.49
mtry = 150 81.65 84.10 70.37 0.48

Amino acid pair mtry = 45 82.50 83.80 75.60 0.50
mtry = 35 82.12 83.73 73.84 0.49
mtry = 25 82.12 83.13 76.28 0.48

TaBle 1 | Performance of support vector machine-based models on different sequence-based features using various kernels.

Feature Kernel Thr sen spec acc Matthews correlation coefficient area under curve Parameters

Amino acid composition t0 −0.9 69.74 69.47 69.54 0.35 0.76 c:5
t1 −0.8 71.96 75.7 74.74 0.43 0.8 d:3
t2 −0.4 72.69 78.88 77.29 0.47 0.83 g:0.005:c:1:j:5

Dipeptide composition t0 −1 66.79 75.45 73.23 0.39 0.77 c:990
t1 −0.6 87.45 80.66 82.4 0.62 0.91 d:2
t2 −0.6 78.6 82.82 81.74 0.57 0.87 g:0.005:c:1:j:1

Amino acid pair t0 0.1 59.78 88.55 81.17 0.5 0.82 c:1
t1 −0.7 78.6 84.1 82.69 0.59 0.89 d:2
t2 −0.2 70.11 89.57 84.58 0.6 0.87 g:0.01:c:5:j:1

Bold fonts signifies the best performance obtained.

FigUre 5 | Distribution of human leukocyte antigen (HLA) alleles among assays reporting IL-17-inducing epitopes (IIE) and IL-17 non-inducing epitopes (INIEs). The 
HLA-allele distribution analysis examines the association of any specific allele with IIEs. The analysis revealed IL-17 induction associated with HLA alleles such as 
HLADRB1*15:01, H2 s class II, HLAA*02:01, and HLADR. Similarly, HLA alleles, such as H2 Iab, H2 b class II, and H2 Iaq, showed association with INIEs.
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alleles with the induction of IL-17, and thus, leading to autoim-
mune disease such as Rheumatoid arthritis (40).

Machine learning-Based classification
The compositional profiles of IIEs and INIEs were found to be 
different, and thus, could be exploited to classify the epitopes 
using machine learning-based algorithms. SVM- and RF-based 
models were developed and evaluated using 10-fold cross-
validation. The performance of SVM- and RF-based models on 
different sequence-based features at various kernels and mtry, 
respectively are discussed (Tables  1 and 2; Figure  6). Since 
SVM emerged as the best classification method for IIE and INIE 
prediction, results of SVM-based models have been mentioned 
and discussed in the manuscript.

AAC-Based Models
Support vector machine-based classification using AAC showed 
the best performance with RBF kernel (t = 2), gamma parameter 

(g) = 0.005, trade-off factor (c) = 1 and a cost factor (j) of 5. This 
model performed with an accuracy (ACC) of 77.29% and MCC 
of 0.47 (Table 1). However, MCC at linear and polynomial kernel 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 6 | ROC plots of prediction models developed using SVMlight as 
machine-learning technique. The DPC_polynomial model (shown in purple) 
achieved highest area under curve (AUC = 0.91 shown in Table 1).
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was found to be 0.35 and 0.43, respectively, which was lesser than 
the RBF kernel (Table 1; Figure 6).

Dipeptide-Based Models
Dipeptide composition was also used as input feature since it har-
bors more information because of the longer vector length (400). 
DPC-based models with polynomial kernel (t  =  1) performed 
best with parameter d = 2. Unlike the AAC-based model which 
performed best at complex kernel (RBF), the DPC-based model 
could classify the IIPs from INIEs better with the simpler polyno-
mial kernel. The ACC, MCC, and AUC of the model were found 
to be 82.4%, 0.62, and 0.91, respectively. Similarly, the models 
with linear and RBF kernel could only achieve MCC of 0.39 and 
0.57, respectively (Tables 1 and 2). The best AUC value of 0.91 
was obtained for DPC at polynomial kernel (t = 1) (Figure 6).

AAP-Based Models
To further improve the performance, weights were given to each 
dipeptide, and the AAP values were calculated from the DPC as 
discussed in the Methods section. The model constructed using 
RBF kernel (t = 2) showed the best performance with an ACC 
of 84.58 and MCC of 0.6. The optimized parameters included 
gamma parameter (g) = 0.01, trade-off factor (c) = 5 and a cost 
factor (j) = 1 for this model (Tables 1 and 2; Figure 6).

Performance on Validation Dataset
After the 10-fold cross-validation, the performance of differ-
ent SVM- and RF-based models was evaluated on a validation 
dataset to ensure that there was no over-fitting and the achieved 
performance of the final model is not due to over-optimization. 
The performance on the validation dataset are summarized in 
Table 3 for SVM-based models and Table 4 for RF based models. 
As mentioned earlier, the best performing models for AAC-, 

DPC-, and AAP-based features achieved MCC of 0.47 (t = 2), 
0.62 (t = 1), and 0.60 (t = 2), respectively, on training data. On the 
validation dataset, the same models displayed the MCC values of 
0.5, 0.57, and 0.52 for AAC, DPC, and AAP, respectively.

iies in Biofilm-Forming Bacteria
To examine the epitopes which may modulate host immune 
system by inducing IL-17 in biofilm-forming microbes in 
various disease conditions (41), we extracted all the protein 
sequences of these microorganisms from SwissProt database 
and analyzed using the prediction pipeline. We identified sev-
eral IIEs (15-mers) in different proteins belonging to different 
microorganisms. The top 10 proteins for every microbial species 
harboring the highest number of epitopes are mentioned in the 
Data Sheet S4 in Supplementary Material. Among the major 
predicted IL-17 inducers, “Probable sugar efflux transporter 
protein” is commonly found in Haemophilus influenzae as well as 
Klebsiella pneumonia. Similarly, “Na(+)/H(+) antiporter NhaB 
protein” from Proteus mirabilis and Pseudomonas aeruginosa 
were found to have a large number of IL-17-inducing peptides. 
DNA polymerase III subunit of P. mirabilis involved in urinary 
catheter cystitis was found to harbor IIE, which corroborates 
with a previous study on IL-17 induction by DNA polymerase 
of Human adenovirus 5 (42).

Prediction of il-17-inducing Peptides  
in Microbes
The IIEs were predicted in microbes known to induce IL-17 
response, known to induce other interleukins and in saprophytes 
using IL17eScan web server. The IIEs were found enriched in 
the microbes known to induce Th17 responses (Data Sheet S4 in 
Supplementary Material). L. monocytogenes and M. tuberculosis, 
which promote Th1 responses showed a lower representation 
of IIEs in their proteins (37, 38). A similar lower representation 
of IIEs was also observed in the case of saprophytic microbes 
such as A. aceti and P. acnes (Data Sheet S4 in Supplementary 
Material). On increasing the threshold to 1, a notable reduction in 
the percentages of IL-17-inducing proteins was observed, where 
the percentage was highest (1%) in the case of IL-17-inducing 
bacteria and the lowest (0.1%) for the bacteria for which there 
are no reports of their role in IL-17 induction. To further validate 
the above predictions, random peptides were generated in 10 
different sets with 1,000 peptides (15-mers) in each set and were 
predicted for their IL-17-inducing property at the threshold of 
1. Interestingly, none of the synthetic peptides in any of the 10 
datasets were predicted to be IL-17 inducing. These results attest 
the usability of IL17eScan to predict the IIEs in the real datasets.

Web server and Tools
A web server “IL17eScan” is constructed to provide the tools for 
the prediction, virtual screening, and mapping of IIEs. These 
available modules for prediction incorporate the best perform-
ing algorithm (DPC-based model) as default, which runs the 
queries through a pipeline and classifies the query peptides into 
IIEs or INIEs. A peptide with a score higher than the threshold 
is predicted as IL-17 inducing. An increase in the threshold will 

http://www.frontiersin.org/Immunology/
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TaBle 4 | Performance of different random forest-based models on validation 
dataset.

mtry acc spec sens Matthews 
correlation 
coefficient

Amino acid 
composition

mtry = 8 84.15 92.93 58.21 0.56
mtry = 7 83.77 92.93 56.72 0.54
mtry = 4 84.53 93.94 56.72 0.56

Dipeptide 
composition

mtry = 160 83.40 92.42 56.72 0.53
mtry = 140 83.77 92.93 56.72 0.54
mtry = 150 83.02 91.92 56.72 0.52

Amino acid pair mtry = 45 84.91 94.95 55.22 0.57
mtry = 35 85.28 94.95 56.72 0.58
mtry = 25 86.42 95.45 59.70 0.62

TaBle 3 | Performance of different support vector machine-based models on validation dataset.

Feature Kernel Thr sen spec acc Matthews correlation coefficient area under curve Parameters

Amino acid composition t0 −0.9 74.63 66.16 68.3 0.36 0.79 c:5
t1 −0.8 71.64 70.71 70.94 0.38 0.79 d:3
t2 −0.4 80.6 75.76 76.98 0.5 0.86 g:0.005:c:1:j:5

Dipeptide composition t0 −1 62.69 71.21 69.06 0.3 0.76 c:990
t1 −0.6 89.55 75.25 78.87 0.57 0.89 d:2
t2 −0.6 77.61 79.8 79.25 0.52 0.86 g:0.005:c:1:j:1

Amino acid pair t0 0.1 67.16 84.85 80.38 0.5 0.79 c:1
t1 −0.7 76.12 79.29 78.49 0.51 0.84 d:2
t2 −0.2 67.16 86.36 81.51 0.52 0.84 g:0.01:c:5:j:1

Bold fonts signifies the best performance obtained.
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increase the SPC, and the prediction will become more stringent. 
As a trade-off between SPC and SEN, an optimal threshold (0.5) is 
set as default on the web server. However, the user has the flexibil-
ity to increase or decrease this threshold and analyze the results 
as per the requirement. Also, the AAC-based model is provided 
in all the modules for handling large queries since AAC-based 
models are faster than DPC-based models due to smaller vector 
size (20).

PepPred
The module “PepPred” classifies one or more proteins/peptide 
sequence(s) of length ranging from 5 to 30 amino acids into 
IIEs or INIEs. The stringency of positive prediction can be set 
using a threshold value provided by the user. Also, the “virtual 
screening and designing” option has also been provided, which 
allows the user to select peptides based on their prediction score, 
modify the query peptides, and resubmit them for prediction. 
This option carries out substitution of each amino acid of the 
peptide with other amino acids. After the substitution, for the 
resubmitted peptides, the results are displayed in the same tabu-
lar format with prediction scores. It allows the users to predict 
the IL-17-inducing nature of the multiple variants of the query 
peptide, and thus, is useful in assessing the position-specific 
effects of each amino acid in modulating the IL-17-inducing 
activity of the peptide.

PepScan
In contrast to the “PepPred” module that deals with smaller pep-
tides, the “PepScan” module predicts the antigenic regions in full-
length proteins that can potentially induce an IL-17 response in a 

host. Users are allowed to provide a window length ranging from 
5 to 30 peptides which determine the length of peptide sequences 
considered for prediction. Virtual screening and design option is 
also available for this module.

MetaGScan
To investigate IIEs in amino acid sequence data obtained from 
metagenomic studies, we have incorporated a separate module 
“MetaGScan.” This module requires raw translated reads (peptide 
orfs) from any metagenomic study and identifies the antigenic 
regions which may induce an IL-17 response. The peptide orf 
containing the positively predicted epitopes can be aligned 
for similarity search against the protein sequences present in 
SwissProt database using BLASTP. As an example, we have 
included metagenomic reads data from the gut of a diabetes type 
II patient (processed reads with annotation from https://www.ebi.
ac.uk/metagenomics/projects/SRP008047/samples/SRS259434/
runs/SRR341581/results/versions/1.0) in this module.

EpiScan
To examine the exact occurrence of IIEs on the protein of interest, 
the EpiScan tool is provided which allows the user to map experi-
mentally validated IIEs from IEDB (27) on the query peptide or 
proteins. The results are also linked to the related assays available 
in IEDB.

SimSearch
Unlike EpiScan, which searches for exact matches, the “SimSearch” 
option maps the experimentally validated epitopes to their similar 
sequences in the query peptide/protein. This module imple-
ments Smith–Waterman search algorithm and displays the 
match along with the links to related assays in IEDB.

DiscUssiOn

Recent advances in metagenomic and high-throughput assay 
technologies have provided us with new insights into the diversity 
of human microbiome, and their interaction with host immune 
system in different inflammatory and autoimmune diseases. 
Among these interactions, induction of IL-17 is one of the 
most studied pro-inflammatory responses against pathogens (3, 
43, 44). In this study, we have developed an in silico method to 
predict the IL-17-inducing ability of peptides/proteins based on 
the sequence-based features derived from a set of experimentally 
validated IIEs (positive set), and non-inducing epitopes (negative 

http://www.frontiersin.org/Immunology/
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set) obtained from the IEDB. Although the IL-17 response can be 
defined as induction of any cytokine of IL-17 class, the epitope 
assay data in IEDB were limited only to IL-17 A and IL-17 F 
cytokines of IL-17 class. Thus, the present tool is aimed only at 
predicting the IIEs, which is one of the limitations of the tool. 
Further, the IIEs had lengths ranging from 5 to 30 amino acids 
except for a few longer epitopes, and thus, the length range of 
5–30 amino acids was selected for training and prediction. The 
non-redundant dataset constructed from the IL-17-inducing 
and non-inducing peptides ensured no over-fitting or bias due to 
the presence of multiple instances of the same peptide. The IIEs 
belonged to 117 unique proteins from 54 different taxa, which 
further reduced the chances of any bias.

The compositional analysis and positional conservation of 
residues by TSL revealed that Leu is highly abundant in IIEs 
as compared with INIEs. The Leu-rich epitopes have also been 
shown to induce an IL-17 response in different autoimmune 
diseases such as NLRP3 (autoimmune encephalomyelitis) (45), 
FLRT2 (systemic lupus erythematosus) (46, 47), and LGI1 (limbic 
encephalitis) (48–50). A higher abundance of specific residues has 
been previously observed for epitopes inducing other interleukins 
and immune cells (17, 18, 21, 22, 51). These findings suggest that a 
few residues could be associated with IL-17 induction. However, 
determining the biological significance of these residues in IL-17 
induction requires further studies and experimental validations.

The development of IL-17 prediction models was carried out 
after evaluating multiple machine-learning methods, and the 
best performing DPC-based SVM classification models with 
polynomial kernel was incorporated in the web server pipeline 
for the best results. The DPC-based model performed better 
than the AAC-based model perhaps due to the larger vector 
size. However, as a weighted DPC, AAP feature was not able 
to improve the performance. Given the large vector size and 
high performance, the models were also scrutinized for over-
optimization by testing on a validation dataset. The validation 
of models on the validation dataset confirmed that the high 
performance of the models is not due to over-fitting.

Further, the performance of the tool on IL-17-inducing, non-
inducing, and saprophytic microbes and on a random peptide 
set underscores its applicability on real biological datasets and 
reveals the differences in the percentage of such epitopes in IL-17-
inducing and non-inducing organisms. The tool also provides a 
reliable and reproducible framework for epitope prediction in 
peptides or proteins from whole genomes and metagenomes. 
For any prediction-based method, setting an optimal threshold 

for the selection of hits is one of the limitations, where a lower 
threshold could result in a higher number of false positives, 
although it may improve the SEN and vice  versa for a higher 
threshold. Thus, we have provided a default threshold to ensure 
optimal performance; however, the stringency of results should 
be adjusted by selecting an appropriate threshold by the user.

The availability of experimentally validated IIEs for all classes 
of IL-17 cytokines will help in further improving the applicabil-
ity of the tool. The present tool will help in developing a better 
understanding of the IL-17-inducing property of the peptides 
and is anticipated to be widely used for the computational iden-
tification of IIEs from genomes and metagenomes.

cOnclUsiOn

The propensity of antigens to induce an IL-17 response is of 
significant importance in the initiation and development of sev-
eral allergic inflammatory responses and autoimmune diseases. 
Therefore, the developed machine learning-based tool provides 
a useful resource for predicting the IL-17-inducing peptides by 
successfully utilizing the sequence-based signatures of experi-
mentally validated IIEs. To the best of our knowledge, this is 
the only in  silico based method available to predict the IIEs in 
genomic and metagenomic peptides/proteins, and the lead pep-
tides may serve as potential candidates for immunotherapeutics. 
The IL17eScan is available freely as a web server for academic use.
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